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Abstract
Continuous determinantal point processes (DPPs) are a class of repulsive point pro-

cesses on Rd with many statistical applications. Although an explicit expression of their
density is known, this expression is too complicated to be used directly for maximum
likelihood estimation. In the stationary case, an approximation using Fourier series has
been suggested, but it is limited to rectangular observation windows and no theoretical
results support it. In this contribution, we investigate a different way to approximate
the likelihood by looking at its asymptotic behaviour when the observation window
grows towards Rd. This new approximation is not limited to rectangular windows,
is faster to compute than the previous one, does not require any tuning parameter,
and some theoretical justifications are provided. The performances of the associated
estimator are assessed in a simulation study on standard parametric models on Rd and
compare favourably to common alternative estimation methods for continuous DPPs.

1 Introduction
Determinantal point processes (DPPs for short) are a type of repulsive point processes with
statistical applications ranging from machine learning [17] to telecommunications [12, 22, 15],
biology [1], forestry [19], signal processing [5] and computational statistics [6]. In this paper,
we focus on likelihood estimation of parametric families of stationary DPPs on Rd, but we
will also include in our study stationary DPPs defined on Zd. From a theoretical point of
view, we are specifically interested in an increasing domain setting, meaning that we assume
∗arnaud.poinas@univ-lille.fr
†frederic.lavancier@univ-nantes.fr
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to observe only one realisation of the DPP on W ⊂ Rd, and our asymptotic results will
concern the case where W grows towards Rd, making the cardinality of the observed DPP
tend to infinity. From this perspective, the likelihood is just the density of the DPP.

For a DPP on Rd with kernel K, the expression of its density on any compact set W
(with respect to the unit rate Poisson point process) is known since the seminal paper of
Macchi (1975) [21]. But this expression is hardly tractable. It requires the knowledge of
another kernel, usually called L, that can only be obtained from K by solving an integral
equation or by knowing the spectral representation of the integral operator associated to K
on W . Both methods are not feasible in practice. Some approximations are then needed.
A general numerical procedure to solve an integral equation is the Nyström method [2], but
to our knowledge this approach has not been considered so far for parameter estimation of
continuous DPPs. A likely reason is that this approximation can be very time consuming
to run in the continuous case, while in view of likelihood parametric estimation, the density
must be computed for different values of the parameter, and so the approximation must be
repeated for each new proposed value. In the stationary case and when W is a rectangular
window, an alternative approximation of the density has been proposed in [19] by considering
a Fourier series approximation of K. This approximation has the pleasant feature to be
explicit, but is restricted to rectangular windows and lacks theoretical justifications.

Our contribution is an (increasing domain) asymptotic approximation of the density as
well as a way to correct the edge effects arising as a consequence of this approximation.
This approach is not restricted to rectangular windows W , does not depend on any tuning
parameter, and is faster to compute than the Fourier series approximation of [19].

The density of a DPP depends on the log-determinant of a random kernel matrix whose
behaviour is difficult to control from a theoretical point of view, making challenging a the-
oretical study of our approximation. The situation simplifies slightly for stationary DPPs
defined on a regular grid, typically Zd. We prove in this case that our approximation has
the same asymptotic behaviour as the true density, under mild assumptions. The proof
relies on an asymptotic control of the L kernel when W grows to Zd and to concentration
inequalities for DPPs established in [23]. For DPPs defined on Rd, getting the same kind
of results remains an open problem. However we prove that any DPP on Rd is arbitrarily
close to a DPP defined on a small enough regular grid, the density approximation of which
is consistent from the previous result.

Likelihood estimation of DPPs has been considered in other settings. For DPPs defined
on a finite space, getting the expression of the density from K is not an issue (providing the
space dimension is not too large), as it only requires the eigendecomposition of the kernel K,
which reduces to a matrix in this case. Likelihood estimation in this setting, based on the
observation of n i.i.d. discrete DPPs, has been studied in [10], who investigate asymptotic
properties when n tends to infinity. In the continuous case, likelihood estimation based on
n i.i.d. observations is considered in [7]. In this contribution, the DPP is directly defined
through the kernel L, not K, avoiding the need to approximate its density from K. However,
this comes at the cost of a loss of interpretability of the parameters, and more importantly,
this approach does not allow to consider increasing domain asymptotic. Indeed, as detailed in
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Section 2, it is extremely difficult to relate the kernel L[W ] associated to the DPP defined on
W , with the kernel L[W ′] for W ⊂ W ′. For this reason, it is difficult to suggest a parametric
family of kernels L[W ] indexed by W . In contrast the kernel K of the DPP on any set W is
just the restriction of K to W , and it suffices to define K on Rd in order to automatically
get a consistent family of kernels on any subset W .

The remainder of the paper is organised as follows. We introduce our notations and
basic definitions in Section 2. Our asymptotic approximation of the likelihood is presented
in Section 3, along with some theoretical justifications. We show in Section 4 how this
approximation applies to standard parametric families of DPPs in Rd. Section 5 is devoted
to a simulation study demonstrating the performances of our approach. Some concluding
remarks are given in Section 6. Finally Section 7 includes the proof of our theoretical results,
while some technical lemmas are gathered in the appendix.

2 Definitions and notation
We consider point processes on (X ,B(X ), ν) where X is either Rd or Zd and the corresponding
measure ν is either the Lebesgue measure on Rd or the counting measure on Zd, respectively.
For any point process X and ν-measurable set W ⊂ X we write N(W ) for the number of
points of X ∩ W and |W | for the volume of W , i.e. |W | = ν(W ) is either the Lebesgue
measure of W if X = Rd or its cardinality if X = Zd. Moreover, for any finite set X ⊂ X
and any function F : X 2 → R, we write F [X] for the matrix (F (x, y))x,y∈X where all x ∈ X
are arbitrarily ordered. We write F (x, y) := F0(y − x) if F is invariant by translation, in
which case F0[X] will refer to the matrix F [X], and we write F (x, y) := Frad(‖y − x‖) if
F is a radial function. Here ‖.‖ denotes the euclidean norm on X but we will also use the
notation ‖.‖ for the operator norm when applied to a linear operator, without ambiguity.
We denote by f̂ the Fourier transform of any function f : X 7→ R, defined for any x ∈ X ∗
by

f̂(x) :=
∫
X
f(t) exp(−2iπ〈t, x〉)dν(t),

where X ∗ = Rd if X = Rd, X ∗ = [0, 1]d if X = Zd and 〈., .〉 denotes the usual scalar
product on X . Finally, for any hermitian matrix M we write λmax(M) and λmin(M) for the
highest and the lowest eigenvalue of M , respectively, and, for any two hermitian matrices
(or operators on a Hilbert space) M and M ′, we use the Loewner order notation M 6 M ′

when M ′ −M is positive definite.
DPPs are commonly defined through their joint intensity functions.

Definition 2.1. Let X be a point process on (X , ν) and n > 1 be an integer. If there exists
a non-negative function ρn : X n → R such that

E

 6=∑
x1,··· ,xn∈X

f(x1, · · · , xn)
 =

∫
Xn
f(x1, · · · , xn)ρn(x1, · · · , xn)dν(x1) · · · dν(xn)
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for all locally integrable functions f : X n → R, where the symbol 6= means that the sum is
done for distinct xi, then ρn is called the n-th order joint intensity function of X.

DPPs are then defined the following way.

Definition 2.2. Let K : X 2 → R be a locally square integrable, hermitian function such that
its associated integral operator on L2(X , ν),

K : f 7→
(
Kf : x 7→

∫
X
K(x, y)f(y)dν(y)

)
,

is locally of trace class with eigenvalues in [0, 1]. X is said to be a determinantal point process
on (X ,B(X ), ν) with kernel K if its joint intensity functions exist and satisfy

ρn(x1, · · · , xn) = det (K[x]) (2.1)

for all integer n and for all x = (x1, · · · , xn) ∈ X n.

When X = Rd the DPP is said to be continuous and when X = Zd then the DPP is
said to be discrete. In the latter case, the integral operator K can be seen as the infinite
matrix K[Zd] := (K(x, y))x,y∈Zd . Moreover, when K is translation invariant (resp. radial)
then the associated DPP is stationary (resp. isotropic) and, in the discrete case, K writes as
a multilevel Toeplitz matrix. Finally, we write I for the identity operator on L2(X , ν) and
IW for its restriction on L2(W, ν) for any W ⊂ X .

LetX be a DPP on X with kernelK and associated integral operator K. If ‖K‖ < 1, then
X admits on any compact set W ⊂ X a density with respect to the unit rate homogenous
Poisson point process on W , as described now. We recall that for any compact set W ,
the projection KW of K on L2(W, ν) is a compact operator whose kernel can be written by
Mercer’s theorem as

KW (x, y) =
∑
i

λWi φ
W
i (x)φ̄Wi (y), ∀x, y ∈ W,

where the λWi are the eigenvalues of KW and the φWi are the corresponding family of or-
thonormal eigenfunctions (see [16] for more details). When ‖K‖ < 1, we define the op-
erator L = K(I − K)−1 and denote by L its kernel. Similarly, we define the operator
L[W ] = KW (IW −KW )−1 and denote by L[W ] its kernel whose spectral decomposition writes

L[W ](x, y) :=
∑
i

λWi
1− λWi

φWi (x)φ̄Wi (y). (2.2)

Note that contrary to KW with K, the operator L[W ] does not correspond to the restriction
of L to L2(W, ν). Another difference between L[W ] and L is that when X is a stationary
(resp. isotropic) DPP, L(x, y) only depends on y− x (resp. ‖y− x‖) but this is not true for
L[W ].
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Theorem 2.3 ([21, 27]). Let X be a DPP on (X , ν) with kernel K whose eigenvalues lie in
[0, 1[ and let W be a compact set of X . Then X ∩W is absolutely continuous with respect
to the homogeneous Poisson point process on W with intensity 1 and has density

f(x) = exp(|W |) det(IW −KW ) det(L[W ][x])

for all x ∈ ∪nW n.

