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Stably stratified turbulence is investigated with the aim of increasing our limited
understanding of the vertical structure of this type of turbulent flow. For strongly stratified
turbulence there is a theoretical prediction that the energy spectra in the vertical direction
of gravity are very steep, possessing the well-known form Eh(kv) ∝ N 2k−3

v , where N is the
Brunt-Väisälä frequency and kv is the vertical wave number, but supporting evidence
from experiments and numerical simulations is lacking. We conduct direct numerical
simulation (DNS) with uniform background stratification and forcing at large scales.
In order to consider the large anisotropic scales only, the vertical energy spectra are
decomposed into large-scale vertical spectra Elarge(kv) and small-scale vertical spectra
Esmall(kv) using a horizontal demarcation scale. We find that this approach gives results that
are in close agreement with Elarge(kv) ∝ N 2k−3

v for the DNS runs performed. This result
holds approximately over the wave-number range kb � kv � koz, where kb is the buoyancy
wave number and koz is the Ozmidov wave number, in agreement with theory. Similarly,
large-scale vertical spectra of potential energy are found to be Ep,large(kv) ∝ N 2k−3

v , over a
narrower range of wave numbers. The evidence supports the existence of a scale-by-scale
balance between inertia and buoyancy occurring in strongly stratified turbulence at large
horizontal scales. Finally, the current results are put in the context of ocean turbulence
by making a comparison with measurements of vertical shear spectra made in the ocean
interior.

DOI: 10.1103/PhysRevFluids.2.104802

I. INTRODUCTION

Natural flows in the atmosphere and in the oceans can be affected by a stable density stratification.
The density stratification that is dynamically relevant is caused by vertical temperature gradients
in the atmosphere and vertical temperature and salinity gradients in the oceans. The physical
parameter that determines the relative strength of the stratification is the Froude number. In this
paper we consider mainly turbulent flows and so we use a turbulence Froude number Fr = ε/Nu2

h,
where ε is the kinetic energy dissipation rate, uh is a horizontal turbulent velocity scale, and
N =

√
− g

ρ0

dρ̄

dz
is the Brunt-Väisälä frequency, related to the background density gradient dρ̄

dz
. The

use of the turbulence Froude number was first proposed in the context of decaying stratified turbulence
[1] and it is equivalent to a horizontal Froude number Frh = uh/N�h, where �h is the horizontal
length scale of the turbulence [2]. When the Froude number is low, Fr � 1, the dynamics is strongly
affected by the buoyancy force and the flow develops in a layered structure that is a distinctive
feature of stratified turbulence [3]. At high Reynolds number the flow can still be turbulent and three
dimensional despite the strong vertical stability imposed by the stratification, and this flow regime,
known as the strongly stratified turbulence regime, is the subject of the present study. The conditions
to be in the strongly stratified turbulence regime are that Fr � 1 and Reb � 1 concurrently, where
Reb = ε/νN2 is the buoyancy Reynolds number, which needs to be large for viscous effects to be
neglected [2]. In this regime, the turbulent layers have a vertical length scale �v that is of the order
of the buoyancy length scale �b = uh/N [4], a prediction which has been confirmed by several
experimental and numerical investigations of the problem [2,5–8]. The physical meaning of this
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result is that inertia and buoyancy forces are in approximate balance since the vertical Froude
number is Frv = uh/N�v ∼ 1 [8]. In the study by Billant and Chomaz [4] it was proposed that in
the case of strongly stratified turbulence the above result holds on a scale-by-scale basis so that
there should be continuously smaller layered structures of vertical scale sv ∼ vh/N , where sv and
vh are the local vertical length scale and horizontal velocity scale. This hypothesis implies that
the local vertical Froude number Frsv

= vh/Nsv should also be of order unity and that there is
a balance between inertia and buoyancy forces over a range of scales, which we hence refer to
as the “buoyancy-inertial range.” In terms of vertical scales, this range should be �b � sv � �oz,
where �oz =

√
ε/N3 is the Ozmidov length scale. At sv = �oz the local turbulence Froude number

Frloc = ε/Nv2
h is of order unity and there is a transition to isotropy, achieved at scales of motion much

smaller than the Ozmidov length scale which are insensitive to the stratification [9,10]. Translated
into Fourier space, the hypothesis of a buoyancy-inertial range allowed the derivation of the vertical
spectrum of horizontal kinetic energy Eh(kv) [4]:

Eh(kv) = αN2k−3
v , (1)

where α is a constant of order unity. This form is valid over the range kb � kv � koz, where the
buoyancy wave number and Ozmidov wave number are simply defined as kb = 1/�b = N/uh and
koz = 1/�oz =

√
N3/ε. With the assumption of equipartition between kinetic and potential energy a

similar expression was obtained for the vertical spectrum of potential energy in the buoyancy-inertial
range, Ep(kv) = βN2k−3

v , where β is another constant of order unity [4]. Hence, the vertical energy
spectra are very steep and are affected by the stratification N . On the other hand, the horizontal
spectra of kinetic energy and of potential energy have been proposed to be Eh(kh) ∼ ε2/3k

−5/3
h

and Ep(kh) ∼ (εp/ε1/3)k−5/3
h for k�h

� kh � koz, independent of N and where kh is the horizontal
wave number, εp is the potential energy dissipation rate, and k�h

= 1/�h corresponds to the largest
horizontal scales [10]. While the evidence from recent numerical simulations is, as we will see,
not in agreement with the vertical spectrum of Eq. (1), there is support for these forms of the
horizontal spectra [2,8,11,12]. It is important to note that the wave-number ranges k�h

� kh � koz and
kb � kv � koz correspond to the same dynamics within stratified turbulence, namely, to anisotropic
layers with wave numbers going from [kh, kv] ∼ [k�h

, kb] to [kh, kv] ∼ [koz, koz] and which have a
gradual reduction of the anisotropy.

The vertical spectrum in Eq. (1) is sometimes known as the “saturation spectrum” [13]. This is
because it was previously derived in the context of atmospheric flows by assuming that turbulence
is created by internal gravity waves going unstable due to shear or gravitational instability and
eventually reaching a saturation condition close to the critical point for the onset of instability
[14,15]. Vertical energy spectra measured in the free atmosphere (see Ref. [15] and references
therein) and in the ocean [16,17] are consistent with the form given in Eq. (1). As shown in
Fig. 1, measurements of the vertical shear spectrum S(kv) in the ocean gave a convincing result that
S(kv) ≈ N2k−1

v over a significant range of vertical wave numbers up to the Ozmidov wave number
[17]. This form of the shear spectrum corresponds to a vertical energy spectrum Eh(kv) ≈ 0.5N2k−3

v ,
consistent with Eq. (1) with α ≈ 0.5.

