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(Received xx; revised xx; accepted xx)

We consider mixing of the density field in stratified turbulence and argue that, at
sufficiently high Reynolds numbers, stationary turbulence will have mixing efficiency
and closely related mixing coefficient described solely by the turbulent Froude number
Fr = ǫk/(Nu2), where ǫk is the kinetic energy dissipation, u is a turbulent horizontal
velocity scale and N is the Brunt-Väisälä frequency. For Fr ≫ 1, in the limit of weakly
stratified turbulence, we show through a simple scaling analysis that the mixing coefficient
scales as Γ ∝ Fr−2, where Γ = ǫp/ǫk and ǫp is the potential energy dissipation. In the
opposite limit of strongly stratified turbulence with Fr ≪ 1, we argue that Γ should
reach a constant value of order unity. We carry out direct numerical simulations of forced
stratified turbulence across a range of Fr and confirm that at high Fr, Γ ∝ Fr−2, while
at low Fr it approaches a constant value close to Γ = 0.33. The parametrization of
Γ based on Reb due to Shih et al. (2005) can be re-interpreted in this light because
the observed variation of Γ in their study as well as in datasets from recent oceanic
and atmospheric measurements occurs at a Froude number of order unity, close to the
transition value Fr = 0.3 found in our simulations.

1. Introduction

The manifestation of mixing in the atmosphere and oceans takes different forms
from phyto-plancton blooms in the oceans to the creation of well-mixed fronts in the
atmosphere. Mixing in the atmosphere and oceans is a key factor to consider when
estimating global energetics. Central to the attempt of quantifying mixing in the oceans
is the concept of eddy diffusivity, defined as Kρ = B/N2 (Osborn & Cox 1972) where
B = −〈buz〉 is the buoyancy flux, b = −ρ′g/ρ0 being the buoyancy acceleration related to
the density perturbation ρ′ from the background stratification and uz being the vertical
velocity perturbation. The idea is that the buoyancy flux can be modelled as B =
−〈buz〉 = Kρ db̄/dz, where the mean buoyancy gradient is db̄/dz = N2. Osborn (1980)
inspected the turbulent kinetic energy equation in the presence of buoyancy and assuming
steady-state conditions introduced the flux Richardson number Rif = B/(B+ǫk), which
is the ratio of buoyancy flux to turbulence production by the mean flow and can be
thought of as a mixing efficiency. A related quantity is the mixing coefficient Γ = B/ǫk,
so that Kρ = Γǫk/N

2. A constant mixing efficiency η = Rif = 0.17 was assumed by
Osborn (1980) leading to a mixing coefficient Γ = Rif/(1−Rif ) = 0.2, a value which has
been widely used in oceanographic applications ever since. Salehipour & Peltier (2015)
suggested the use of ǫp instead of the buoyancy flux B when calculating the mixing
coefficient, because the buoyancy flux contains both reversible and irreversible exchanges
of kinetic and available potential energy, while we are interested in the irreversible
conversion of available potential energy into background potential energy, quantified
by ǫp. Throughout the paper we therefore use the definitions Γ = ǫp/ǫk for the mixing
coefficient and η = ǫp/(ǫk + ǫp) for the mixing efficiency. Direct support for an eddy
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diffusivity of the form Kρ = ǫp/N
2 = Γǫk/N

2 was provided by the work of Lindborg
& Brethouwer (2008) who derive an analytical expression for the mean square particle
displacement 1/2〈δz2〉, which increases linearly in time, the constant of proportionality
being Kρ.
The parameters that could conceivably affect mixing in stratified turbulence are the

buoyancy Reynolds number Reb, the turbulent Froude number Fr and the Reynolds
number Re. Taking advantage of the estimate ǫk ∼ u3/ℓ, we define these as

Reb =
ǫk

νN2
, F r =

ǫk
Nu2

, Re =
u4

νǫk
, (1.1)

