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Abstract. Shot-peening is a common mechanical surface treatment used in automotive and 
aeronautical industries to enhance life duration of mechanical parts by introducing compressive 
residual stresses. TRIP 780 steel fatigue type specimens are shot-peened and loaded under cyclic 
bending. The martensite phase transformation and the evolution of residual stresses in the different 
phases are determined by XRD at different numbers of cycles. A FEM model is also proposed to 
better understand the evolution of residual stresses in the first cycles. 

Introduction 
Most surface treatments aim at enhancing life duration of mechanical parts by introducing 
compressive residual stresses. Shot-peening (SP) process generates a compressive residual stress by 
deformation of the surface which is accommodated by elastic residual strains. However, those 
induced stresses may not be stable during the life of a part submitted to thermal and mechanical 
fatigue. This study deals with the analysis of mechanical stress relaxation and microstructure 
evolutions of a TRIP-aided steel, TRIP780 [1, 2], after shot peening and subsequent cyclic 
mechanical loading. This steel exhibits a multiphase microstructure (ferrite, bainite, and austenite) 
where each mechanical constituent participates to the global behavior [3, 4]. Austenite is a 
metastable phase which can transform into martensite under a thermomechanical loading. 

To reach this goal, the mechanisms responsible for relaxation (plasticity, phase transformation) 
have to be identified. The first part presents the experimental set-up of the performed analysis and the 
obtained results are presented and discussed. In a second part, a FEM model using a 
phenomenological approach is presented in order to understand the redistribution of mechanical 
fields (macroscopic stress and plastic strain) during the first cycles.   

Experimental methods 
TRIP780 steel exhibits a multiphase microstructure (austenite, bainite and ferrite). Its chemical 
composition is given in Table 1. The volume fraction of initial austenite is about 13% with 70 % of 
ferrite and 17 % of bainite. The macroscopic yield strength of TRIP780 steel provided by 
ArcelorMittal is 560 MPa. 

Standard fatigue type specimens cut in the transverse direction (TD) of a 2 mm thick TRIP780 
steel sheet (Fig. 1) are submitted to cyclic bending. 

C Mn Si Fe 
0.21 1.6 1.6 Bal. 

Table 1 Chemical composition of TRIP780 steel in % wt (iron balanced) 
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Figure 1 Specimen geometry (a). Thickness 2 mm. Dimensions in mm. Bending test bench (b) 
Specimens are shot-peened in a turbine Wheelabrator machine successively on each face. The Almen 
intensity is F19A. The shot-peening conditions are as following: 400 µm diameter conditioned cut 
wire shots- hardness700 HV, coverage 230%. The resulting Ra roughness is 4.5 µm. 

The specimens are submitted to cyclic reverse bending (R=-1) with an imposed curvature which 
leads to pure bending in the area of interest. The bending test bench was developed for this study by 
the academic and industrial partners (Fig. 1b).The residual stresses are determined at 3 interrupted 
states (initial, 1000 and half-life cycles) with three targeted loading intensities (585, 600 and 650 
MPa at the surface). Bending loads are calculated and calibrated from a pure elastic behavior. 

Residual stresses are determined in austenite (FCC) and ferritic constituents (CC and BCC) using 
X ray diffraction (XRD) analysis with sin²ψ method [5]. A D500 Siemens XRD goniometer is used 
to determined stress in ferritic constituents (ferrite, bainite and martensite) with Cr radiation and 
Vanadium filter on the {211} planes with 40kV and 30 mA. The austenite fraction determination is 
carried out on the same apparatus following the ASTM standards [6]. When more than 5% of 
austenite is detected, residual stresses in the austenitic phase are determined with an Elphyse Set-X 
machine using Mn radiation with Cr filter on the {311} planes. Residual stresses profiles are 
obtained by electropolishing in the transverse direction. Since the specimens are 2 mm thick, the 
determined stresses are corrected taking into account the layer removal [7]. 

Experimental results 
After shot-peening, the retained austenite has transformed to martensite and a gradient of martensite 
and residual stresses in the specimen is determined. Figure 2 presents the austenite fraction profile 
after SP. Associated stress profiles of ferritic and austenitic phases are displayed in Figure 3. The 
determined stress in each constituent φ represents the quantity σxx

φ − σzz
φ , with the macroscopic value 

σzzMacro being equal to zero for a uniform shot peening treatment. 
With 13% austenite in the as-received material, we assume that austenite is transformed in the 

first 200 µm. At surface, the assumption can be made that austenite is totally transformed. The shot-
peened specimens show a maximum stress in compression of -600 MPa in ferritic constituent and -
600 MPa in austenite phase too. As the detection threshold of austenite is 5%, residual stresses 
determination is carried out from 70 µm 

RD 

TD 



Residual Stresses 2016: ICRS-10  Materials Research Forum LLC 
Materials Research Proceedings 2 (2016) 85-90  doi: http://dx.doi.org/10.21741/9781945291173-15 