The positive match between the simple theoretical result and vertical energy spectra measured
in the atmosphere and oceans supports the claim that strongly stratified turbulence is a relevant
model for turbulence in the atmosphere and oceans in their interior regions [18]. However,
many experiments and DNS have been conducted of stratified turbulence (see, e.g., Ref. [19] for
experimental investigations and Refs. [8,13,20] for numerical simulations) and these investigations
have consistently been unable to reproduce vertical energy spectra in agreement with Eq. (1). Going
more into the detail of recent studies with high-resolution simulations, the picture remains unclear
since DNS of decaying stratified turbulence [8,11] has given vertical spectra in compensated form,
Eh(kv)/(N2k−3

v ), which do not present a plateau in agreement with Eq. (1) but rather a broad
maximum at high vertical wave numbers (the vertical spectra of the simulations in Ref. [11] were
communicated to the author by P. Bartello [21]). In numerical simulations of forced stratified
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FIG. 1. Vertical spectra of vertical shear measured in the ocean by Gargett et al. [17]. The shear spectra are
nondimensionalized by φb = √

εN and the vertical wave number is nondimensionalized by the Ozmidov wave
number (this is written as kb in their notation). The logarithm is in base 10 on both axes. Figure reproduced
from Ref. [17] with permission, © American Meteorological Society.

turbulence with hyperviscosity [12] the vertical spectrum was close to Eh(kv) ∝ k−3
v in a single run

while in the remaining runs the compensated vertical spectra presented a similar “bump” at high
wave numbers. An analogous discrepancy was observed in the results from high-resolution DNS
of forced stratified turbulence [22]. It is possible that the lack of clear evidence supporting Eq. (1)
is due to the fact that the buoyancy-inertial range, if it exists, is very narrow since its width scales
as koz/kb = (Nu2

h/ε)1/2 = Fr−1/2. To date, experiments and numerical simulations of stratified
turbulence at high Reynolds number have been limited to values of the Froude number in the range
Fr ≈ 10−2–10−1 [7,8,11], resulting in less than a decade of buoyancy-inertial range. In addition, it
is expected that for high vertical wave numbers kv > koz at which buoyancy effects are negligible,
there is a range of scales over which we have homogeneous isotropic turbulence, with an associated
vertical spectrum Eh(kv) ∝ ε2/3k

−5/3
v up to the dissipation scales [2,15]. In two recent numerical

studies of the transition to turbulence of a dipole vortex [23] and of strongly stratified turbulence [12]
it was found that a composite vertical spectrum obtained by summing a term proportional to N2k−3

v

and a term proportional to ε2/3k
−5/3
v gives a good comparison with results from the simulations.

Such a composite spectrum describes the dynamics in the presence of an overlap region between
the buoyancy-inertial range and the classical inertial range at small scales. However, an alternative
explanation exists for the lack of evidence in favor of Eq. (1): vertical energy spectra shallower
than k−3

v typically observed in simulations [8,11,20] could entail that there is a gap in the theory of
strongly stratified turbulence and that the vertical spectrum of Eq. (1) is incorrect. If this is the case,
the vertical spectra observed in the atmosphere and oceans must be the consequence of a different
set of dynamics, possibly more complicated than the simple model of strongly stratified turbulence
with constant background stratification, as suggested in Ref. [13].

Shedding some light on this issue is the main motivation of the present investigation and we
attempt to do this using results from high-resolution DNS of strongly stratified turbulence. The
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question driving this study is this: Can we recover vertical energy spectra showing the buoyancy-
inertial range in line with Eq. (1)?

To answer this question we explore the possibility of decomposing a field of strongly stratified
turbulence into large scales and small scales. In stratified turbulence the large scales of motion are
highly anisotropic while the small scales are approximately isotropic, and the decomposition is
intended to isolate the two different sets of dynamics. In this paper the classical scale decomposition
of isotropic turbulence [24] is adapted and used to obtain vertical energy spectra conditioned over
large horizontal scales, which are strongly affected by buoyancy, and the results are then compared
to the vertical spectrum in Eq. (1). Vertical energy spectra at large horizontal scales have been
computed previously in simulations of stratified turbulence using a filter scale close to the buoyancy
length scale �b but spectra significantly steeper than k−3

v were obtained [12,23].
This paper is organized as follows. In Sec. II the theory and analytical tools necessary to form

large-scale vertical spectra are presented. Then in Sec. III the numerical methods of the DNS
are given, including details on the simulations that were performed, and the results from the DNS
concerning vertical spectra are presented in Sec. IV. Further implications of our results are discussed
in Sec. V and the conclusions of the present study are summarized in Sec. VI.

II. BACKGROUND AND THEORY

A. Scale decomposition of turbulent flows

In the classical analysis of turbulence by Obukhov [24] a decomposition of the turbulent flow
field into large scales and small scales based on a demarcation scale � is introduced (see Ref. [25] for
a complete account of the theory). In the analysis a field of homogeneous isotropic turbulence with
velocity u is subdivided into a large-scale velocity field ularge and a small-scale velocity field usmall.
The scale decomposition is based on a filtering operation carried out in Fourier space using a single
wave number K. In essence, it consists of a sharp cutoff filter at the filter wave number K, which is
applied on û(k), the Fourier transform of u(x). This means that the filter location is a sphere of radius
|k| = K in Fourier space, where k = [kx ky kz] is the wave vector, and the associated filter scale is
� = 1/K. It is evident that in order for this decomposition to have a clear physical interpretation
the turbulent flow field has to be isotropic. Hence, by considering only the contributions of wave
numbers smaller than the filter wave number K we obtain the large-scale velocity field, whereas
by considering only the contributions of wave numbers greater than K we obtain the small-scale
velocity field, as follows:

ularge(x) =
∑

|k|�K
û(k)eik·x, (2)

usmall(x) =
∑
|k|>K

û(k)eik·x, (3)

and the velocity field can now be written as u(x) = ularge(x) + usmall(x).

B. Scale decomposition of stratified turbulence

We attempt at providing a similar formal decomposition into large scales and small scales for
the case of stratified turbulence. The anisotropy of this turbulent flow means that we cannot define
a single filter wave number K corresponding to a single filter scale �. While the flow is anisotropic
and develops in layers, it is statistically axisymmetric about the vertical z axis along which gravity
acts and so there is no preferential horizontal direction. As a result, we should consider two wave
numbers for our scale decomposition: a horizontal wave number Kh and a vertical wave number
Kv . More critically, the shape of the volume in Fourier space over which to sum now makes a
difference to the final result and there is no obviously preferable choice. For example, one could
choose a spheroid or a cylinder as the volume for the summation. If we choose a cylindrical
volume, then we have the following expressions for the large-scale velocity field and the small-scale
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velocity field:

ularge(x) =
∑

kv�Kv

∑
kh�Kh

û(k)eik·x, (4)

usmall(x) =
∑
kz

∑
kh>Kh

û(k)eik·x +
∑

kv>Kv

∑
kh�Kh

û(k)eik·x, (5)

where we have introduced the vertical wave number kv = |kz| and the horizontal wave number
kh =

√
k2
x + k2

y . We make this choice of the summation volume for simplicity and because it means
that the horizontal and vertical directions are independent of one another and that we can define two
constant filter wave numbers Kh and Kv . On the other hand, if we had opted for a spheroid, the cutoff
filter would be active on a surface described by f (kh,kv) = 0 for which it would not be possible
to define a single horizontal scale and a single vertical scale of the filtering, unambiguously. The
scale-dependent decomposition described by Eqs. (4) and (5) also allows us to extend the analysis
to consider the statistics of the large-scale velocity field in one of the two independent directions.