In the above expression, the first determinant corresponds to the Fredholm determinant
of the operator IW −KW , which is equal to ∏i(1−λWi ), while the second determinant is the
standard matrix determinant.

3 Likelihood of DPPs

3.1 Likelihood estimation
Let X be a DPP on (X , ν) with kernel Kθ∗ belonging to a parametric family {Kθ, θ ∈
Θ}, where Θ is the space of parameters. We consider the likelihood estimation of θ∗, as
described below, from a unique observation of X ∩W where W is a bounded subset of X .
We furthermore consider an increasing domain asymptotic framework, meaning that our
asymptotic properties stand when n→∞ and W = Wn is an increasing sequence of subsets
of X .

For the standard parametric families of continuous DPPs in Rd, as those presented in
Section 4.1, the parameter space Θ is a subset of Rp for some integer p > 1. However we
do not need to make such an assumption for our purpose, and the likelihood approximation
that we develop below is true whatever Θ is, provided the associated DPP is stationary. In
particular the parameter θ in Kθ can be the kernel K itself. This last setting makes sense
when X = Zd where the whole matrix KW (which is multilevel Toeplitz in the stationary
case) can be estimated from a realisation of X ∩W , as considered in image analysis in [18].

From Theorem 2.3, we get that the (normalized) log-likelihood of X ∩W for any para-
metric family of DPPs writes:

l(θ|X) = 1 + 1
|W |

(
logdet(IW −KθW ) + logdet(Lθ[W ][X ∩W ])

)
(3.1)

where Kθ is the integral operator associated to Kθ and Lθ[W ] is given by (2.2), the eigenvalues
and eigenvectors then depending on θ. The maximum likelihood estimate of θ is then

θ̂ ∈ arg max
θ∈Θ

l(θ|X).

Computing the log-likelihood (3.1) requires knowing the spectral decomposition of KθW for
all θ. This is possible in the case of DPPs on a finite space whose kernels are finite matrices,
provided the dimension of the space is not too large, but this spectral decomposition is
usually not known for continuous DPPs. This motivates the following approximations.
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3.2 Approximation of the likelihood for stationary DPPs
When X = Rd and the observation window W is rectangular, an approximation of (3.1)
for stationary kernels is proposed in [19], using a truncated Fourier series. For example, if
W = [−1/2, 1/2]d, this relies on the following approximation of the kernel:

Kθ(x, y) = Kθ
0(x− y) ≈

∑
k∈Zd
‖k‖<N

cke
i2π〈k,y−x〉, where ck :=

∫
W
Kθ

0(t)e−i2π〈k,t〉dt ≈ K̂θ
0(k),

for some truncation constant N . Since the eigenvalues and eigenvectors of this kernel ap-
proximation are explicitly known, the log-likelihood (3.1) is then approximated in [19] by

1 + 1
|W |

 ∑
k∈Zd
‖k‖<N

log(1− K̂θ
0(k)) + logdet(Lθapp[X ∩W ])

 , (3.2)

where
Lθapp(x, y) :=

∑
k∈Zd
‖k‖<N

K̂θ
0(k)

1− K̂θ
0(k)

ei2π〈k,y−x〉. (3.3)

The same kind of approximations can be carried out when X = Zd, still for rectangular
windowsW , in which case K̂θ

0(k) in (3.2) has to be replaced by the discrete Fourier transform
of K0(x), x ∈ W , and no truncation is needed since the series become a finite sum. This
approximation in Zd amounts to consider a periodic extension of the stationary DPP outside
W , see [18] for details.

Our new approximation is based on a different expression of (3.1) in terms of the self-
convolution products of the function (x, y) 7→ 1W (x)Kθ(x, y)1W (y) through the following
identities (see [26] for example). For all W ⊂ X ,

logdet(IW −KθW ) = −
∞∑
k=1

1
k

∫
Wk

Kθ(x1, x2) · · ·Kθ(xk−1, xk)Kθ(xk, x1)dνk(x) (3.4)

and for all x, y ∈ W ,

Lθ[W ](x, y) = Kθ(x, y) +
∞∑
k=1

∫
Wk

Kθ(x, z1)Kθ(z1, z2) · · ·Kθ(zk−1, zk)Kθ(zk, y)dνk(z), (3.5)

Lθ(x, y) = Kθ(x, y) +
∞∑
k=1

∫
Xk
Kθ(x, z1)Kθ(z1, z2) · · ·Kθ(zk−1, zk)Kθ(zk, y)dνk(z). (3.6)

These convolution products are too difficult to be computed in the general case, but for
stationary DPPs satisfying ‖Kθ‖ < 1 then L̂θ0 = K̂θ

0/(1 − K̂θ
0) as a consequence of (3.6).

Accordingly, as justified later in Proposition 3.1, an asymptotic approximation when the
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observation window W is large enough gives

Lθ[W ](x, y) ≈ Lθ0(y − x) =
∫
X ∗

K̂θ
0(t)

1− K̂θ
0(t)

exp(2iπ〈t, y − x〉)dt, (3.7)

1
|W |

logdet(IW −KθW ) ≈
∫
X ∗

log(1− K̂θ
0(x))dx. (3.8)

This motivates our following approximation of the log-likelihood:

l̃(θ|X) := 1 +
∫
X ∗

log(1− K̂θ
0(x))dx+ 1

|W |
logdet(Lθ0[X ∩W ]), (3.9)

where Lθ0 is given in (3.7). This approximation, like (3.2), can be computed whenever we
know the expression of K̂θ

0 , which is the case for all classical families of stationary DPPs
built from covariance functions, as those presented in Section 4.1. The main advantage of
(3.9) compared to the Fourier approximation (3.2) is that it is not limited to rectangular
windows W but can be used with any window shape. This estimation method also has the
advantage that it does not require any tuning parameter of any kind compared to the choice
of N in (3.2) or alternative moment methods [9, 20].

The idea to use a convolution approximation was actually briefly suggested in [19, Ap-
pendix L] but the associated approximation was given under a more restrictive form that
required knowing an exact expression of the iterative self-convolution products of Kθ

0 for
all θ. Moreover, an important drawback was pointed out in [19] concerning the presence of
possible edge effects, which may affect the quality of estimation of strongly repulsive DPPs.
As shown in Section 5, this problem also occurs with our approximation: while it works
really well with DPPs with low repulsion, and therefore minimal edge effects, some edge
corrections are needed for more repulsive DPPs. The next section deals with this aspect.

3.3 Periodic edge-corrections
In order to alleviate the possible edge-effects mentioned above, we suggest to introduce a
periodic approximation. We assume in this section that the observation window W ⊂ X is
rectangular. Without loss of generality, we set W = ([−l1/2, l1/2]× · · · × [−ld/2, ld/2])∩X .
Using a periodic approximation amounts to consider the observation window as the flat torus
TW := X\l1Z × · · · × X\ldZ. This way, points close to the border of the window W are
brought close to each other in order to compensate edge effects.

More precisely, we replace all instances of Lθ0(y − x) in the stochastic part Lθ0[X ∩W ] of
(3.9) by

Lθ,T0 (y − x) := Lθ0


y1 − x1 mod(l1)

...
yd − xd mod(ld)

 .
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This is equivalent to replacing Lθ0 by a periodic version of itself on W . The approximate
likelihood then writes for any parameter θ:

l̃ T(θ|X) := 1 +
∫
X ∗

log(1− K̂θ
0(x))dx+ 1

|W |
logdet

(
Lθ,T0 [X ∩W ]

)
. (3.10)

Note that, since we consider a periodic version of Lθ0 on W then it can be approximated
by its Fourier series, which corresponds to the idea of the approximation (3.2) of [19]. This is
why both (3.10) and (3.2) are nearly equal, see Figure 1 for an example. But approximating
Lθ[W ] as in (3.10) instead of using a truncation of its Fourier series leads to a smoother
likelihood and overall slightly better results, as well as a more computationally efficient
method. Indeed, as explained in [19], the Fourier approximation (3.3) of Lθ[W ] is a sum of
(2N)d terms where the truncation parameter N is chosen such that∑

n∈Zd∩[−N,N ]d
K̂θ

0(n) > 0.99
∑
n∈Zd

K̂θ
0(n).

For important parametric models, including the Whittle-Matern and the Bessel families (see
Section 4.1), K̂θ

0(n) has a polynomial decay with respect to n, leading to a large choice of
N in (3.3). In comparison, as detailed in section 4.2, depending on the parametric model,
we either have an analytic expression of Lθ0 or, when the self convolution products of Kθ

0 are
known, we can express Lθ0 as the infinite sum

Lθ0(x) =
∑
n>0

(Kθ
0)∗n(x) (3.11)

where
|(Kθ

0)∗n(x)| =
∣∣∣∣∫
X ∗

(K̂θ
0)n(t)e−i2π〈x,t〉dt

∣∣∣∣ 6 Kθ
0(0)‖K̂θ

0‖n−1
∞

has an exponential decay with respect to n. The approximation of Lθ[W ] by (3.11) will then
require much fewer terms than the approximation by (3.3).