These definitions differentiate themselves from the more classical definitions using a
turbulent lengthscale ℓ. Throughout the paper u and ℓ are considered to be horizontal
scales so that the results generalize to the case of strongly stratified turbulence and its
anisotropic conditions. In this case then Fr represents a horizontal Froude number, as
opposed to the vertical Froude number Frv = u/(Nℓv) based on a vertical lengthscale
ℓv. As shown by Billant & Chomaz (2001), Frv = O(1) in the limit of low Fr and
therefore Frv does not further influence the dynamics. As pointed out for example by
Ivey et al. (2008) the three parameters listed in equation (1.1) are not independent
since Reb = ReFr2. In problems of mixing through a density discontinuity a relevant
parameter is the bulk Richardson number Rib = g∆ρℓ/(ρ0u

2) where ∆ρ is the density
jump across the interface and ρ0 is a reference density. If we substitute ∆ρ/ℓ with the
continuous stratification density gradient |dρ̄/dz| it is clear that Rib ∼ N2ℓ2/u2 ∼ Fr−2

using the definition of N =
√

−(g/ρ0)dρ̄/dz. Hence problems with a density interface
can also effectively be characterized by the parameters given in (1.1).

Since the seminal work of Osborn & Cox (1972); Osborn (1980) it has been found
that mixing efficiency and mixing coefficient are not constants but vary in a certain
parameter range. Barry et al. (2001) found a variation of the mixing coefficient in their
grid stirring experiments for buoyancy Reynolds numbers Reb = ǫk/(νN

2) > 300 that

was well described by Γ ∝ Re
−2/3
b . In their DNS of stratified shear flow, Shih et al. (2005)

found a constant mixing coefficient Γ ≈ 0.2 for 7 < Reb < 100 but a varying mixing

coefficient going as Γ ∝ Re
−1/2
b for Reb > 100. Ocean field measurements by Davis &

Moninsmith (2011); Walter et al. (2014) have found similar variations of Γ ∝ Re
−1/2
b at

high Reb > 100. Atmospheric boundary layer measurements within the vertical transport
and mixing experiment (VTMX) also have a similar variation of Γ with Reb but now at
Reb > 104, suggesting a completely different bound on the buoyancy Reynolds number
(see Lozovatsky & Fernando 2013). Recently, Mater & Venayagamoorthy (2014) have
suggested that a multi-parameter approach is more suitable to describe mixing processes
in stratified turbulence.
Classical parametrizations of mixing have focused on the bulk Richardson number Rib,

which is closely related to the turbulent Froude number since Rib ∼ Fr−2. In experiments
of mixing across a density interface by Turner (1968); Kato & Philipps (1969) the focus
was on the entrainment velocity ue across the interface. This is closely related to the
mixing efficiency and it can be shown that η = Rib(ue/u) ∼ Fr−2(ue/u) (see Turner
1973). In the limit of weak stratification, corresponding to high values of Fr, Turner
(1968) found that the normalized entrainment velocity ue/u reaches a constant, implying
the result η ∝ Fr−2 for weakly stratified turbulence. This result has also been suggested
by Holford & Linden (1999) who state that the buoyancy field behaves as a passive
scalar in the limit of high Fr. At the other end of the spectrum, strong stratification
and low Fr lead to an entrainment velocity ue/u ∝ Ri−1

b ∼ Fr2 in the experiments by
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Kato & Philipps (1969). This means a constant mixing efficiency η in the limit of strongly
stratified turbulence, which has been confirmed by several more recent experiments (Park
et al. 1994; Oglethorpe et al. 2013; Olsthoorn & Dalziel 2015).
Hence two parametrizations of mixing exist: a more classical one based on Rib and

therefore essentially on the turbulent Froude number Fr and a more recent one based
on Reb. We now turn to the evidence from scaling of the equations of motion to try and
shed light on this debate.
The Boussinesq set of equations for a linearly stratified fluid is given by:

∂u

∂t
+ u · ∇u = − 1

ρ0
∇p+ b ez + ν∇2u, (1.2)

∂b

∂t
+ u · ∇b = −N2uz +D∇2b. (1.3)

We consider first the limit of weak stratification and high Fr where horizontal and vertical
lengthscales can be assumed to be approximately equal as can be done for horizontal and
vertical velocity scales. From the buoyancy equation (1.3) a simple balance between
advection u · ∇b and the background stratification term N2uz leads to a scaling for the
buoyancy as b ∼ N2ℓ. Comparing this to the advection term in the Boussinesq momentum
equation (1.2) u · ∇u ∼ u2/ℓ it is clear that their ratio is (N2ℓ)/(u2/ℓ) = N2ℓ2/u2 ∼
Fr−2. Hence in the limit of Fr ≫ 1, the buoyancy term can be neglected to leading
order in the momentum equation and buoyancy effectively behaves as a passive scalar in
the presence of a mean scalar gradient N2 as pointed out by Holford & Linden (1999). It
is possible from equations (1.2)–(1.3) to form equations for the turbulent kinetic energy
and potential energy. At high Reynolds number and high Peclet number, the kinetic and
potential energy dissipation rates reach a finite and positive limit that is of the same
order as the advection term in these energy equations:

ǫk ∼ u · ∇
( |u|2

2

)

∼ u3

ℓ
, (1.4)

ǫp ∼ u · ∇
(

b2

2N2

)

∼ b2u

N2ℓ
∼ N2uℓ. (1.5)

From these scalings it follows that the mixing coefficient Γ = ǫp/ǫk ∼ (N2uℓ)/(u3/ℓ) =
N2ℓ2/u2 ∼ Fr−2 in the limit of high Fr. This result is analogous to that obtained when
considering Turner’s experiment. The Prandtl number Pr = ν/D does not affect the
analysis, because we assume that the Reynolds number Re and Peclet number Pe =
RePr are both sufficiently high that the kinetic and potential energy dissipation rates
become independent of viscosity ν and diffusivity D, respectively.
The strongly stratified turbulence theory was developed by several researchers in this

field; its two main conditions are Fr ≪ 1 and Reb ≫ 1 and these conditions both
have to be met within the theoretical framework (developed by Billant & Chomaz 2001;
Lindborg 2006). The scaling analyses behind this work have proven to be able to describe
the layered large-scale appearance of strongly stratified turbulence, observed previously
by many authors and reviewed extensively by Riley & Lelong (2000). A consensus has
emerged recently that for values Reb > 10 stratified turbulence has the expected form

of the horizontal energy spectrum Eh(kh) ∼ ǫ
2/3
k k

−5/3
h and that the vertical lengthscale

is approximately equal to ℓv = u/N . This has been shown in many numerical works in
the last ten years (Brethouwer et al. 2007; Waite 2011; Bartello & Tobias 2013; Augier
et al. 2015; Maffioli & Davidson 2015). Brethouwer et al. (2007) tested many of the
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predicted results of the strongly stratified turbulence theory and plotted, for example, the
anisotropy of the dissipation Sdiss against Reb in their forced stratified DNS simulations.
This quantity is defined as Sdiss = ν〈(∂ux/∂z)

2+(∂uy/∂z)
2〉/ǫk and represents the ratio

of dissipation due to vertical gradients to the overall dissipation. The authors of this
work found that Sdiss rapidly goes towards the isotropic value of 4/15 ≈ 0.267 (Taylor
1935) as the buoyancy Reynolds number is increased. Similar results were obtained in
decaying stratified turbulence by Riley & de Bruyn Kops (2003); Maffioli & Davidson
(2015) who both found values close to Sdiss ≈ 0.41 at times when the stratified turbulence
in their DNS was most vigorous and Reb = 5– 9. Furthermore, as discussed extensively
in Smyth & Moum (2000); Smyth et al. (2005), in the case of stratified mixing layers a
good condition for determining if there is active three-dimensional turbulence at the small
scales is that Reb > 20. The issue of whether the isotropic limit of the dissipation terms
will be reached in strongly stratified turbulence is still being studied and constitutes
an active area of research. Note however that the isotropic limit is not necessary for
our main scaling analysis to be applicable because the scaling is based on the classical
assumption that the dissipation rates reach a finite and positive limit at high Reynolds
number, irrespective of the values of viscosity and diffusivity.
We now proceed to the main part of this paper that is concerned with estimating the