C. The large-scale vertical spectrum

In stratified turbulence it is necessary to consider horizontal and vertical spectra separately
because of the anisotropy of the flow [10,15]. In this paper we focus on the vertical spectrum
Eh(kv), which is a one-dimensional spectrum computed using only the two horizontal components
of velocity u and v since the vertical velocity w is on average much smaller than u and v. Hence,
the vertical spectrum is defined as

Eh(kv) =
∑
kx ,ky

|kz| = kv

1

2
(û(k)û∗(k) + v̂(k)v̂∗(k)), (6)

where, for a given vertical wave number kv , the summation is over two horizontal planes at kz = ±kv .
Similarly to other one-dimensional spectra, the vertical spectrum Eh(kv) at a given vertical wave
number suffers from aliasing of Fourier modes at higher wave numbers, as discussed by Pope [26].
Considering Eq. (6), the contributions to Eh(kv) for a certain vertical wave number kv = k0 come
from all horizontal wave numbers kx and ky , including |kx | > k0 and |ky | > k0 so that these small
scales are aliased to a vertical wave number k0 corresponding to a larger scale. This can have an
important effect in stratified turbulence, where the small scales of motion with large kh or alternatively
large kv have a transition to isotropy (note that at high wave numbers approximate isotropy results
in spherical symmetry in Fourier space). As illustrated in Fig. 2, even if we consider a vertical
wave number kv < koz the vertical spectrum Eh(kv) will have contributions that, beyond a critical
horizontal wave number kh, come from Fourier modes corresponding to small isotropic scales. This
highlights the problem whereby using Eh(kv) we cannot obtain a definite measurement of the energy
of the anisotropic scales in stratified turbulence (i.e., of the layers) as we only provide the value of kv .

This limitation of Eh(kv) can be overcome if one considers vertical spectra after applying the
scale decomposition. First of all, it should be noticed that the large-scale velocity field ularge given
by Eq. (4) can be used to calculate two-point correlations but that clearly these will have missing
information at small scales. This will also be true for the vertical spectrum Eh(kv) formed from this
velocity field. If one, however, purposely chooses Kv = ∞ and applies the low-pass filter operation
of Eq. (4), it will be possible to calculate statistics of the resulting large-scale velocity field in the
vertical direction, over all vertical scales of motion. We use a different notation for the large-scale
velocity field obtained in this way,

ulargeH(x) =
∑
kz

∑
kh�Kh

û(k)eik·x, (7)
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ky

kx

isotropic scales

kz

kv

koz

anisotropic
scales

kh

k

FIG. 2. Aliasing problem in the vertical spectrum in stratified turbulence. For a given vertical wave number
kv , Eh(kv) is formed by summing over all Fourier modes in the horizontal plane at kz = kv (and at kz = −kv).

which is the velocity field at large horizontal scales. From ulargeH(x) we can calculate the one-
dimensional energy spectrum in the vertical direction:

Elarge(kv) =
∑
kx , ky

|kz| = kv

1

2
(ûlargeH(k)û∗

largeH(k) + v̂largeH(k)v̂∗
largeH(k)) =

∑
kh � Kh

|kz| = kv

1

2
(ûû∗ + v̂v̂∗). (8)

This vertical spectrum is a measure of the kinetic energy of turbulent structures with horizontal scales
greater than the filter scale Lh = 1/Kh as a function of their vertical wave number. Hence, Elarge(kv)
is the vertical energy spectrum at large horizontal scales and we refer to it using the shorthand
form large-scale vertical spectrum. Within this framework, we can similarly find an expression for
a small-scale vertical spectrum of a field of stratified turbulence, obtained using a high-pass filter
operation:

Esmall(kv) =
∑

kh > Kh

|kz| = kv

1

2
(ûû∗ + v̂v̂∗). (9)

The full vertical spectrum can be obtained by summing the two spectra obtained from this
decomposition, Eh(kv) = Elarge(kv) + Esmall(kv).

A similar decomposition can be applied to the buoyancy field, defined as b = −ρ ′g/ρ0, where ρ ′ is
the density perturbation away from the background density profile ρ̄(z) and ρ0 is a reference density.
From the buoyancy, the potential energy in stratified turbulence is obtained as EP = 〈b2〉/(2N2),
where 〈· · · 〉 denotes a volume average over the physical domain. The vertical spectrum of potential
energy Ep(kv) is then defined analogously to the vertical energy spectrum given in Eq. (6). Applying
the scale decomposition only in the horizontal direction, we can obtain expressions for the large-scale
and small-scale vertical spectra of potential energy,

Ep,large(kv) =
∑

kh � Kh

|kz| = kv

1

2N2
b̂ b̂∗, (10)

Ep,small(kv) =
∑

kh > Kh

|kz| = kv

1

2N2
b̂ b̂∗, (11)
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and the full vertical spectrum of potential energy can be recovered as Ep(kv) = Ep,large(kv) +
Ep,small(kv).

D. Selection of the filter scale

It is the case with most filtering operations in physics problems that the results of the filtering are
highly dependent on the specific filter scale that is selected, in addition to the particular shape of the
filter. The case of filtering a field of stratified turbulence to obtain the large-scale velocity field defined
in Eq. (7) is no exception to this rule. Consequently, a reliable filter horizontal wave number Kh and
corresponding filter scale Lh should be chosen if we want the resulting large-scale vertical spectrum
Elarge(kv) to be accurately describing the buoyancy-inertial range of strongly stratified turbulence.
Based on the theoretical prediction that the Ozmidov length scale is the relevant demarcation scale
between large scales and small scales we could choose Kh = koz. However, the definition of the
Ozmidov length scale [9] is based on order of magnitude arguments so we look for a different
criterion. We propose to use a length scale based on the vertical velocity, L = wrms/N , where
wrms = 〈w2〉1/2. A fluid parcel can be displaced upwards by a distance that is a maximum when all
of the kinetic energy of its vertical motion, taken as (1/2)w2

rms, is converted into potential energy, and
this maximum displacement is given by L (see Ref. [27]). As such, this length scale is a measure of
the largest overturning scale in stratified turbulence, making it a suitable demarcation scale between
anisotropic and isotropic motions. The corresponding wave number is κ = N/wrms and we use κ as
the filter horizontal wave number.

In a recent theoretical study of stratified turbulence [28] it was found that the vertical
velocity variance is w2

rms ∼ (Fr)u2
h = ε/N , which has been confirmed for DNS of decaying

stratified turbulence [8]. As a result, it is expected that the scaling for the wave number κ is
κ = N/wrms ∼ N/(ε/N)1/2 =

√
N3/ε = koz. However, numerically κ and koz are likely clearly

distinct. We prefer to choose Kh = κ because this wave number corresponds directly to the overturns
and hence to the transition to isotropic motions in strongly stratified turbulence.