Despite the appealing of the approximation (3.10), there is one possible issue in that
the determinant of Lθ,T[X ∩ W ] is not guaranteed to be positive. Remember that this
positivity is guaranteed for any X ∩W whenever the kernel Lθ,T is positive, or equivalently
whenever its associated integral operator has positive eigenvalues. But due to the periodicity
of Lθ,T0 , these eigenvalues correspond to the coefficients of its Fourier series that write for
any k = (k1, . . . , kd)

1
|W |

∫
W
Lθ0(x) exp

(
−2iπ

d∑
i=1

kixi
li

)
dν(x). (3.12)

When W is large, the above integral is approximately equal to L̂θ0(k1/l1, · · · , kd/ld) which is
positive. This shows that we can expect the determinant of Lθ,T[X ∩W ] to be positive when
W is large enough. In our simulations displayed in Section 5, this determinant was positive
in all runs, except a few times with the Bessel-type kernel associated to high values of the
repulsion parameter α.
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Figure 1: Comparison between the two approximations (3.2) (solide line) and (3.10) (dashed
line) of α 7→ l(ρ∗, α|X) where X is a realisation of a DPP with Gaussian-type kernel (see
Table 1) with true parameters ρ∗ = 100 and α∗ = 0.05 on the window W = [0, 1]2.

Finally, note that extending the above edge correction to non rectangular windows is
not straightforward and we do not provide a general solution. We however introduce in the
simulation example of Section 5.3 a procedure that can be adapted to any isotropic DPP
model.

3.4 Theoretical Results
In order to verify the theoretical soundness of the asymptotic log-likelihood approximation
(3.9) we want to show that |l̃(θ|X)−l(θ|X)| a.s.−→ 0 for all θ ∈ Θ when the observation window
W grows towards X . For this purpose, we consider a sequence of increasing observation
windows Wn satisfying the following assumptions.
Condition (W): Wn is an increasing sequence of compact subsets of X such that ⋃n>0Wn =
X and there exists an increasing non-negative sequence rn ∈ RN

+ such that rn −→
n→∞

∞ and

|(∂Wn ⊕ rn) ∩Wn| = o(|Wn|), (3.13)

where ⊕ denotes the Minkowski sum. Moreover,

∀δ > 0,
∑
n>0

exp(−δ|Wn|) <∞. (3.14)

The first assumption (3.13) means that the boundary of Wn must not be too irregular.
This is not an issue in most practical applications. For example, if X = Rd and (Wn)n>0 is
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a sequence of spheres with radius Rn −→
n→∞

∞, then (3.13) is satisfied with rn =
√
Rn. As

another example, assume that (Wn)n>0 is a sequence of rectangular windows [−l1,n/2, l1,n/2]×
· · · × [−ld,n/2, ld,n/2] such that li,n −→

n→∞
∞ for each i, then

(∂Wn ⊕ rn) ∩Wn ⊂
(
[−l1,n/2,−l1,n/2 + rn] ∪ [l1,n/2− rn, l1,n/2]

)
× · · ·

×
(
[−ld,n/2,−ld,n/2 + rn] ∪ [ld,n/2− rn, ld,n/2]

)
and

|(∂Wn ⊕ rn) ∩Wn|
|Wn|

6
d∏
i=1

(
2rn
li,n

)

which vanishes when n goes to infinity with the choice rn =
√

mini li,n. The second hypothesis
(3.14) is a technical assumption needed to get the almost sure convergence in Proposition 3.2.
Without this assumption, the convergence remains true but in probability instead of almost
surely.

We first consider the deterministic part of (3.1), which is the Fredholm log-determinant.
Its asymptotic behaviour given below is justified in Section 7.1 and was already proved in a
slightly different setting in [26, Proposition 5.9].
Proposition 3.1. Let K0 : X 7→ R be a function in L2(X , ν) with an integrable Fourier
transform K̂0 taking values in [0, 1[ and let (Wn)n>0 satisfy Condition (W). We denote by
KWn the projection on L2(Wn) of the integral operator associated with the kernel (x, y) 7→
K0(x− y). Then,

1
|Wn|

logdet(IWn −KWn) −→
n→∞

∫
X ∗

log(1− K̂0(x))dx.

Concerning the stochastic part of the log-likelihood (3.1), that is logdet(Lθ[W ][X∩W ]), its
behaviour is much more difficult to control in general. The main issue is that the determinant
vanishes when two points of X ∩W gets arbitrarily close to each other, but no relationship
between how close these points are from each other and the value of the determinant is
known, making the likelihood difficult to control. To our knowledge, the only related result
is that, in most cases, the lowest eigenvalue of Lθ[W ][X] is non zero iff infx,y∈X ‖y−x‖ > 0 [3].
The latter condition is automatically satisfied if X is supported on a lattice but not when
X = Rd. The next result focuses on the first case.
Proposition 3.2. Let (Wn)n∈N satisfy Condition (W) and let {Kθ, θ ∈ Θ} be a family
of translation-invariant DPP kernels on Zd such that for all θ ∈ Θ, there exists constants
Aθ, τθ > 0 and Mθ < 1 such that

∀x ∈ Zd, |Kθ
0(x)| 6 Aθ

1 + ‖x‖d+τθ
and 0 < K̂θ

0(x) 6Mθ.

Let X be the realization of a DPP on Zd with kernel Kθ∗, θ∗ ∈ Θ. Then, for all θ ∈ Θ,
1
|Wn|

∣∣∣logdet(Lθ0[X ∩Wn])− logdet(Lθ[Wn][X ∩Wn])
∣∣∣ a.s.−→ 0.
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The only restrictive assumptions in Proposition 3.2 is the need for Kθ
0 to decay faster

than ‖x‖−d and the fact that K̂θ
0 never vanishes. In the usual setting where the kernels are

parametric covariance functions (see Propositon 4.1), these assumptions are generally satis-
fied. That includes the Gaussian, Cauchy and Whittle-Matern kernels. The only exception
amongst standard kernels is the Bessel-type kernel, that will be examined by simulations
in Section 5.2. Based on Propositions 3.1 and 3.2, we thus obtain the consistency of the
likelihood approximation (3.9) when X = Zd.

Corollary 3.3. Let {Kθ, θ ∈ Θ} be a family of translation-invariant DPP kernels on Zd
satisfying the assumptions of Proposition 3.2, then |l̃(θ|X)− l(θ|X)| a.s.−→ 0 for all θ ∈ Θ.

Getting the same result for DPPs on Rd is still an open problem. However the next
proposition shows that a DPP on Rd can be approximated by a discrete DPP on an arbitrarily
small regular grid of Rd, for which Corollary 3.3 applies. Note that the assumptions on K̂0
below are satisfied for all standard parametric families, see Section 4.1.

Proposition 3.4. Let X be a stationary DPP on Rd with kernel K(x, y) = K0(y−x), where
K0 is a square integrable function such that K̂0 takes values in [0, 1[ and

∀x ∈ Rd, 0 6 K̂0(x) 6 A

1 + ‖x‖d+τ

for some constant A, τ > 0. For all integer ε > 0, define Xε as the DPP on Zd with kernel
Kε(x, y) := εdK0(ε(y−x)). Then, Xε is well-defined for small enough ε and the distribution
of εXε, the DPP Xε rescaled by a factor ε, weakly converges to the distribution of X when
ε tends to 0.

In the end, Corollary 3.3 tells us that the asymptotic approximation of the log-likelihood
(3.9) is theoretically sounded for most classical parametric families of stationary DPPs on
Zd and, as a consequence of Proposition 3.4, also theoretically sounded for any discrete
approximation of continuous DPPs on an arbitrarily small regular grid of Rd.

4 Application to standard parametric families

4.1 Classical parametric families of stationary DPPs
A classical way of generating parametric families of stationary DPPs is the following result.

Proposition 4.1. Let K0 : X 7→ R be a bounded square integrable symmetric function on
Rd such that its Fourier transform K̂0 takes values in [0, 1]. Then, the function K(x, y) :=
K0(y − x) is a DPP kernel on (X , ν).

This proposition is proved in [19] in the case X = Rd. Since symmetric functions K0
with non negative Fourier transform are covariance functions, this result implies that we can
consider as many parametric families of DPPs as there are parametric families of covariance
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K0(x) K̂0(x) ρmax

Gauss ρ exp
(
−‖x‖

2

α2

)
ρ(
√
πα)d exp(−‖παx‖2) (

√
πα)−d

Bessel ρ2d/2Γ(d/2 + 1)Jd/2(
√

2d‖y−x‖/α)
(
√

2d‖y−x‖/α)d/2
ρ

ρmax
1‖x‖6

√
d/(2π2α2)

dd/2

(2π)d/2αdΓ(d/2+1)

Cauchy ρ
(

1 +
∥∥∥ x
α

∥∥∥2
)− d+1

2 ρ(
√
πα)d

√
π

Γ((d+1)/2) e
−‖2παx‖ Γ((d+1)/2)

π(d+1)/2αd

WM ρ21−σ

Γ(σ)

∥∥∥ x
α

∥∥∥σKσ

(∥∥∥ x
α

∥∥∥) ρΓ(σ+d/2)
Γ(σ)

(2
√
πα)d

(1+‖2παx‖2)σ+d/2
Γ(σ)

Γ(σ+d/2)(2
√
πα)d

Table 1: Examples of parametric kernels K0 on Rd, along with their Fourier transform K̂0.
For each family, the intensity is ρ and the range parameter is α. The existence condition
K̂0 6 1 is equivalent to ρ 6 ρmax where ρmax is given in the last column. The Whittle-Matérn
model (WM) also contains a shape parameter σ > 0. Here Jd/2 denotes the Bessel function
of the first kind and Kσ the modified Bessel function of the second kind.

functions. The assumption that K̂0 6 1 simply adds a bound on the parameters of the
family. Various examples are presented and studied in [8, 19]. We provide in Table 1 some
examples in Rd. Note that for simplification, we call in this table Bessel kernel the particular
case of the Bessel kernel in [8] where the shape parameter is σ = 0, and Cauchy kernel the
particular case in [19] where the shape parameter is 1/2. If the shape parameter is different
for these models, then closed formulas are available for K0 and K̂0, but not for L0 (see the
next section and Table 2).