dependency of Γ on the important physical parameters of the problem. Considering our
novel scaling analysis at high Fr and the above arguments, it is our contention that
in stratified turbulence the mixing efficiency is described by the Froude number only.
The buoyancy Reynolds number Reb should not play any role. To test this theoretical
reasoning, we have performed DNS of stratified turbulence across a large range of Froude
numbers and Reynolds numbers.

2. Numerical methodology

We perform direct numerical simulations (DNS) of turbulence in a linearly stratified
fluid, with constant Brunt-Väisälä frequency N . The equations which are solved directly
are the Boussinesq set of equations (1.2)–(1.3) together with the continuity equation
∇ · u = 0. We have included a body force f in the Boussinesq momentum equation
(1.2) to ensure that the turbulence reaches statistical stationarity. These equations are
solved using a pseudo-spectral method based on Rogallo’s algorithm (Rogallo 1981).
Time advancement is carried out using a second-order Runge-Kutta predictor-corrector
integration scheme, while the viscous and diffusive terms are integrated exactly by using
suitable integrating factors. De-aliasing of the non-linear terms is performed using a
combination of truncation and phase-shifting (for more details see Rogallo 1981).

The turbulence is kept in a steady state through the use of forcing. We use random
forcing that is uncorrelated in time, in a way that the physical location of the body
force keeps changing in time. Most of the simulations are at high Fr, for which we use
isotropic forcing in spherical shells of radius kmax

f = 5. The forcing is mostly concentrated

at smaller wavenumbers with a forcing power spectrum P (k) = α2 exp(−(k − kpeakf )2)

with kpeakf = 3. The value of α is determined at every timestep to ensure that the forcing

power Pf =
∑

all k

(û∗ · f̂ +1/2|f̂ |2∆t) is kept to a constant value. Since f̂ ∝ α this results in

a quadratic equation for α, which we solve at every timestep. Of the two roots for α we
choose the one with minimum absolute value, which therefore minimizes the magnitude
of the force; we find this technique reduces the oscillations in time for most quantities
of interest, such as ǫk, ǫp and RMS values of the velocity components. At low Froude
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Run Nx = Ny Nz Fr Reb Reλ Re forcing
R1kF2.9 96 96 2.90 1010 42 120 iso
R1kF1.6 192 192 1.64 990 74 370 iso
R1kF0.9 384 384 0.94 980 129 1120 iso
R1kF0.5 768 768 0.52 960 229 3480 iso
R1kF0.3 1536 1536 0.29 990 423 11930 iso
1024F0.7 1024 1024 0.70 2340 266 4730 iso
1024F1.6 1024 1024 1.58 10430 250 4180 iso
1024F3.1 1024 1024 3.10 37370 242 3900 iso
1024F5.9 1024 1024 5.86 133430 241 3880 iso
1024F12 1024 1024 11.97 537250 237 3750 iso
256F2.9 256 256 2.85 4190 88 520 iso
512F3 512 512 3.03 13370 148 1460 iso
R200F0.14 1024 1024 0.141 200 390 10130 vort
R57F0.09 1024 1024 0.091 57 319 6760 vort
R14F0.04 1024 512 0.044 14 324 7000 vort
R15F0.03 2048 512 0.035 15 432 12420 vort
R17F0.02 4096 1024 0.020 17 805 43180 vort

Table 1. List of DNS runs performed: relevant non-dimensional parameters and type of
forcing.