III. NUMERICAL METHODS

In this work DNS was performed in a numerical domain without solid boundaries with the
purpose of simulating homogeneous stratified turbulence. We consider a linearly stratified fluid with
constant Brunt-Väisälä frequency N that is uniform throughout the numerical domain. In the DNS
the turbulence is brought to an approximate steady state by introducing an artificial body force f,
which has been selected to inject energy only in the vortex component of the flow and not in the
wave component directly. More details on the forcing technique used in the simulations are given
in the Appendix. The equations being solved numerically are the Navier-Stokes equation with the
Boussinesq approximation and the buoyancy equation:

∂u
∂t

+ u · ∇u = − 1

ρ0
∇p′ + ν∇2u + bez + f, (12)

∂b

∂t
+ u · ∇b = D∇2b − N2w, (13)

subject to the constraint ∇ · u = 0. In Eqs. (12) and (13), u = [u v w] is the velocity and p′ is the
pressure perturbation away from hydrostatic pressure. There is no mean flow in the simulations,
〈u〉 = 0, and so u represents the turbulence only. In addition to the Brunt-Väisälä frequency N , the
input parameters to the DNS are the viscosity ν and the density diffusivity D.

The numerical methodology consists of a pseudospectral method based on Rogallo’s algorithm
[29] in which Eqs. (12) and (13) are transformed into Fourier space. The boundary conditions
are periodic in all three directions. The solution is advanced in time using a Runge-Kutta method
of the second order and, during time integration, the velocity and buoyancy fields are multiplied
by suitable integrating factors, allowing the viscous and diffusive terms in Eqs. (12) and (13) to
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TABLE I. List of DNS runs performed with important nondimensional parameters and values of the
buoyancy and Ozmidov wave numbers. All values are obtained from time-averaged quantities, where the time
averaging is over the statistically steady period of each DNS run. The naming convention for the runs is based
on the Froude number: “F” followed by Fr × 102 (approximated to the first digit). The Reynolds number based
on the Taylor microscale is defined as Reλ = 〈u2〉/(ν〈(∂u/∂x)2〉1/2).

Name Nx Ny Nz Fr Reb Reλ Lz/�v kb koz

F4 1024 1024 512 0.044 13.6 229 10.6 9.8 46.6
F3 2048 2048 512 0.028 14.1 588 7.1 14.4 87.0
F2 4096 4096 1024 0.021 17.0 818 8.9 22.1 153.8
F1 8192 8192 2048 0.014 21.7 1377 14.6 30.1 258.4

be calculated exactly. The time step �t is calculated using an advection Courant-Friedrichs-Lewy
(CFL) condition. The numerical domain is rectangular with horizontal dimensions Lx = Ly = 2π

and vertical dimension Lz < Lx to reduce the computational cost of the DNS by taking advantage
of the large-scale anisotropy of the flow. Tests were made at the lower grid resolution by varying
the vertical dimensions of the domain and it was found that the results became relatively insensitive
to the vertical dimension for Lz/�v � 7. The exact value of Lz for each simulation was then chosen
after some trial and error to ensure that Lz/�v � 7 so that there are at least seven turbulent layers
in each simulation. Here �v is the vertical length scale obtained from the average of the integral
length scales of u and v in the vertical direction. The number of grid points was chosen to satisfy
Lz = (Nz/Nx)Lx with Nx = Ny , where the numbers of grid points in the three directions are Nx ,
Ny , and Nz. This choice ensures that the grid spacing is the same in all three directions. The
high-resolution run F1 was initialized from a snapshot of run F2 to reduce the number of time steps
required to reach statistical stationarity and so it was necessary to make the conservative choice of
maintaining the same aspect ratio of the previous run. At the largest scales, the first nonzero horizontal
wave number is kh = 1 while the forcing is concentrated at kh = 3. The dealiasing technique
consists of a combination of phase shifting and truncation. In the phase-shifting technique, random
phase shifts are applied to the velocity and buoyancy fields in both steps of the time integration,
which results in dealiasing of the new solution at the following time step (for more details see
Ref. [29]). Considering that phase shifting is used, the truncation is active only for wave vectors
with k = |k| > kmax = (2

√
2/3)knyq ≈ 0.94knyq, where knyq = Nx/2 is the maximum wave number

for which the physical solution is correctly captured.
In Table I details of the four DNS runs that were performed are listed including the important

nondimensional parameters. We have carried out four DNS runs at successively higher resolution
in order to decrease the Froude number gradually towards Fr � 1 while keeping Reb > 10 in all
runs. All DNS runs have kmaxη ≈ 1.5 during steady state, where η = (ν3/ε)1/4 is the Kolmogorov
length scale, and this is considered a sufficient resolution of the dissipative scales for the present
purposes (see Ref. [26]). The power input P provided by the forcing is kept at the same value for
all the simulations and this leads to a kinetic energy dissipation ε at steady state that does not vary
significantly across the four runs. Hence, the viscosity is decreased as the grid resolution is increased
from run F4 to run F1, in accordance with the above condition for the good resolution of the small
scales. As a result, the Reynolds number based on the Taylor microscale increases from run F4 to run
F1 to high values, Reλ = O(103). Our aim was to keep the buoyancy Reynolds number at Reb ≈ 15
for runs F4 to F2 since there is evidence that at Reb = O(10) some of the important features of
strongly stratified turbulence are observed [8,11]. The objective for the highest resolution simulation,
run F1, was to increase this value slightly to Reb ≈ 22. This means that run F1 satisfies the condition
Reb > 20, which was identified as the criterion to have active three-dimensional turbulence at small
scales in stratified shear layers [27]. Since Reb = ε/νN2, this allowed N to be increased from run
F4 to run F1, resulting in a continuously decreasing Froude number, down to Fr = O(10−2). The
fact that Fr decreases from run F4 to run F1 can also be seen from the relation between Reb and
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FIG. 3. Evolution of volume-averaged quantities for run F2: (a) root-mean-square velocity components
and buoyancy normalized by N , and (b) kinetic energy dissipation, potential energy dissipation, and the total
dissipation ε + εp , normalized by the input power P . The heavy portion of the curves, towards the end of the
simulation, shows the period over which time averaging is performed.

Fr: Reb ≈ (1/15)Re2
λFr2 (see Ref. [30]). Overall, these choices mean that runs F4 and F3 are in the

transition region between weakly stratified and strongly stratified turbulence, while runs F2 and F1
are in the strongly stratified turbulence regime. This statement is based on experience and on the
classification of the regimes in stratified turbulence in Fig. 18 of Ref. [2]. The Prandtl number in all
the simulations is Pr = ν/D = 1.

IV. RESULTS

A. Time evolution

In the DNS, the magnitude of the velocity field is increased from approximately zero through the
use of forcing at the largest scales of the simulation and, after some time, the buoyancy field is also
excited as kinetic energy gets converted into potential energy. This procedure was applied for all
runs, except for run F1, which was initialized using a snapshot of run F2. The time evolution of run
F2 is presented in terms of the root-mean-square values of the velocity components and of buoyancy
and in terms of kinetic and potential energy dissipation rates in Fig. 3. We normalize time by the
eddy-turnover time τ = �h/uh, where �h is the horizontal length scale obtained from the average of
the longitudinal integral length scales of u and v, whereas uh = [(1/2)〈u2 + v2〉]1/2 is the horizontal
velocity scale. As expected for strongly stratified turbulence, the vertical velocity is significantly
smaller than the two horizontal velocity components as the stratification resists vertical motion,
while the quantity brms/N is about half of urms and vrms, showing that the potential energy is smaller
but of the same order of magnitude compared to the kinetic energy. It is clear from Fig. 3 that after
an initial transient all quantities reach a steady state. For run F2, the steady state is reached at about
t/τ ≈ 25 but the time averaging of these quantities and of vertical spectra is performed only over the
last ≈ 1.5τ of the simulation. It was found that both volume-averaged quantities and energy spectra
are relatively insensitive to making the time-averaging period longer. The forcing technique used
allows the input power to be controlled and kept to a constant value P at each time step. Therefore,
at steady state we should have ε + εp = P and we can see that this physical condition is satisfied,
with the quantity (ε + εp)/P oscillating around a value of unity after the initial transient.