4.2 Expressions of L0

When computing the approximate log-likelihood l̃(θ|X) in (3.9) or its edge-corrected version
(3.10), one has to compute L0(y − x) for each pair of points (x, y) ∈ (X ∩W )2. It is thus
important to find faster ways to compute values of L0 than the d-dimensional integral (3.7).
An important example arises when K0 is a radial function, denoted by Krad. In this case,
the corresponding DPP is isotropic and L0 is also a radial function, denoted by Lrad. The
Fourier transform can then be expressed by a Hankel transform which gives

K̂rad(r) = 2π
rd/2−1

∫ ∞
0

sd/2Krad(s)Jd/2−1(2πsr)ds

and
Lrad(r) = 2π

rd/2−1

∫ ∞
0

sd/2
K̂rad(s)

1− K̂rad(s)
Jd/2−1(2πsr)ds.

The expression of L0 therefore simplifies into a unidimensional integral.
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L0(x)

Gauss
∑
n>1

ρn
(
√
πα)d(n−1)

nd/2
exp

(
−‖x‖

2

nα2

)

Bessel ρ2d/2Γ(d/2 + 1)
1− ρ (2π)d/2αdΓ(d/2+1)

dd/2

Jd/2(
√

2d‖x‖/α)
(
√

2d‖x‖/α)d/2

Cauchy
∑
n>1

ρn

nd

(
π(d+1)/2αd

Γ((d+ 1)/2)

)n−1 (
1 +

∥∥∥∥ xnα
∥∥∥∥2
)−(d+1)/2

WM
∑
n>1

ρn(
√
πα)d(n−1)Γ(σ + d/2)n

2nσ−1−(n−1)d/2Γ(σ)nΓ(nσ + nd/2)

∥∥∥∥xα
∥∥∥∥nσ+(n−1)d/2

Knσ+(n−1)d/2

(∥∥∥∥xα
∥∥∥∥)

Table 2: Expression of L0 defined in (3.7) for the parametric kernels given in Table 1.

Moreover, we may exploit the relation L̂0 = K̂0/(1 − K̂0) = ∑
n>1(K̂0)n and try to

compute the inverse Fourier transform to express L0 as a series with exponentially decreasing
coefficients (see the discussion in Section 3.3) or even get an analytic expression. This
strategy leads to closed-form formulas of L0 for the classical parametric families displayed
in Table 1. The results, obtained after straightforward calculus, are given in Table 2.

4.3 Estimation of the intensity by MLE
Assume that the parametric DPP kernel writes for some parameters ρ and θ

Kρ,θ(x, y) = ρK̃θ(x, y) (4.1)

where K̃θ(x, x) = 1 for all x. The parameter ρ corresponds here to the intensity of the DPP
and θ to the other parameters of the model. This is the setting of all standard parametric
models, including those presented in Table 1.

When jointly estimating (ρ, θ) from a realisation of the DPP X onW by the approximate
MLE, simulations usually show that the estimate of ρ appears to be very close to N(W )/|W |.
One explanation given in [19] is that, by doing a first order convolution approximation in
(3.4) and (3.6), we get

l(ρ, θ|X) ≈ 1− ρ+ log(ρ)N(W )
|W |

+ 1
|W |

logdet(K̃θ
W [X ∩W ])

and the maximum point of this approximation is ρ̂ = N(W )/|W |. We even show in Propo-
sition A.3 that, in the case of Bessel type DPP kernels with parameters (ρ, α) as presented

13



in Table 1, ρ̂ = N(W )/|W | is always the maximum point of ρ 7→ l̃(ρ, α|X) for any α. This
result suggests that, instead of jointly estimating ρ and θ, it is more computationally efficient
to directly estimate ρ by ρ̂ = N(W )/|W | and then θ by an argument of the maximum of
θ 7→ l̃(ρ̂, θ|X).

5 Simulation study
In this section we perform a simulation study to investigate the performance of our approx-
imate MLE, with and without edge effect correction, and compare it to minimum contrast
estimators (MCE for short) based on Ripley’s K function and on the pair correlation func-
tion (pcf for short), both being common second-order moment estimators used in spatial
statistics. We refer to [9] for more detailed information on these MCEs applied to DPPs.
At the exception of the special case of Bessel-type DPPs considered in Section 5.2, we chose
not to compare our estimators to the Fourier approximation (3.2) of [19] since, as explained
in Section 3.3, this estimator yields nearly the same results as our corrected MLE, which
we confirmed in our testings, with the notable difference of the Fourier approximation being
about ten times longer to compute in our examples.

5.1 Whittle-Matérn, Cauchy and Gaussian-type DPPs
We consider in this section the parametric models in Table 1 that are covered by our theo-
retical assumptions in Section 3.4, that are the Whittle-Matérn, Cauchy and Gaussian-type
DPPs. From this perspective, these are favourable models for our likelihood approximation
approach. All these models are of the form (4.1), then following Section 4.3, we estimate ρ
by ρ̂ = N(W )/|W | for all methods, and the performances are evaluated on the estimation
of α only. Note that for the Whittle-Matérn model, we do not consider the estimation of
the shape parameter σ, which was assumed to be known. The joint estimation of (α, σ) for
this model is known to be a poorly identifiable problem and it is customary to choose the
best σ from a small finite grid by profile likelihood (see [19]). For the estimation of α, we
have performed the same kind of simulations for the three models in R2. The results and
conclusions are similar. In the following we only present the details for the Gaussian-type
DPP.

We consider realizations of the Gaussian-type DPP with true parameters ρ∗ = 100 and
α∗ ∈ {0.01, 0.03, 0.05}, when the observation window W is either [0, 1]2, [0, 2]2 or [0, 3]2.
When ρ∗ = 100, α can take values in ]0, (10

√
π)−1 ≈ 0.056[ since the process exists if and

only if πρα2 6 1. Therefore, α∗ = 0.01 corresponds to a weakly repulsive point process,
close to a Poisson point process, while α∗ = 0.03 corresponds to a mildly repulsive DPP
and α∗ = 0.05 corresponds to a strongly repulsive DPP. Examples of realizations are shown
in Figure 2. We estimate α∗ by the approximate MLE defined in (3.9) and compare it to
its edge-corrected version defined in (3.10) as well as MCEs based on the pcf or Ripley’s K
function. As mentioned before, ρ is replaced by ρ̂ = N(W )/|W | in (3.9) and (3.10), and we
truncate the series defining L0 to n = 50 (see Table 2). All realisations have been generated
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Figure 2: Examples of realizations of Gaussian-type DPPs on [0, 1]2 with parameters ρ∗ =
100 and α∗ = 0.01, 0.03, 0.05 corresponding to three different degrees of repulsiveness.

in R [25] using the spatstat [4] package and both MCEs were computed by the function dppm
of the same package. The tuning parameters for these MCEs were rmin = 0.01, rmax being
one quarter of the side length of the window and q = 0.5 as recommended in [13]. Boxplots
of the difference between the four considered estimators and the true value α∗ for 500 runs
in all different cases are displayed in Figure 3 and the corresponding mean square errors are
given in Table 3.

Window [0, 1]2 [0, 2]2 [0, 3]2

α∗ 0.01 0.03 0.05 0.01 0.03 0.05 0.01 0.03 0.05
MLE based on l̃ T 0.83 0.81 0.41 0.21 0.18 0.088 0.090 0.079 0.051
MLE based on l̃ 1.25 1.75 0.54 0.24 0.23 0.28 0.095 0.10 0.20

MCE (pcf) 0.86 0.77 0.74 0.31 0.27 0.23 0.17 0.17 0.19
MCE (K) 1.81 1.17 0.51 0.74 0.46 0.21 0.48 0.23 0.12

Table 3: Estimated mean square errors (x104) of α̂ for Gaussian-type DPPs on different
windows and with different values of α, each computed from 500 simulations.