numbers Fr < 0.2, we found that isotropic forcing leads to non-stationary solutions, with
growth of energy in the shear modes (modes with kx = ky = 0) that quickly dominate the
overall kinetic energy. We therefore utilize vortical forcing concentrated in the vertically
rotational modes with kz = 0. This type of forcing in modes with kz = 0 and finite and
small kh takes a long time to leak energy to the shear modes, with finite and small kz
and kh = 0, and hence a quasi-stationary state can be reached at intermediate times.
Vortical forcing has been used by numerous authors when studying stratified turbulence
at low Fr (see Waite & Bartello 2004; Brethouwer et al. 2007; Augier et al. 2015).
Most simulations are run on cubic domains except for the three simulations with

strongest stratification for which we take advantage of the anisotropy of the lengthscales
and use rectangular domains with Lz < Lh. In all cases, since we expect isotropic
dissipation at high Re, the grid spacing is constant in all directions and it is chosen
to ensure kmaxη = 1.5. The Prandtl number in all cases is Pr = 1. The list of all
simulations that have been performed for this study is given in table 1 together with the
important physical parameters for each run. The strongly stratified runs are performed
on increasingly large grids in order to meet the condition Reb > 10 as Fr is decreased.
As a result our most strongly stratified run with Fr = 0.02 and Reb = 17 requires a
grid of 40962 × 1024 collocation points. The values quoted are time averages over the
stationary period of each simulation as are all the values plotted in the next section, in
which we discuss the results of the various stratified DNS performed.

3. Results of DNS runs

3.1. Variation of mixing coefficient at constant Reb

We have performed simulations at constant buoyancy Reynolds number and at different
Froude numbers. This was achieved by using different number of grid points for each
simulation and hence varying also the Reynolds number while keeping Reb ≈ 1000. This
value of Reb is well within the energetic-regime of Barry et al. (2001); Shih et al. (2005)
so that the mixing coefficient is expected to not be constant. As shown in figure 1, we
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Figure 1. Mixing coefficient as a function of Froude number at a constant Reb ≈ 1000. Each
point corresponds to one of the five simulations labelled R1kF2.9 through to R1kF0.3.

indeed find a variation of Γ across the five runs but this can now not be due to variations
in Reb, which is kept constant, but rather is due to a changing Fr. The values of Γ span
an order of magnitude as do the values of Fr in the simulations. At Fr = 0.29 we have
Γ = 0.51, a high value compared to the often quoted Γ = 0.2 value (Osborn 1980). At
the other end of the Fr-range, Fr = 2.9 (but at the same Reb), we have Γ = 0.05. Such
a low value of the mixing coefficient is a result of the weak stratification meaning that
there is not much of a density difference for the turbulent flow to mix.

3.2. Mixing coefficient at varying Reynolds numbers

The kinetic and potential energy dissipation rates reach the finite and positive limits
given in equations (1.4)–(1.5) at high-Reλ, the Reynolds number based on the Taylor
microscale, defined as Reλ = uλ/ν with λ = (u2/ < (∂ux/∂x)

2 >)1/2. This was shown by
Donzis et al. (2005) for turbulence with a passive scalar and is expected to be true also
for stratified turbulence. If Reλ is not high enough both the non-dimensional dissipations
become a function of the Reynolds number, that is ǫkℓ/u

3 = f(Reλ) and ǫpℓ/(ub
2/N2) =

g(Reλ), and these functions are given in Donzis et al. (2005) in the case of passive
scalar advection. Because the result Γ ∝ Fr−2 follows from the dissipation scalings in
equations (1.4)–(1.5), at finite Reynolds number we expect instead Γ = h(Fr,Reλ) and
the mixing efficiency now depends not only on the Froude number but also on the Taylor
scale Reynolds number.
To confirm these ideas we consider first the non-dimensionalized dissipation rates given

in figure 2 for four runs at constant Fr ≈ 3 but performed on successively larger grids
so as to increase Reλ from low values to Reλ ≈ 240. This value is considered to be
a good high value above which both dissipations reach a constant limit when non-
dimensionalized (see Donzis et al. 2005; de Bruyn Kops 2015). In making the dissipations
non-dimensional we use the standard isotropic definition of the turbulent lengthscale,