B. Vertical spectra

Let us now consider the vertical spectra in the simulations during steady state. The Froude
number was gradually decreased across the four DNS runs with the objective of increasing the width
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FIG. 4. Vertical spectra of horizontal kinetic energy time averaged during steady state. The solid circles
superimposed on the curves indicate kb and koz.

of the buoyancy-inertial range, which scales as Fr−1/2. Hence, for run F1 with Fr = 0.014 there
is about a decade in Fourier space between the buoyancy and Ozmidov wave numbers over which
the buoyancy-inertial range should occur. The time-averaged vertical energy spectra are shown in
Fig. 4. The vertical spectra are relatively steep and have a similar behavior at varying Froude number,
extending to higher vertical wave numbers from run F4 to run F1 as the resolution is increased and
the dissipation scales become smaller. There appears to be a bump and a deviation from a power-law
behavior in the vertical spectra, which is visible at wave numbers higher than the Ozmidov wave
number. To investigate this further and in particular to look for a buoyancy-inertial range, we plot the
vertical spectra of horizontal kinetic energy and of potential energy normalized by N2k−3

v in Fig. 5.
These compensated forms clearly show the bump in the vertical spectra at high wave numbers and
make it evident that the vertical spectra are in disagreement with Eh(kv) ∝ Ep(kv) ∝ N2k−3

v . The
present results are similar to what was previously observed in simulations of stratified turbulence
[8,11,12,22]. For the two DNS runs with the lowest Froude number there is a narrow constant
plateau in the compensated form of Eh(kv)—this occurs only for run F1 in the case of Ep(kv)—at
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FIG. 5. Vertical spectra in compensated form of (a) kinetic energy and (b) potential energy. The solid circles
indicate the buoyancy wave number.
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FIG. 6. Vertical spectra in run F1 using the scale decomposition: large scale, small scale, and full vertical
spectra, (a) true form and (b) compensated form.

vertical wave numbers slightly higher than the buoyancy wave number. This is suggestive of a
buoyancy-inertial range starting to become visible at Fr ≈ 0.02 and lower. Overall, however, the
discrepancy with the strongly stratified turbulence theory remains since the buoyancy-inertial range
should extend up to the Ozmidov wave number. As shown in Fig. 5, at kv = koz and at higher wave
numbers there is an excess of kinetic and of potential energy compared to what is expected from
theory.

C. Large-scale vertical spectra

We calculate large-scale vertical spectra according to Eqs. (8) and (10) from results of the DNS.
In Fig. 6(a) the results of the scale decomposition of the vertical energy spectrum for run F1 are
presented. The large-scale vertical spectrum Elarge(kv) follows the full vertical spectrum closely at
low wave numbers, where the small-scale vertical spectrum Esmall(kv) is flat and of low magnitude. At
kv ≈ 100 the large-scale vertical spectrum starts to diverge and become steeper than the full spectrum
as a significant portion of the kinetic energy at this and at higher wave numbers is contained in the
small-scale spectrum. Eventually Elarge(kv) and Esmall(kv) cross over at kv ≈ koz, and at higher
wave numbers the small-scale vertical spectrum dominates. The large-scale and small-scale vertical
spectra presented in Fig. 6 and in the remaining part of this paper were calculated by computing the
wave number κ = N/wrms at a given time instant and then using Kh = κ to calculate the large-scale
and small-scale vertical spectra at this time instant. This process was repeated for several time
instants during steady state using the instantaneous value of κ at each of these time instants for
the filtering, and hence a set of large-scale and small-scale vertical spectra were obtained, which
were subsequently time averaged. For consistency, the time-averaging period was chosen to be the
same as for the other quantities of interest (see Fig. 3).

In Fig. 6(b) the compensated form of the large-scale vertical spectrum in run F1 is given. From
this plot we can see that Elarge(kv) ∝ k−3

v convincingly over a range of vertical wave numbers, from
a wave number a little higher than kb to a wave number close to koz. This is in agreement with
a buoyancy-inertial range over this range of vertical wave numbers and at low horizontal wave
numbers kh � κ . The compensated form of Esmall(kv) highlights that the bump in Eh(kv) is caused
by small-scale motions with kh > κ , which effectively cover up the k−3

v range in the full vertical
spectrum. This result does not yet confirm that Elarge(kv) ∝ N2k−3

v as we still have to verify the
proportionality with N2, the background buoyancy gradient. This can be addressed by turning to
the large-scale vertical spectra across the four DNS runs, which have varying background buoyancy
gradient. In Fig. 7 the compensated form of Elarge(kv) is shown as obtained from the four DNS
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FIG. 7. Large-scale vertical spectra from the four DNS runs in compensated form.

runs. This confirms the proportionality of Elarge(kv) with N2 since there is a good collapse of
the compensated spectra up to kv ≈ koz, where the spectra diverge. It can be observed that the
plateau gets wider from run F4 to run F1, as expected since the Froude number is decreased and
so the separation between kb and koz gets larger. The range of validity of Elarge(kv) ∝ N2k−3

v is
approximately kb � kv � koz, perhaps with a scaling factor of order unity included in front of kb.
It is of interest to consider the value of the constant of proportionality, α, of Elarge(kv) ∝ N2k−3

v in
line with Eq. (1). This is estimated as α ≈ 0.53 from the results of run F1, which has the clearest
buoyancy-inertial range. As can be seen in Fig 7, there is some variation of this value across the
DNS runs and so there is a degree of uncertainty in the precise value of α.

We now turn our attention to the large-scale vertical spectrum of potential energy Ep,large(kv). The
compensated form of Ep,large(kv) for the four DNS runs is presented in Fig. 8. There is a constant
plateau with a collapse for runs F1 and F2 in agreement with Ep,large(kv) ∝ N2k−3

v . On the other
hand, there is not a clear plateau in runs F3 and F4, at higher Froude number. Considering runs
F1 and F2 only, the plateau is narrower than that observed for the kinetic energy spectra Elarge(kv),
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FIG. 8. Large-scale vertical spectra of potential energy in compensated form.
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FIG. 9. Horizontal wave number κ as a function of (a) the Ozmidov wave number koz and (b) the buoyancy
wave number kb. All wave numbers are presented as time-averaged values: κ = N/w̄rms, koz = √

N 3/ε̄, and
kb = N/ūh. Each point corresponds to one of the four DNS runs.

starting from wave numbers considerably higher than kv = kb and ending at kv ≈ koz. The constant of
proportionality as estimated from Ep,large(kv) of run F1 is β ≈ 0.27. It is not well understood why the
k−3
v range of the large-scale vertical spectra of potential energy starts at a wave number higher than

kb and why it is narrower than the corresponding range in the large-scale vertical spectra of kinetic
energy. The behavior of the corresponding fields in real space is in line with this behavior. Indeed, the
vertical integral length scale �v obtained from the horizontal components of velocity is significantly
larger than the integral length scale �v,bb obtained from the buoyancy field, consistently throughout
the DNS runs. For example, for run F1 the ratio of their time-averaged values is �v/�v,bb = 4.6. This
means that the turbulent layers observed in the buoyancy field are thinner compared to the layers in
the velocity field. Since �v ∼ �b, the start of the k−3

v range, which should correspond to these integral
length scales, is at kv ≈ kb for Elarge(kv) and at a wave number kv > kb for Ep,large(kv).