From these results, we remark that when α∗ = 0.01 and α∗ = 0.03, inference based
on the approximate likelihood l̃(ρ̂, α|X) outperforms moment based inference for windows
bigger than [0, 2]2. This is expected from maximum likelihood based inference and shows
that hundreds of points are enough for l̃(ρ̂, α|X) to be a good enough approximation of the
true likelihood when the underlying DPP is not too repulsive. When α∗ = 0.05, that is
when the negative dependence of the DPP is very strong, then l̃(ρ̂, α|X) suffers from edge
effects and is heavily biased. In fact, as can be seen in Figure 4, l̃(ρ̂, α|X) is an increasing
function of α in this case and the estimate is often the highest possible value for α, which is
1/
√
πρ̂. The correction l̃ T introduced in (3.10) gives more accurate values of the likelihood

for high values of α, as shown in Figure 4. Finally this estimator outperforms the other ones
in nearly every cases and especially the most repulsive ones.
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Figure 3: Boxplots of α̂− α∗ generated from 500 simulations of Gaussian-type DPPs with
true parameters ρ∗ = 100 and, from top to bottom, α∗ = 0.01, 0.03 and 0.05. Each row
shows the behaviour of the following 4 estimators when the simulation window is, from left to
right in each box, W = [0, 1]2, [0, 2]2 and [0, 3]2: the approximate MLE with edge-corrections
based on l̃ T(ρ̂, α|X), the approximate MLE based on l̃(ρ̂, α|X), the MCE based on the pair
correlation function and the MCE based on the Ripley’s K function.
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Figure 4: Comparison between l̃(100, α|X) (solid lines) and l̃ T(100, α|X) (dashed lines)
with respect to α where X is one realization of a DPP on [0, 1]2 with a Gaussian-type kernel
with true parameters ρ∗ = 100 and, from left to right, α∗ = 0.01, 0.03 and 0.05.

Concerning the computation time, even if our MLE approximation is much faster than the
Fourier approximation (3.2), it can be heavy due to the need to optimize a function defined
as the log-determinant of an n × n matrix, where n is the number of observed points. For
comparison, each MCE took less than one second on a regular laptop in each case considered
in Figure 3, while each computation of the approximate MLE took about a second when
W = [0, 1]2, about 20 seconds when W = [0, 2]2 and about 100 seconds when W = [0, 3]2.

5.2 Performance for Bessel-type DPPs
In order to evaluate the possible limitations of our approach, we consider in this section
the estimation of Bessel-type DPPs, see Table 1, whose kernels do not satisfy the theoretical
assumptions in Section 3.4. As in the previous section, we set ρ∗ = 100, α∗ = 0.01, 0.03, 0.05,
corresponding to weak, medium and strong repulsiveness, and the observation window is
[0, 1]2, [0, 2]2 and [0, 3]2. The results on 500 runs in each situation are shown in Figure 5
and in Table 4. They compare our edge-correction approximate MLE, the Fourier series
approximation (3.2), the MCE based on the pair correlation function and the MCE based on
the Ripley’s K function. The performances are globally in line with the observations made
in the previous section, showing that the approximate MLE outperforms MCEs, especially
when the observation windows is large enough. Note that we have added the Fourier series
approximation for comparison, because contrary to the models considered in the previous
section, its behavior slightly differs from our edge-correction approximation for Bessel-type
DPPs, as discussed in the following.

Despite the decent results of our approximation for Bessel-type DPPs, some issues ap-
pear with this model in the most repulsive case α∗ = 0.05. As noticed in Section 3.3, the
determinant in (3.10) may be negative for high values of α, making the computation of
the approximate likelihood impossible. This problem is illustrated in the rightmost plot of
Figure 6, that shows an example of an approximated likelihood function as in (3.10) from
one realization of a Bessel-type DPP on W = [0, 3]2 with ρ∗ = 100 and α∗ = 0.05. The
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Figure 5: Boxplots of α̂−α∗ generated from 500 simulations of Bessel-type DPPs with true
parameters ρ∗ = 100 and, from top to bottom, α∗ = 0.01, 0.03 and 0.05. Each row shows
the behaviour of the following 4 estimators when the simulation window is, from left to right
in each box, W = [0, 1]2, [0, 2]2 and [0, 3]2: the approximate MLE with edge-corrections
based on l̃ T(ρ̂, α|X), the Fourier series approximate MLE (3.2), the MCE based on the pair
correlation function and the MCE based on the Ripley’s K function.
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Window [0, 1]2 [0, 2]2 [0, 3]2

α∗ 0.01 0.03 0.05 0.01 0.03 0.05 0.01 0.03 0.05
MLE based on l̃ T 0.56 0.49 0.04 0.12 0.08 0.01 0.05 0.03 0.01

Fourier approx. MLE 0.47 0.32 0.09 0.11 0.06 0.02 0.05 0.03 0.01
MCE (pcf) 0.50 0.39 0.33 0.21 0.14 0.11 0.10 0.11 0.07
MCE (K) 0.95 0.46 0.19 0.41 0.15 0.04 0.27 0.10 0.02

Table 4: Estimated mean square errors (x104) of α̂ for Bessel-type DPPs on different
windows and with different values of α, each computed from 500 simulations.

cross-type points on the right of this plot indicate the values of α where the determinant was
negative. More generally, for the highest values of α, the approximate likelihood is clearly
not trustable. Fortunately, the optimization procedure was not affected by this phenomena
and succeeded to return a local maximum in the vicinity of α∗. However, another peculiar
behaviour occurs in this situation, which is the small M-shape of the approximate likelihood
in this vicinity. This feature was common to most of the approximate likelihoods in our
simulations on W = [0, 3]2 with ρ∗ = 100 and α∗ = 0.05, but we are not able to provide a
clear explanation of this phenomena. The consequence is that the optimizer chooses one of
the two local maxima from this M-shape, resulting in a bi-modal distribution of α̂ in this
case, as showed in the leftmost plot of Figure 6. This also explains the shape of the boxplot
associated to this case in Figure 5. In front of such peculiar M-shape of the contrast function,
it might be natural to choose as the optimum the average of the two local maxima instead
of one of them. Adopting this strategy decreases the estimation mean square error from 1
to 0.25 (x10−6).

It is interesting to note that for Bessel-type DPPs, unlike the DPP models of Section 5.1,
the Fourier series approximation (3.2) of the MLE has a more significative difference of
behaviour than our approximate MLE with edge correction (3.10). As shown in Figure 6,
it does not have undefined values and it does not follow a chaotic behavior for large values
of α. Moreover, because the Fourier transform of the Bessel kernel only takes two different
values (see Table 1), the terms in the Fourier approximation (3.2) when d = 2 simplify as:

∑
k∈Z2
‖k‖<N

log(1− K̂θ
0(k)) = log

(
1− ρπα2

) ∑
k∈{−N,··· ,N}

2

√ 1
π2α2 − k

2

+ 1
 , and

Lθapp(x, y) =
∑

k∈{−N,··· ,N}

cos(2πkx) sin
(
πy
(
2
⌊√

1
π2α2 − k2

⌋
+ 1

))
sin (πy) ,

where the truncation constant is N =
⌊

1
πα

⌋
. This simplification makes it easier to compute

than in the general case, and results in a more competitive computation time, similar to
our approximation (3.10). As a result, we observe in Table 4 and Figure 5 that for α∗ =

19



0.048 0.049 0.050 0.051 0.052

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●

●

● ●
● ●●●

●

●

●

●

●

●

●

0.030 0.035 0.040 0.045 0.050 0.055

36
0

36
2

36
4

36
6

36
8

37
0

37
2

Figure 6: Left: distribution of α̂ obtained by the approximate MLE l̃ T, based on 500 sim-
ulations when ρ∗ = 100, α∗ = 0.05 (represented by the vertical line) and W = [0, 3]2. Right:
α 7→ l̃ T(ρ̂, α|X) (circles) and Fourier series approximation (3.2) of the log-likelihood (black
squares) from one realization X as before, where the vertical line shows the true parameter
α∗ = 0.05 and the cross-type points indicate the values of α for which the determinant in
l̃ T(ρ̂, α|X) was negative.

0.01 and 0.03, the Fourier approximation method has very similar performances than our
approximation (3.10). When α∗ = 0.05, the Fourier approximation estimator has also a
similar quadratic error, but the distribution of the estimator is more regular, for the reasons
noticed above.

Finally, despite the fact that Bessel-type DPPs are not covered by our theory and the
peculiar behaviour of l̃ T for some values of α as described above, our approach still remains
competitive in this case and outperforms standard MCE methods. Nevertheless, because
the Fourier approximation (3.2) simplifies nicely in this setting and does not show the same
chaotic behaviour as (3.10) for large values of α, it seems to be a slightly better choice for
Bessel-type DPPs. However, we recall that this approach is limited to rectangular observa-
tion windows only.

5.3 Simulations on a non-rectangular window
We consider in this section the estimation of a Gaussian-type DPP on the (non-rectangular)
R-shape window as in the simulations of Figure 7. The underlying parameters are ρ∗ = 100,
resulting in 370 points on average, and α∗ = 0.01, 0.03 and 0.05. The estimation of α∗ is
carried out by the MLE approximation (3.9) (without edge-corrections), the edge-corrected
version described below, and the MCEs based on the pcf and the Ripley’s K-function. Note
that in this situation, the Fourier approximation (3.2) is not feasible.