ℓ = (π/u2)

∫

(E(k)/k)dk based on the 3-D energy spectrum E(k), expected to be valid at

this high Fr. We find a non-dimensionalized kinetic energy dissipation that is remarkably
close to the form found by Donzis et al. (2005) in their collection of DNS (the exact same
constants as in their paper are used in the curve shown in figure 2(a)). Also the non-
dimensionalized potential energy dissipation is similar to the prediction of Donzis et al.
(2005) for the non-dimensionalized dissipation of passive scalar variance, confirming that
buoyancy behaves as a passive scalar at high Froude numbers.
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Figure 2. (a) Kinetic energy dissipation and (b) potential energy dissipation, both
non-dimensionalized, for 4 runs with Fr ≈ 3. The relevant DNS runs are R1kF2.9, 256F2.9,
512F3 and 1024F3.1. The curves represent the fit proposed by Donzis et al. (2005) with the

same constants in the case of ǫkℓ/u
3, and the same value for D but a slightly different value for

C in the case of ǫpℓ/(ub
2/N2) (we use C = 0.31).
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0.045
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Figure 3. Mixing coefficient Γ as a function of Reλ at a constant Fr ≈ 3.

The next step is to check that, for these four simulations at small to moderate Reλ,
also the mixing coefficient Γ changes, approaching a constant at the highest Reλ. The
steady-state value of Γ obtained for the four runs is given in figure 3, and there is clearly
a significant variation, with Γ decreasing for increasing values of Reλ and, possibly, the
approach of a constant value Γ ≈ 0.033 at the highest Reλ = 242.

3.3. Mixing coefficient at high Reλ

We now consider only the runs with Reλ > 200, for which the dissipation rates ǫk and
ǫp have approximately reached their respective finite and positive limits.
In figure 4 we show Γ as a function of Fr for these runs. If we focus on the high-Fr

behaviour we see that indeed Γ ∝ Fr−2 for Fr > 1, which confirms the scaling arguments
delineated in §1. These scaling arguments have as a first result EP /EK ∼ EP /u

2 ∝ Fr−2

and this is also confirmed by the simulations for Fr > 1 as shown in figure 5. Of course
our simulations are in a stationary state, which makes them easier to analyse, while
time-evolving simulations such as those of Shih et al. (2005); Salehipour & Peltier (2015)
have an extra degree of freedom. It may be that some definition of the Reynolds number
may be important to describe the decay of the turbulence, or the “age of a mixing event”
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Figure 4. Mixing coefficient as a function of Froude number (log-log plot shown in inset).

as described by Smyth & Moum (2000), in this case. However, at Fr > 1 the relevant
Reynolds number should not be the buoyancy Reynolds number. This follows from a
simple argument, the Ozmidov scale ℓoz ∼ Fr3/2ℓ > ℓ ≈ Lbox for Fr > 1. The buoyancy
Reynolds number is a measure of the dynamic range from the Kolmogorov scale through
to ℓoz since it can be written as Reb = (ℓoz/η)

4/3. However, the Ozmidov scale is now
larger than ℓ, the largest physical scale in the problem, and for this reason Reb does not
have a physical influence on the stratified turbulence being simulated.

In the limit of low Fr and strong stratification, we expect the mixing coefficient to reach
a constant value as in the experiments by Park et al. (1994); Oglethorpe et al. (2013);
Olsthoorn & Dalziel (2015) as long as Reb > 10. We have chosen this criterion because
there is evidence that for Reb = O(10) the turbulence starts showing the characteristics of
strongly-stratified turbulence as discussed in §1. In figure 4 we see that Γ has a maximum
around Fr = 0.3 and then drops as the stratification is increased. Our results confirm
that Γ indeed approaches a constant value Γ ≈ 0.33 as Fr → 0. The ratio EP /u

2 is also
predicted to be a constant of order unity by the strongly stratified turbulence theory
(see Billant & Chomaz 2001). From figure 5 this ratio appears to slowly go to a constant
value EP /u

2 ≈ 0.15 for Fr < 0.3.