In summary, the results show that by using the scale decomposition the bump in the full vertical
spectrum, created by small scales with kh > κ , is filtered out. This uncovers the fact that there indeed
is a range of scales in our DNS of strongly stratified turbulence over which buoyancy and inertia
are in balance and with a local Froude number of the order of unity. The buoyancy-inertial range
is observed approximately over the range kb � kv � koz, in agreement with the strongly stratified
turbulence theory. Over a narrower range of vertical wave numbers Ep,large(kv) ∝ N2k−3

v , showing
that at these scales there is also approximate equipartition between kinetic and potential energy.

D. The filter wave number

As mentioned previously, the results obtained from the scale decomposition of the vertical
spectrum are highly dependent on the particular filter wave number that we have chosen. Since the
large-scale vertical spectra give results in agreement with our expectations and with theory, the filter
horizontal wave number Kh = κ appears to provide a good demarcation between anisotropic scales
and isotropic scales in stratified turbulence. It is therefore worth investigating the values of κ across
the different DNS runs. We have seen in Sec. II that the theoretical prediction is that κ scales as the
Ozmidov wave number. In Fig. 9, the time-averaged values of κ in the four DNS runs are plotted
both as a function of the Ozmidov wave number and of the buoyancy wave number. As can be seen in
Fig. 9(a), there is a trend very close to κ ∝ koz in the DNS runs, in agreement with theory. On the other
hand, it is clear from Fig. 9(b) that κ is not proportional to kb and that, as the buoyancy wave number
is increased from run F4 to run F1 due to the increase in stratification, the wave number κ increases
significantly faster, according to κ ∝ k

3/2
b . This is a reassuring result since this power law can be
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FIG. 10. Large-scale vertical spectra in run F1 obtained using different values of filter horizontal wave num-
ber: (a) true form and (b) compensated form (see legend in (a) for both figures). The large-scale vertical spectrum
with Kh = ∞ is equal to the full vertical spectrum Eh(kv). The time-averaged values of the filter horizontal
wave numbers that were used are Kh = [0.4kb, kb, 2.5kb, κ, koz] = [12.1, 30.1, 75.4, 158.5, 258.4].

derived directly using theoretical arguments, κ ∼ koz = (N/uh)3/2(u3
h/ε)1/2 ∼ k

3/2
b , noticing that

u3
h/ε ∼ �h ∼ 1/kh,f = const since the forcing wave number kh,f is constant across the simulations

(in the four runs indeed u3
h/ε ≈ const with variations of less than 10% from the mean value across the

runs). All in all, these results support the classical interpretation of the Ozmidov length scale being
the demarcation scale between scales affected by buoyancy and scales that are largely unaffected
by buoyancy. The results also suggest that the largest overturning scale, estimated as L = 1/κ ,
is of the order of the Ozmidov length scale and not of the order of the buoyancy length scale,
as recently hypothesized in a number of numerical studies of stratified turbulence [12,20]. Indeed
L = wrms/N is significantly smaller than �b = uh/N , since the vertical velocity is much smaller
than the horizontal velocity in stratified turbulence.

E. Sensitivity to the filter wave number

As mentioned in Sec. I, Augier et al. [12] computed vertical spectra at large horizontal scales from
the results of their simulations of stratified turbulence. A filter horizontal wave number Kh = 0.4kb

was used, corresponding to a relatively large scale, slightly larger than the buoyancy length scale
�b. The large-scale vertical spectra obtained in this way were considerably steeper than k−3

v (see
Fig. 18 of Ref. [12]). Considering the qualitative difference in results for Elarge(kv) between the
present work and that of Augier et al., it is of interest to consider the sensitivity of Elarge(kv) to
variations in the filter wave number Kh. In Fig. 10 a number of large-scale vertical spectra obtained
from the results of run F1 using different values of Kh, from Kh = 0.4kb to Kh = koz, are shown.
There are significant departures from Elarge(kv) ∝ N2k−3

v for all large-scale vertical spectra obtained
using a filter wave number different from Kh = κ , showing that the sensitivity of Elarge(kv) to Kh is
high. The compensated large-scale vertical spectra obtained with filter wave numbers Kh < κ depart
from the theoretical form at a wave number a little higher than kb and then decay rapidly at larger
wave numbers. In particular for Kh = 0.4kb the large-scale vertical spectrum becomes significantly
steeper than k−3

v , in accordance with the results of Augier et al. This highlights that a considerable
number of horizontal scales smaller than �b contribute to forming the buoyancy-inertial range. On
the other hand, for Kh = koz > κ there is a small bump at high wave numbers and the general
behavior of Elarge(kv) transitions towards the behavior of the full vertical spectrum. It is interesting
to note that for all filter wave numbers the large-scale vertical spectra are practically identical at
low wave numbers, kv < kb, as are their values in the neighborhood of kv = kb. This shows that
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FIG. 11. Normalized small-scale vertical spectra. In order to show Esmall(0) this point has been plotted for
all curves at kv/koz = 0.01.

the kinetic energy in the largest vertical scales, corresponding to kv ∼ kb, is mainly due to large
horizontal scales with kh < 0.4kb, and that the contribution from horizontal wave numbers beyond
this value is negligible. This agrees with the picture of energetic layers in stratified turbulence at the
largest scales.