We handle the edge-effects for this non-rectangular window in the following way. Note
that the periodic edge-correction presented in Section 3.3 amounts to replace some zero-
values of the matrix Lθ0[X ∩W ] by non negligible values. If we assume that the function Lθ0
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Figure 7: Top: Examples of realizations of Gaussian-type DPPs with parameters ρ∗ = 100
and α∗ = 0.01, 0.03, 0.05 (from left to right) on a R-shape window. Bottom: distribution of
α̂ from 100 simulations for each value of α∗ and for the following estimators (from left to
right in each plot): the approximate MLE (3.9), its edge-corrected version as detailed in the
text, and the MCEs based on the pcf and the Ripley’s K function.
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is isotropic, as for the Gaussian-type DPPs considered in this section, then Lθ0[X ∩W ] =
Lθrad(R) where R is the pairwise distance matrix of X, i.e. R = (rij := ‖xi − xj‖)16i,j6n if
X = {x1, . . . , xn}. Precisely, the replacements concern the entries involving a point xi close
to the border of the window and they amount to replace some of the largest distances rij by
smaller ones. The idea is that for these points, we need to artificially increase the number
of closed neighbours to account for edge-effects. Adopting this idea, we replace some entries
of the matrix R as follows:

(i) We start by setting a maximal range of interaction rmax. In our example we choose

rmax = arg max
rij

{L+
rad(rij) > 0.001L+

rad(0)},

where L+
rad = Lθrad for θ = (ρ̂, αmax), ρ̂ = N(W )/|W |, αmax =

√
1/(πρ̂) and L+

rad(0) is
the maximal possible value of L+

rad. This choice guarantees that for any r > rmax and
any admissible θ = (ρ̂, α), Lθrad(r) can be considered to be negligible.

(ii) For i = 1, . . . , n, we denote by di the Euclidean distance from xi to ∂W , and by
ni = card{j, rij < rmax} the number of neighbours of xi in X. We further denote by
B = {xi ∈ X, di < rmax} the set of “border” points of X in W and by B̄ = X \ B the
set of “interior” points of X in W . Finally, we consider RB̄ = {rij, xi ∈ B̄} the set of
observed pairwise distances for the interior points of X, and NB̄ = {ni, xi ∈ B̄} the set
of numbers of neighbours of the interior points.

(iii) For all xi ∈ B, we randomly pick out ñi in NB̄ and compare it to ni. If ni > ñi, we do
nothing. Else, for j = (i+ 1), . . . , (i+ ñi − ni)∧ n and if rij > rmax, we randomly pick
out r̃ij in RB̄ ∩ {rij > di} and we replace rij and rji by r̃ij.

Note that the number of replacements in this edge-correction procedure is limited: they only
concern the border points of X, there are a maximum of ñi − ni of them for each border
point xi, and the replaced value r̃ij of rij > rmax is necessarily greater than di, which in
many cases (especially if α is small) entails Lθrad(r̃ij) ≈ 0 and does not affect the initial
value Lθrad(rij) ≈ 0. With the resulting new matrix R, there is not guaranty that Lθrad(R) is
positive, a common issue with the periodic edge corrections of Section 3.3, but the restricted
number of replacements limits the risk to encounter such a problem. In our experience, this
happened only for very high values of α and did not affect the optimisation procedure.

The results displayed in Figure 7 show that the above edge-correction version of (3.9)
provides the best results and clearly outperforms the MCE methods. They also confirm
that this edge-correction is only necessary for the most repulsive DPPs, i.e. α∗ = 0.05 here,
otherwise the approximation (3.9) and its edge-corrected version perform just as well.

6 Conclusion
In this paper, we have introduced an asymptotic approximation (3.9) of the log-likelihood
of stationary determinantal point processes on Rd and Zd. While the true likelihood is
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not numerically tractable, this approximation can be computed for stationary parametric
families of DPPs based on correlation functions with a known Fourier transform, as the
classical ones presented in Table 1. Compared to the Fourier approximation of [19] that
only works for rectangular windows, our approximation can be computed for windows of
any shape. However, due to edge effects, the resulting maximum likelihood estimators gets
heavily biased for strongly repulsive DPPs, as shown in Figure 3. We have proposed to use
the periodic correction (3.10) to fix this issue in the case of rectangular windows and showed
that the resulting approximation is very close to the one in [19] (see Figure 1) but overall
easier to compute. The idea to use a periodic correction has been detailed for rectangular
windows, but a similar idea can be applied for a window with a different shape, as exemplified
in Section 5.3. We showed in the simulation study of Section 5 that for standard parametric
families of DPPs, the resulting approximate MLE outperforms classical moment methods
based on the pair correlation function and Ripley’s K function.

Finally, we proved in Propositions 3.1 and 3.2 that the difference between the true log-
likelihood and our approximated log-likelihood converges almost surely towards 0 for classical
parametric families of stationary DPPs on Zd. We also showed in Proposition 3.4 that DPPs
on Rd can be arbitrarily approached by DPPs on a regular grid, which suggests that our
approximation should also converge for DPPs on Rd. A formal proof of such result is still a
seemingly difficult open problem. Beyond the approximation of the likelihood, as proposed
in this paper, a natural theoretical concern is the consistency of the maximum likelihood
estimator, either based on the true likelihood or on the approximated one. This question
is challenging and is not addressed in the present contribution. We however think that our
findings are a step in the right direction towards such a result, because they allow to replace
the true likelihood by an easier expression to deal with mathematically.

7 Proofs of Section 3

7.1 Proof of Proposition 3.1
In the case where X = Rd and Wn is of the form n×W for some compact set W , then this
proposition corresponds to [26, Proposition 5.9] with α = −1 and f(x) = ∞ × 1W . Our
proof follows a similar idea.

Since all eigenvalues of KWn are in [0, 1[ then the logarithm of the Fredholm determinant
of IWn −KWn can be expanded into

logdet(IWn −KWn) =−
∑
k>1

Tr((KWn)k)
k

= −
∑
k>1

1
k

∫
Wk
n

K0(x2 − x1) · · ·K0(x1 − xk)dνk(x).

Now, we first assume that K0 and K̂0 are integrable. Then, for any x1 ∈ X the function

(x2, · · · , xk) 7→ K0(x2 − x1) · · ·K0(x1 − xk)
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is integrable and its integral is equal to K∗k0 (0) where K∗k0 is the k-th times self-convolution
of K0. Since we assumed that (Wn)n>0 satisfy (3.13), then by Lemma A.2 we get that

1
|Wn|

∫
Wk
n

K0(x2 − x1) · · ·K0(x1 − xk)dνk(x) −→
n→∞

(K0)∗k(0).

Moreover, since

|Tr((KWn)k)|
k|Wn|

6
‖K‖k−1

k
× Tr(KWn)
|Wn|

= ‖K‖
k−1

k
×K0(0)

which is summable with respect to k and does not depend on n, then we can conclude by
the dominated convergence theorem that

1
|Wn|

logdet(IWn −KWn) −→
n→∞

−
∑
k>1

K∗k0 (0)
k

=
∫
X ∗

log(1− K̂0(x))dx.

In the general case, we can always find a sequence Km of integrable functions such that
‖K̂m − K̂0‖L1(X ∗) −→m→∞ 0 and conclude in the same way as in the end of the proof of [26,
Proposition 5.9] using [26, Lemma 5.11]. Strictly speaking, to fit our setting, one has to
replace in this Lemma Rd by X and their function φN by 1Wn . The result of [26, Lemma
5.11] in this adapted setting remains true, the proof being exactly the same.

7.2 Proof of Proposition 3.2
For this proof, we consider X to be a DPP on Zd. Let θ ∈ Θ, we denote by λθm the lowest
eigenvalue of Kθ[Zd]. It is important to note that λθm > 0 as a consequence of [3, Theorem
4] and the assumptions on Kθ. We begin by proving the following lemma allowing us to
control Lθ[X ∩W ]−Lθ[W ][X ∩W ] for any W ⊂ Zd by controlling the difference between their
associated operators.

Lemma 7.1. Let K be an integral operator on L2(X , ν) with kernel K such that ‖K‖ < 1. For
any Borel set W ⊂ X , we denote by PW the projection on L2(W ) and we define the operators
KW := PWKPW on L2(W ), L[W ] := KW (IW − KW )−1 on L2(W ) and L := K(I − K)−1

on L2(X ). We denote by L the kernel of L and finally we define the operator NW :=
PWLPWCLPW on L2(W ) with kernel

NW (x, y) =
∫
WC

L(x, z)L(z, y)dν(z) ∀x, y ∈ W. (7.1)

Then,
0 6 PWLPW − L[W ] 6 NW .

Proof. We consider the following decomposition of the linear operators I −K and (I −K)−1

on L2(W )⊕ L2(WC):

I − K =
(
IW −KW −PWKPWC

−PWCKPW IWC −KWC

)
=
(

(L[W ] + IW )−1 −PWKPWC

−PWCKPW (L[WC ] + IWC )−1

)
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and
(I − K)−1 = I + L =

(
PWLPW + IW PWLPWC

PWCLPW PWCLPWC + IWC

)
.

A well-known result is that the (1, 1) block of I − K is equal to the inverse of the Schur
complement of (I −K)−1 relative to its (2, 2) block. This property is proved for 2× 2 block
matrices in [24, Theorem 1.2], and since the proof does not use any finite dimensionality
argument, it works all the same for nonsingular operators on a Hilbert space, see [14] for
example. As a consequence, we get

(L[W ] + IW )−1 = (PWLPW + IW − PWLPWC (PWCLPWC + IWC )−1PWCLPW )−1

hence
PWLPW − L[W ] = PWLPWC (PWCLPWC + IWC )−1PWCLPW > 0.

Finally, since (PWCLPWC + IWC )−1 6 IWC this concludes the lemma.

Now, we rewrite

1
|Wn|

∣∣∣logdet(Lθ[X ∩Wn])− logdet(Lθ[Wn][X ∩Wn])
∣∣∣

as
1
|Wn|

∣∣∣logdet(Id+ (Lθ[X ∩Wn]− Lθ[Wn][X ∩Wn])Lθ[Wn][X ∩Wn]−1
)∣∣∣.