 
 87 

 
Figure 2 Initial retained austenite profile after SP 

 
Figure 3 Corrected residual stress profiles after SP (a) in ferritic constituents, (b) in austenite in 
the transverse direction 
In the following part, the focus is made on the macroscopic stress 𝜎𝑚𝑚𝑚𝑚𝑚(𝑧) at each depth 𝑧 in the 
material, resulting from the averaging of the stresses in austenite 𝜎𝑥𝑥𝑚𝑎𝑎𝑎 and ferritic 𝜎𝑥𝑥

𝑓𝑓𝑚𝑚constituents 
by a mixture law: 

𝜎𝑥𝑥𝑀𝑀𝑀𝑀𝑀(𝑧) = 𝑓𝑀𝑎𝑎𝑎 .𝜎𝑥𝑥𝑀𝑎𝑎𝑎(𝑧) + (1 − 𝑓𝑀𝑎𝑎𝑎)𝜎𝑥
𝑓𝑓𝑀𝑀(𝑧)                               (1) 

where 𝑓𝑚𝑎𝑎𝑎 is the austenite volume fraction determined by XRD and 𝑥 is the measurement direction 
(TD in this case). 

During the cyclic tests, SP specimens are submitted to an imposed curvature at 3 loads (585, 600 
and 650 MPa at the surface). In Figure 4, residual macroscopic stresses after 0, 1000 and half-life 
cycles under the 3 loads are displayed. For the highest loading of 650 MPa (Figure 4a), residual 
stresses relax mainly in the first thousand cycles. The relaxation still takes place between 1000 and 
half-life cycles. For 600 and 585 MPa (Figure 4b and 4c respectively), relaxation in the subsurface 

 
 

(a) (b) 
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appears to be more important than at the surface. For each profile except 650 MPa, residual stresses 
reach a level of -50 MPa in subsurface (after 100 µm depth), and reach -300 MPa at the surface. For 
600 MPa and 585 MPa, profiles cross at 300 µm at the value of 0 MPa. The relaxation behavior 
seems to be different in the first 50-100 µm than in the rest of the sample. It corresponds with the 
zone where austenite has been transformed by SP. 

 

  

 

Figure 4 Relaxation for different cyclic bending loads (a) 650 MPa (b) 600 MPa (c) 585 MPa 
(R=-1). 

Simulation 
In this part, finite element (FE) simulations are carried out in order to understand the role of the 
material behavior and of the structural effect on the relaxation of a shot peened specimen. The 
simulations are performed with Abaqus 6.13/Standard FE software. 

The first step is to model the initial mechanical state after shot-peening. Besides compressive 
residual stresses, shot-peening generates an important hardening at the samples surface. As a first 
approximation, the residual stresses are generated by the fictitious thermal method [9]. It consists in 
introducing fictitious dilatation coefficients α in a partitioned part, apply a fictive thermal load ΔT 
which generate residual stresses due to incompatible plastic strains. Plastic strain values associated 
with the targeted residual stresses are obtained by equation (2) (semi-infinite body hypothesis) [8]: 

(a) (b) 

(c) 
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ϵp(z) =
ν − 1

E σres(z) (2) 

In the hypothesis of an orthotropic residual stress state, dilatation coefficients are given by the 
following equation [9]: 

α(z) = −
2µ + C + K(z)

2µ.∆θ .  ϵp(z) (3) 

with K(z) = � σy
3ϵxx

p (z)� (4) 

and C is kinematic hardening slope, σy the yield strength, and ∆θ the imposed temperature change. 
 

 

 

 
  

Figure 5 Simulated macroscopic residual stresses profile after shot peening and sample 
geometry and mesh (symmetry simplification). 
The fictitious thermal method is applied to a FE model of the specimen to generate the residual 
macroscopic stress profile (figure 5) based on experimental data. The generated stress is slightly 
different from the experimental one. Indeed, the experimental profile is not self-balanced.  

This method generates only the required plastic strain to generate the residual stress profile. They 
are about 0.3-0.4% which is far below the real plastic strain in shot-peened material (until 30-50%). 
The aim of this method is not to initiate the hardening internal variables. Todo so, the yield strength 
σy, could be change with depth in order to model some hardening effects. 

Mechanical relaxation is separated in two parts [10]. Static relaxation occurs in the first bending 
cycles due to macroscopic strain by the superposition of residual stresses and loading. This 
phenomenon is modelled by a cyclic hardening law on the first 5 cycles of loading. Some numerical 
investigations are also presented for a material modelled with standard phenomenological 
constitutive laws with different hardenings. 

The second part is the dynamic relaxation which needs another description of the damage 
mechanisms occurring at high number of cycles. 
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Conclusions 
The initial state of shot-peened TRIP steel and the stress relaxation under 3 reverse bending loads 
were investigated in this study. This experimental work is followed by FE simulations which aim to 
dissociate static and cyclic relaxation. 
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