F. Small-scale vertical spectra

In this section we consider the small-scale vertical spectra and their scaling laws. Plots of
Esmall(kv) normalized using ε and N are given in Fig. 11. The small-scale vertical spectra achieve
their maximum value over a relatively flat region up to kv ≈ koz for all runs. This would appear
to suggest that structures with small horizontal scales and large vertical scales carry considerable
kinetic energy, which would be an unexpected result. However, this is not the case. The reason
why Esmall(kv) does not decay to zero at small kv as may be expected is that Esmall(0) is related
to the vertical length scale of the velocity field at small horizontal scales, usmallH(x), defined
conversely to ulargeH(x) given in Eq. (7). This is because the one-dimensional (1D) energy spectrum
Esmall(kv) is the Fourier transform of the correlation Rsmall(rz) = 〈usmallH(x)usmallH(x + rzez)〉 +
〈vsmallH(x)vsmallH(x + rzez)〉. It follows that Esmall(0) = 1/π (〈u2

smallH〉l11,3 + 〈v2
smallH〉l22,3), where

l11,3 and l22,3 are the integral length scales in the vertical direction obtained from the two terms
in Rsmall(rz). These quantities are nonzero and so Esmall(0) is finite. In addition, for an isotropic
flow field the 1D transverse energy spectrum E22(k1) has a maximum at k1 = 0 (see Sec. 6.5 of
Ref. [26]). Of course usmallH(x) is not strictly isotropic, yet it appears that Esmall(kv) is relatively flat
from kv = 0 to kv ≈ koz, beyond which it decays. The flat portion of Esmall(kv) shows that most of
the kinetic energy of the small-scale velocity field, related to kvEsmall(kv), is actually concentrated at
kv ≈ koz. This fact is confirmed by the good collapse of the small-scale vertical spectra at low wave
numbers when these are normalized by ε3/2N−5/2 = u2

oz�oz, where uoz = √
ε/N is the velocity of

turbulent structures at the Ozmidov scale. This means that Esmall(0) ∼ u2
oz�oz, which suggests that

〈|usmallH|2〉 ∼ u2
oz and l11,3 ∼ l22,3 ∼ �oz.

According to the strongly stratified turbulence theory the vertical spectra should present classical
inertial ranges at small scales: a Kolmogorov form E3D(kv) = ε2/3k

−5/3
v for the kinetic energy

spectrum and a form valid for passive scalar advection, Ep,3D = (εp/ε
1/3
k )k−5/3

v , for the potential
energy spectrum. These forms may be presented by the small-scale vertical spectra and this is
investigated in Fig. 12, which shows Esmall(kv) and Ep,small(kv) compensated according to the above
spectra. There are no inertial ranges in Esmall(kv) and Ep,small(kv). This is probably due to the fact

104802-15



ANDREA MAFFIOLI

10 -2 10 -1 10 0 10 1

10 -6

10 -4

10 -2

10 0

(a)

10 -2 10 -1 10 0 10 1

10 -6

10 -4

10 -2

10 0

(b)

FIG. 12. Small-scale vertical spectra of (a) kinetic energy and (b) potential energy, compensated according
to the isotropic forms.

that the buoyancy Reynolds number is not very large in the DNS, Reb = O(10), and so there are not
sufficient scales beyond the Ozmidov scale for an inertial range behavior to develop. The peaks in
the compensated forms are all approximately at the same value close to unity, especially in the case
of Ep,small(kv). Whether this is a hint of what will be an inertial range at higher Reb or just a feature
of the present small-scale spectra remains to be determined. As a final point, we remark that in the
previous scale decomposition of vertical spectra of Ref. [23], the small-scale vertical spectra exhibit
an inertial range, beyond kv = koz. The discrepancy with our results could be due to two reasons:
the use of kb as the filter wave number, thus increasing the number of horizontal scales contributing
to Esmall(kv) compared to the present study, and the use of hyperviscosity in the simulations [23],
which increases the range of wave numbers in Esmall(kv) that could take part in an inertial range.

V. DISCUSSION

We have presented results for the large-scale vertical spectra that agree with Elarge(kv) ∝ N2k−3
v

over a range of vertical wave numbers. Considering that this result holds at large horizontal scales,
the fact that the full vertical spectrum Eh(kv) does not agree with this form as seen in the present
DNS and in several previous studies [8,11,13,22,23] should be due to the use of all horizontal scales
in computing Eh(kv), including scales that are approximately isotropic. For these small scales there
is not a buoyancy-inertial balance as buoyancy effects are negligible at these scales. Our results
show that these small horizontal scales are responsible for the bump in the vertical spectrum at high
wave numbers, whose effect is noticeable at much lower wave numbers down to the buoyancy wave
number in simulations at moderately low Fr. This excess in kinetic energy effectively overshadows
the buoyancy-inertial range in Eh(kv). This brings us to believe that the discrepancy observed thus
far between experiments and simulations compared to the strongly stratified turbulence theory is
in large part due to the aliasing problem associated with one-dimensional vertical energy spectra.
Now, making an extrapolation to the case of very high Reb, it is expected that the contributions from
small-scale turbulence will be distributed over a high number of scales so that the effect on Eh(kv)
at low kv will become smaller. At the same time, in the limit of very low Fr the buoyancy-inertial
range will be very wide. Therefore, considering these effects together, in the limit of strongly
stratified turbulence a clear buoyancy-inertial range should be observed in the full vertical spectrum
Eh(kv), without the need to perform a scale decomposition of the turbulent fields, and there is a
hint of this behavior in our DNS with the lowest Froude number. It is likely for this reason that a
buoyancy-inertial range is routinely observed in the full vertical spectrum in the atmosphere and in
the oceans.
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In terms of the filter wave number, we have seen previously that it is proportional to koz,
meaning that the Ozmidov length scale is indeed a good demarcation scale between anisotropic
and approximately isotropic motions. There is a wider significance to this result that may be of
practical interest. In recent years, studies have been made of stratified turbulence using large eddy
simulation (LES) [31,32], which is a promising approach for problems such as ocean turbulence
considering the vast range of scales involved. In these LES studies isotropic subgrid-scale models
are employed [31,32]. The present results suggest the use of a grid spacing � ≈ (1/κ) or � ≈ �oz

in LES, which would allow the anisotropic scales of motion to be captured in the simulation while
modeling the isotropic scales occurring at smaller scales. However, in a recent LES study the grid
spacing was chosen based on the buoyancy length scale and therefore a significantly larger scale than
the Ozmidov length scale was used [32]. This does not seem appropriate since it means a considerable
number of anisotropic scales are unresolved and it is likely that they will not be modeled correctly by
an isotropic subgrid-scale model, which could explain the only partial match of the LES results with
predictions for the strongly stratified turbulence regime [32]. It is important to underline that, even
if a grid spacing � ≈ �oz is chosen, the reduction in computational cost compared to an equivalent
DNS is still very large. A representative buoyancy Reynolds number in the ocean is of the order
of Reb = 100 in regions of active turbulence [33]. If one stops computing at the Ozmidov length
scale in a LES rather than at the Kolmogorov length scale, as is required in a DNS, the reduction
in computational cost is of the order of (�oz/η)3 = Re9/4

b ≈ 3 × 104, which is a very significant
reduction.

The vertical spectrum in the buoyancy-inertial range given in Eq. (1) was first proposed in relation
to measurements of turbulence in the atmosphere [14,15] and in the oceans [16,17]. In the case of
ocean turbulence, clear measurements of vertical shear spectra in agreement with S(kv) ≈ N2k−1

v

were made at vertical scales from sv = 10 m down to sv = 1 m by Gargett et al. [17], as shown in
Fig. 1. In their measurements the Ozmidov length scale was close to the lower end of this range
[17]. These observations are consistent with vertical energy spectra given by Eh(kv) ≈ αN2k−3

v up
to kv ≈ koz and with α ≈ 0.5. The present DNS results for the large-scale vertical spectra also show
a buoyancy-inertial range up to the Ozmidov wave number and give α ≈ 0.53, in good agreement
with the ocean turbulence measurements. This positive match brings considerable support to the
claim that strongly stratified turbulence with constant N is a good model for turbulence in the ocean
pycnocline. It would be of interest to compare also the value of β obtained from the large-scale
vertical spectra of potential energy with ocean measurements but this is not possible as most of the
results in the literature concern vertical spectra of temperature variance (see, e.g., Ref. [16]) and to
the best of our knowledge there are no measurements of vertical spectra of buoyancy variance where
salinity also plays a role. The results for the kinetic energy spectra also bring about the question:
Is α a universal constant in strongly stratified turbulence, independent of forcing technique, initial
conditions, and mean flow? It is believed that this is the case, although considerably more evidence
will have to be accumulated to demonstrate this hypothesis. What is definitely less clear is whether
the value of α is in some way predictable, by recurring, for example, to arguments related to the
condition for shear instability based on the Richardson number Ri—namely, that Ri < 1/4—as
attempted by Dewan [15]. This is an open question requiring further investigation.