By Lemma 7.1, we know that

0 6 Lθ[X ∩Wn]− Lθ[Wn][X ∩Wn] 6 N θ
Wn

[X ∩Wn]

where N θ
Wn

is defined as in (7.1). Therefore, using Lemma A.1 we obtain the bound

0 6 logdet(Lθ[X ∩Wn])− logdet(Lθ[Wn][X ∩Wn]) 6 Tr(N θ
Wn

[X ∩Wn]Lθ[Wn][X ∩Wn]−1).

Now, since Lθ[Wn] > KθWn
by definition, then λmin(Lθ[Wn][X ∩Wn]) > λmin(Kθ[X ∩Wn]) > λθm

where the last inequality is a consequence of Kθ[X ∩ Wn] being a sub-matrix of Kθ[Zd].
Therefore,

Tr(N θ
Wn

[X ∩Wn]Lθ[Wn][X ∩Wn]−1) 6 (λθm)−1Tr(N θ
Wn

[X ∩Wn]) = (λθm)−1 ∑
x∈X∩Wn

N θ
Wn

(x, x).

The function X 7→ |Wn|−1∑
x∈X N

θ
Wn

(x, x) is ‖N θ
Wn
‖∞/|Wn|-Lipschitz on ⋃k>0W

k
n with

‖N θ
Wn
‖∞ 6 ‖Lθ0‖2

2 =
∥∥∥∥∥ K̂θ

0

1− K̂θ
0

∥∥∥∥∥
2

2
6
‖K̂θ

0‖2
2

1−Mθ

= ‖Kθ
0‖2

2
1−Mθ

<∞.
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By [23, Theorem 3.5], we get for all a ∈ R+

Pθ∗

 1
|Wn|

∣∣∣∣∣∣
∑

x∈X∩Wn

N θ
Wn

(x, x)− Eθ∗

 ∑
x∈X∩Wn

N θ
Wn

(x, x)
∣∣∣∣∣∣ > a


6 5 exp

(
−

a2|Wn|2/‖N θ
Wn
‖2
∞

16(a|Wn|/‖N θ
Wn
‖∞ + 2Eθ∗ [N(Wn)])

)
(7.2)

where Eθ∗ [N(Wn)] = |Wn|Kθ∗
0 (0) and

1
|Wn|

Eθ∗

 ∑
x∈X∩Wn

N θ
Wn

(x, x)


=K
θ∗
0 (0)
|Wn|

∫
Wn

∫
WC
n

Lθ0(y − x)2dν(x)dν(y)

=Kθ∗

0 (0)
(∫

Zd
Lθ0(y)2dν(y)− 1

|Wn|

∫
W 2
n

Lθ0(y − x)2dν(x)dν(y)
)
.

But, as a consequence of Lemma A.2, we have

1
|Wn|

∫
W 2
n

Lθ0(y − x)2dν(x)dν(y) −→
n→∞

∫
Zd
Lθ0(y)2dν(y)

hence
1
|Wn|

Eθ∗
[∑
x∈X

N θ
Wn

(x, x)
]
−→
n→∞

0.

Finally, by (7.2) and the inequality ‖N θ
Wn
‖∞ 6 ‖Lθ0‖2

2, we get that for all a ∈ R+,

Pθ∗

 1
|Wn|

∣∣∣∣∣∣
∑

x∈X∩Wn

N θ
Wn

(x, x)

∣∣∣∣∣∣ > a

 = O

(
exp

(
− a2|Wn|

16‖Lθ0‖2
2(a+ 2Kθ∗

0 (0)‖Lθ0‖2
2)

))
.

Since we assumed (3.14), then by the Borel–Cantelli Lemma,

1
|Wn|

∑
x∈X∩Wn

N θ
Wn

(x, x) a.s.−→ 0

and therefore
1
|Wn|

∣∣∣logdet(Lθ[X ∩Wn])− logdet(Lθ[Wn][X ∩Wn])
∣∣∣ a.s.−→ 0.

7.3 Proof of Proposition 3.4
First, we need to show that Xε is a well defined DPP for small enough ε by showing that
its kernel, the infinite matrix εdK[εZd], is hermitian with eigenvalues in [0, 1]. Everything is

26



trivial except for showing that the eigenvalues become lower or equal to 1 as ε vanishes. For
every v = (vj)j∈Zd such that ∑j |vj|2 = 1, we define the function

φ(t) =
∑
j∈Zd

vje
2iπ<j,t>

such that the integral of |φ|2 on any unit cube is equal to 1. Therefore, we can write

〈v, εdK[εZd]v〉 =
∑

j,k∈Zd
εdvjvkK0(ε(k − j))

=
∑

j,k∈Zd
vjvk

∫
Rd
K̂0(t/ε)e2iπ〈k−j,t〉dt

=
∫
Rd
K̂0(t/ε)|φ(t)|2dt

6
∑
i∈Zd

sup
x∈Ci

K̂0(x/ε)

where Ci is the unit cube defined as [i1 − 1/2, i1 + 1/2] × · · · × [id − 1/2, id + 1/2] for all
i = (i1, · · · , id) ∈ Zd. By our assumptions on K̂0, we have supx∈C0 K̂0(x/ε) 6 ‖K̂0‖∞< 1
and

sup
x∈Ci

K̂0(x/ε) 6 sup
∀j, xj∈[ij−1/2,ij+1/2]

A

1 + ε−(d+τ)(∑d
j=1 x

2
j)(d+τ)/2

= A

1 + ε−(d+τ)(∑16j6d
ij 6=0

(|ij| − 1/2)2)(d+τ)/2

hence, the sum of all supx∈Ci K̂0(x/ε) for i of the form (i1, · · · , ik, 0, · · · , 0) where i1, · · · , ik ∈
Z\{0} and k ∈ {1, · · · , d} is bounded by

∑
i1,··· ,ik∈(Z\{0})k

A

1 + ε−(d+τ)(∑k
j=1(|ij| − 1/2)2)(d+τ)/2

6 εd+τ ∑
i1,··· ,ik∈(Z\{0})k

A

(∑k
j=1 |ij|2)(d+τ)/2 −→ε→0

0.

By symmetry, this is also true for the sum of all supx∈Ci K̂0(x/ε) for i with any k non-zero
components and d− k zero components when k ∈ {1, · · · , d}. This shows that∑

i1,··· ,id∈Zd
i 6=(0,··· ,0)

sup
x∈Ci

K̂0(x/ε) −→
ε→0

0

and therefore
0 6 sup

v:
∑

j
|vj |2=1

〈v, εdK[εZd]v〉 6 1
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for small enough values of ε, and in this case the DPP Xε is then well defined.
Now, we prove the weak convergence of the discrete DPPs to the continuous one by show-

ing the pointwise convergence of their Laplace functionals (see [11, Proposition 11.1.VIII]).
We recall that the Laplace functional of a point process Y is defined as

LY (f) := EY
[
exp

(
−
∑
x∈Y

f(x)
)]

for all non-negative continuous function f vanishing outside a bounded set. Let D be a
compact set of Rd and f : Rd → R be a continuous function vanishing outside D. We define
the kernel

Kf := (x, y) 7→
√

1− e−f(x)K0(y − x)
√

1− e−f(y)

and call Kf its associated integral operator. Then, the Laplace transform of the continuous
DPP X writes (see [26])

LX(f) = det(I −Kf ) = exp
−∑

n>1

1
n
Tr(Knf )


and for all ε, the rescaled DPP εXε has the same distribution as a DPP on εZd with kernel
εdK0(y − x) hence its Laplace transform writes

LεXε(f) = det
(
I − εdKf [εZd]

)
= exp

−∑
n>1

εdn

n
Tr
(
Kf

[
D ∩ εZd

]n)
= exp

−∑
n>1

1
n

εdn ∑
x1,··· ,xn∈D∩εZd

Kf (x1, x2) · · ·Kf (xn−1, xn)Kf (xn, x1)
 .

For all n > 1, we have the convergence of the following Riemann sum on the compact sets
Dn:

εdn
∑

x1,··· ,xn∈D∩εZd
Kf (x1, x2) · · ·Kf (xn−1, xn)Kf (xn, x1)

−→
ε→0

∫
Dn
Kf (x1, x2) · · ·Kf (xn−1, xn)Kf (xn, x1)dx = Tr(Knf ).

Moreover, we have

Tr
((
εdKf

[
D ∩ εZd

])n)
6 λmax

(
εdKf

[
D ∩ εZd

])n−1
Tr
(
εdKf

[
D ∩ εZd

])
and since Kf 6 K then λmax(εdKf [D∩ εZd]) 6 λmax(εdK[D∩ εZd]) 6 λmax(εdK[εZd]) which
we showed was arbitrary close to ‖K0‖∞ < 1 for small enough ε, then by the dominated
convergence theorem we get that

LεXε(f) −→
ε→0

LX(f)

which proves the weak convergence of the distributions of εXε towards the distribution of X
when ε goes towards 0.
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A Technical Lemmas
Lemma A.1. Let n ∈ N and A,B be two n× n positive semi-definite matrices. Then,

0 6 logdet(I + AB) 6 Tr(AB).

Proof. We first assume that B is the identity matrix. Let λ1, · · · , λn be the eigenvalues (with
multiplicity) of A. Then,

0 6 logdet(I + A) =
n∑
i=1

log(1 + λi) 6
n∑
i=1

λi = Tr(A).