4. Discussion and conclusions

There is a revealing relationship linking Fr and Reb in the limit of high Reynolds
number when the dissipative scales are isotropic and ǫk = 15ν < (∂ux/∂x)

2 >:

Fr =

√
15Reb
Reλ

(4.1)

In the case of the DNS of Shih et al. (2005) Reλ ≈ 90 for most of their simulations.
Considering their value of Reb = 100 at which Γ starts to decrease, we can use
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Figure 5. Ratio of potential energy to horizontal kinetic energy as a function of Froude
number (log-log plot shown in inset).

equation (4.1) to find that the corresponding turbulent Froude number is Fr = 0.45,
which is close to the value of Fr = 0.3 at which we observed the drop in Γ (see figure 4).

We can take this a step further and try to estimate the value of Fr at which Γ
starts varying in ocean and atmosphere field data. Davis & Moninsmith (2011) report
turbulence Reynolds numbers greater than Reℓ = 1500 in their ocean measurements.
Using Reℓ = uℓ/ν ∼ u4/(νǫk) = 15Re2λ we can make the estimate Reλ ≈

√
15Re = 150,

not much larger than the value from the DNS of Shih et al. (2005). The variation in

Γ was observed for Reb > 100 or for Fr >
√

15Reb/Reλ = 0.26, again close to our
transition Froude number.
We finally consider the atmospheric data of Lozovatsky & Fernando (2013). From

the data of the VTMX experiment in Monti et al. (2002), night-time values for the
horizontal turbulent velocity were u ≈ 0.3m/s, while a value for the dissipation can be
inferred from the compensated spectra in Figure 4(b) of Lozovatsky & Fernando (2013)
as ǫk ≈ 1.8 × 10−3 m2/s3. Using ν = 1.4 × 10−5 m2/s for air at 10◦C one obtains a
value for the Taylor microscale as λ = 0.1m and Reλ ≈ 2000. This finally gives a
transition Froude number as Fr = 0.39 corresponding to Reb = 40,000. So for completely
different transition values based on buoyancy Reynolds number (to which we can add
Reb = 1000 from the present DNS) we have similar value of turbulent Froude number
close to Fr ≈ 0.3 at which the mixing coefficient starts dropping considerably. The
variation in Γ does therefore appear to be a Froude number effect. It remains to clearly
show Γ ∝ Fr−2 in field data, which is essential in our eyes to finish resolving this open
issue in stratified turbulent mixing. The first evidence in this direction comes from the
work of Wells et al. (2010) who find Γ ∼ Fr−2 at high Fr in the case of oceanic gravity
currents.
In conclusion, we have presented results from direct numerical simulations of constant-

N forced stratified turbulence covering almost 3 orders of magnitude in Fr and a vast
range of Reb. The simulations at high Reλ show a clear behaviour of the mixing coefficient
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as Γ ∝ Fr−2 for Fr > 1, confirming the scaling analysis for weakly stratified turbulence.
In the opposite limit, Fr < 1 a peak in Γ is found at Fr ≈ 0.3 with a high value of
mixing coefficient Γ = 0.51, significantly larger than the Γ = 0.2 value that is commonly
used in oceanographic applications. The mixing coefficient then drops to values around
Γ = 0.33; these are still high values and are due to the presence of a strong stratification,
which high-Reb turbulence is able to mix efficiently. To what extent our results can be
generalized to all types of flows is an open question. We find it very likely that the general
dependence of Γ on Fr in the two limits Fr ≪ 1 and Fr ≫ 1 will show some degree of
universality.
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