VI. CONCLUSIONS

In this paper, results from DNS of strongly stratified turbulence with forcing are analyzed using
a scale decomposition of the turbulent flow and of the vertical energy spectra into large scales and
small scales. In this way we have been able to recover large-scale vertical spectra Elarge(kv) ∝ N2k−3

v

over a range of vertical wave numbers up to kv ≈ koz. Also the large-scale vertical spectra of potential
energy show Ep,large(kv) ∝ N2k−3

v but over a narrower range of wave numbers. The present results
constitute one of the first pieces of evidence coming from either experiments or numerical simulations
clearly showing vertical spectra of this form, which have often been observed in the ocean and in
the atmosphere. Moreover, they provide support for the existence of a range of scales in strongly
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stratified turbulence in which there is an approximate balance between buoyancy and inertia, in
agreement with the strongly stratified turbulence theory. However, they also show that there are
small-scale motions that are not in buoyancy-inertial balance and that result in the full vertical
energy spectrum Eh(kv) not showing a buoyancy-inertial range in experiments and simulations at
moderately low Froude number. This work highlights the importance of knowing both the horizontal
wave number kh and vertical wave number kv of a structure in stratified turbulence to be able to
characterize it correctly. In this highly anisotropic turbulent flow, descriptions using a single wave
number inevitably have missing information, as is the case for the widely used one-dimensional
energy spectra.
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APPENDIX: FORCING TECHNIQUE

In defining the artificial body force in Fourier space we make use of the Craya-Herring reference
frame, which has unit vectors given by (see, e.g., Ref. [6])

e1 = k × ez

|k × ez| = ky

kh

ex − kx

kh

ey, (A1)

e2 = k × e1

|k × e1| = kxkz

khk
ex + kykz

khk
ey − kh

k
ez, (A2)

e3 = k
|k| = kx

k
ex + ky

k
ey + kz

k
ez. (A3)

The body force has to satisfy ∇ · f = 0 in order to generate a divergence-free velocity field.
In Fourier space this means that k · f̂ = 0 and so the force can be written using only the first
two components in the Craya-Herring frame, f̂ = f̂1e1 + f̂2e2. Similarly, the velocity field can
be written as û = û1e1 + û2e2 + ûsm. As can be seen from Eqs. (A1) and (A2), the first term,
û1e1, corresponds to horizontal velocities that are vertically rotational, containing all the vertical
vorticity ωz = (∂v/∂x − ∂u/∂y) of the flow. On the other hand, the second term û2e2 corresponds
to three-dimensional velocities with ωz = 0. The third term, ûsm, represents the shear modes with
kx = ky = 0, which are modes that cannot be expressed in the Craya-Herring reference frame
of Eqs. (A1)–(A3) and correspond to a mean flow in the horizontal direction that maintains a
z dependence. The classical interpretation is that the first term is the vortex component of the
stratified flow and the second component is the wave component of the flow [3]. In terms of the
forcing, if we choose a force that contains only the first term and set f̂2 = 0 the force will excite
the vortex component of the velocity field only, as clearly shown in Ref. [12]. If we also choose to
concentrate this vortical forcing in modes with kz = 0, this will generate vertically elongated
vortices in the simulation that will undergo an instability possibly similar to the zigzag instability
[34]. This instability will break the vertical coherence of the vortices, thereby generating internal
gravity waves and injecting energy in the wave component of the flow as well. We have opted for
vortical forcing with kz = 0 for three reasons: (i) to avoid exciting an arbitrary spectrum of internal
gravity waves directly, (ii) to not predetermine the vertical length scale of the flow, and (iii) because
this forcing was found to reduce the growth of energy in the shear modes usm that would otherwise
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dominate the overall kinetic energy by the end of a simulation (as discussed in Ref. [30]). Vortical
forcing with kz = 0 was used in several previous DNS studies of stratified turbulence [2,12,30].

In terms of the power spectrum, we choose P (kh) = ∑
(1/2)f̂1f̂

∗
1 = const, and this is

concentrated at a horizontal wave number kh = 3. Hence, the following form of the forcing is used:

f̂1 =
{ c√

πkh
eiθ for kh = 3

0 for kh �= 3,
(A4)

where c is a constant scaling factor, i = √−1, and θ is the random phase, uniformly distributed
between θ = 0 and θ = 2π . Note that the choice of domain dimensions Lx = Ly = 2π

means that the horizontal wave numbers in the simulation are discrete integers with spacing
δk = 2π/Lx = 2π/Ly = 1 for both kx and ky . As a result, the wave vectors being forced are
actually those lying in the band 2.5 < kh < 3.5 and with kz = 0. The phase θ is selected randomly
for each wave vector at which forcing is applied and at each time step so that there is no time
correlation of the forcing vectors. It is possible to calculate the power input of the forcing as

P =
∑

kx ,ky ,kz

û∗ · f̂ + 1

2
f̂ · f̂∗�t = cPuf + c2Pff, (A5)

where the first term is the “physical” power given by the scalar product of the velocity with the
force, while the second term is the “artificial” power that exists only because of the discrete time
steps of the simulation over which the force f is constant. In the final expression of Eq. (A5) the
dependence of P on the scaling factor c has been made explicit. Now, we set the power P to a
certain value in our forcing method and ensure that the power provided is exactly P by solving the
quadratic equation for c resulting from Eq. (A5), Pffc

2 + Pufc − P = 0, at every time step. This
quadratic equation has the following solution for c:

c =
−Puf ±

√
P 2

uf + 4PffP

2Pff
, (A6)

and of the two roots we choose the one with minimum absolute value, which minimizes the
magnitude of the force |f̂1| while providing the given power P . We call this method “constant
power minimal forcing”; it is an adaptation of a method proposed previously [35]. As can be seen
by inspection of Eq. (A6), the choice of the value of c with minimum absolute value means that the
physical power input Pphys = cPuf > 0 so that the forcing always accelerates the flow on average.
This choice is beneficial because it results in smooth time evolutions of rms velocity components
and dissipation rates, as can be seen in Fig. 3. Indeed it was confirmed that other choices for c give
large oscillations of these quantities on a time scale �t . Finally, constant power minimal forcing
results in the artificial power input Partif = c2Pff � Pphys in our DNS, with the time average of Partif

being typically about 1% of the total input power.
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