In the general case, Sylvester’s determinant identity gives us

0 6 logdet(I + AB) = logdet(I + A1/2BA1/2) 6 Tr(A1/2BA1/2) = Tr(AB).

Lemma A.2. Let f : X k 7→ R be a translation invariant function such that

(x2, · · · , xk) 7→ f(0, x2, · · · , xk) ∈ L1
(
X k−1, νk−1

)
.

Let Wn be a sequence of increasing compact subsets of X such that there exists an increase
non-negative sequence rn ∈ RN

+ satisfying rn −→
n→∞

∞ and

|(∂Wn ⊕ rn) ∩Wn| = o(|Wn|), (A.1)

then
1
|Wn|

∫
Wk
n

f(x)dνk(x) −→
n→∞

∫
Xk−1

f(0, x2, · · · , xk)dν(x2) · · · dν(xk). (A.2)

Proof. We write Wn � rn for the set Wn\(∂Wn ⊕ rn) of points in Wn at distance at least rn
from the boundary of Wn. Since f is translation invariant then the right term in (A.2) is
equal to

1
|Wn|

∫
Wn×Xk−1

f(x)dνk(x).
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As a consequence,∣∣∣∣∣
∫
Xk−1

f(0, x2, · · · , xk)dν(x2) · · · dν(xk)−
1
|Wn|

∫
Wk
n

f(x)dνk(x)
∣∣∣∣∣

= 1
|Wn|

∣∣∣∣∣
∫
Wn×(Xk−1\Wk−1

n )
f(x)dνk(x)

∣∣∣∣∣
= 1
|Wn|

∣∣∣∣∣
∫
Wn�rn

(∫
Xk−1\Wk−1

n

f(x)dν(x2) · · · dν(xk)
)

dν(x1)

+ 1
|Wn|

(∫
(∂Wn⊕rn)∩Wn

∫
Xk−1\Wk−1

n

f(x)dν(x2) · · · dν(xk)
)

dν(x1)
∣∣∣∣∣

6
1
|Wn|

∫
Wn�rn

(∫
Xk−1
|f(0, y)|1{∀i, ‖yi‖>rn}dνk−1(y)

)
dν(x)

+ 1
|Wn|

∫
(∂Wn⊕rn)∩Wn

(∫
Xk−1
|f(0, y)|dνk−1(y)

)
dν(x)

6
∫

(B(0,rn)C)k−1
|f(0, y)|dνk−1(y) + |(∂Wn ⊕ rn) ∩Wn|

|Wn|
‖f(0, .)‖L1

where B(0, rn)C is the complement of the euclidian ball centered at the origin with radius
rn. This expression thus converges to 0 because f is integrable with respect to its last k− 1
variables and by (A.1).
Proposition A.3. Let X be a DPP with Bessel-type kernel Kρ,α

0 , as defined in Table 1,
observed on a window W ⊂ Rd. Recall that ρmax, given in Table 1, is the upper bound of ρ
for which X is well-defined. Then, for all α > 0 such that N(W )/|W | 6 ρmax,{

N(W )
|W |

}
= arg max

06ρ6ρmax
l̃(ρ, α|X). (A.3)

Proof. By noticing that ρmax is the volume of the d-dimensional ball with radius
√
d/(2π2α2),

we get from the expression of K̂ρ,α
0 in Table 1 that∫

Rd
log(1− K̂ρ,α

0 (x))dx = ρmax log(1− ρ/ρmax).

Moreover, Lρ,α0 can be written as ρFα/(1 − ρ/ρmax), where Fα is a function not depending
on ρ (see Table 2). Therefore, logdet(Lρ,α0 [X ∩W ]) can be expressed as the sum of

N(W ) log
(

ρ

1− ρ/ρmax

)

and an expression not depending on ρ. As a consequence, l̃(ρ, α|X) is twice differentiable
with respect to ρ with derivative

−1
1− ρ/ρmax

+ N(W )
|W |ρ(1− ρ/ρmax) .

It is easy to see that this expression vanishes only when ρ = N(W )/|W | with the second
derivative being negative at this point, concluding the proof.

30



References
[1] R.H. Affandi, E. Fox, R. Adams, and B. Taskar. Learning the parameters of determi-

nantal point process kernels. In International Conference on Machine Learning, pages
1224–1232, 2014.

[2] K. E. Atkinson. The Numerical Solution of Integral Equations of the Second Kind. Cam-
bridge Monographs on Applied and Computational Mathematics. Cambridge University
Press, 1997.

[3] F. Bachoc and R. Furrer. On the smallest eigenvalues of covariance matrices of multi-
variate spatial processes. Stat, 5:102–107, 2016.

[4] A. J. Baddeley, E. Rubak, and R. Turner. Spatial Point Patterns: Methodology and
Applications with R. Interdisciplinary Statistics. Chapman & Hall/CRC, Boca Raton,
Florida, 2015.

[5] R. Bardenet, J. Flamant, and P. Chainais. On the zeros of the spectrogram of white
noise. Appl. Comput. Harmon. Anal., 48(2):682–705, 2020.

[6] R. Bardenet and A. Hardy. Monte carlo with determinantal point processes. Ann. Appl.
Probab., 30(1):368–417, 02 2020.

[7] R. Bardenet and M. Titsias RC AUEB. Inference for determinantal point processes
without spectral knowledge. In Advances in Neural Information Processing Systems 28,
pages 3393–3401. Curran Associates, Inc., 2015.

[8] C.A.N. Biscio and F. Lavancier. Quantifying repulsiveness of determinantal point pro-
cesses. Bernoulli, 22:2001–2028, 2016.

[9] C.A.N. Biscio and F. Lavancier. Contrast estimation for parametric stationary deter-
minantal point processes. Scandinavian Journal of Statistics, 44:204–229, 2017.

[10] V.-E. Brunel, A. Moitra, P. Rigollet, and J. Urschel. Maximum likelihood estimation
of determinantal point processes. arXiv:1701.06501, 2017. preprint.

[11] D.J. Daley and D. Vere-Jones. An introduction to the theory of point processes, Volume
II: General Theory and Structure. Probability and Its Applications. Springer, 2nd ed
edition, 2007.

[12] N. Deng, W. Zhou, and M. Haenggi. The ginibre point process as a model for wireless
networks with repulsion. IEEE Transactions on Wireless Communications, 1:479–492,
2015.

[13] P. Diggle. The Statistical Analysis of Spatial Point Patterns (2nd ed.). Hodder Arnold,
London, 2003.

31



[14] T. Fujimoto, H. Hisamatsu, and R. Ranade. Schur complements in banach spaces.
Kagawa University economic review, 77(2), Sep 2004.

[15] J. S. Gomez, A. Vasseur, A. Vergne, P. Martins, L. Decreusefond, and W. Chen. A case
study on regularity in cellular network deployment. IEEE Wireless Communications
Letters, 4(4):421–424, 2015.

[16] J.B. Hough, M. Krishnapur, Y. Peres, and B. Virag. Zeros of Gaussian Analytic Func-
tions and Determinantal Point Processes. American Mathematical Society, 2009.

[17] A. Kulesza and B. Taskar. Determinantal point processes for machine learning. Foun-
dations and Trends in Machine Learning, 5(2-3):123–286, 2012.

[18] C. Launay, A. Desolneux, and B. Galerne. Determinantal point processes for image
processing. to appear in the SIAM Journal on Imaging Sciences, 2021.

[19] F. Lavancier, J. Møller, and E. Rubak. Determinantal point process models and statis-
tical inference. Journal of Royal Statistical Society: Series B (Statistical Methodology),
77:853–877, 2015.

[20] F. Lavancier, A. Poinas, and R. Waagepetersen. Adaptive estimating function inference
for nonstationary determinantal point processes. Scandinavian Journal of Statistics,
2020.

[21] O. Macchi. The coincidence approach to stochastic point processes. Advances in Applied
Probability, 7:83–122, 1975.

[22] N. Miyoshi and T. Shirai. A cellular network model with ginibre configured base stations.
Advances in Applied Probability, 46:832–845, 2014.

[23] R. Pemantle and Y. Peres. Concentration of lipschitz functionals of determinantal and
other strong rayleigh measures. Combin. Probab. Comput., 23:140–160, 2014.

[24] S. Puntanen and F. Zhang. The Schur Complement and Its Applications. Numerical
Methods and Algorithms 4. Springer US, 2005.

[25] R Core Team. R: A Language and Environment for Statistical Computing. R Foundation
for Statistical Computing, Vienna, Austria, 2017.

[26] T. Shirai and Y. Takahashi. Random point fields associated with certain fredholm
determinants i: fermion, poisson and boson point processes. Journal of Functional
Analysis, 205:414–463, 2003.

[27] A. Soshnikov. Determinantal random point fields. Russian Math. Surveys, 55:923–975,
2000.

32


	Introduction
	Definitions and notation
	Likelihood of DPPs
	Likelihood estimation
	Approximation of the likelihood for stationary DPPs
	Periodic edge-corrections
	Theoretical Results

	Application to standard parametric families
	Classical parametric families of stationary DPPs
	Expressions of L0
	Estimation of the intensity by MLE

	Simulation study
	Whittle-Matérn, Cauchy and Gaussian-type DPPs
	Performance for Bessel-type DPPs
	Simulations on a non-rectangular window

	Conclusion
	Proofs of Section 3
	Proof of Proposition 3.1
	Proof of Proposition 3.2
	Proof of Proposition 3.4

	Technical Lemmas

