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Review Article
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Inflammatory lung disease results in a high global burden of death and disability. There are no effective treatments for the most
severe forms of many inflammatory lung diseases, such as chronic obstructive pulmonary disease, emphysema, corticosteroid-
resistant asthma, and coronavirus disease 2019; hence, new treatment options are required. Here, we review the role of oxidative
imbalance in the development of difficult-to-treat inflammatory lung diseases. The inflammation-induced overproduction of
reactive oxygen species (ROS) means that endogenous antioxidants may not be sufficient to prevent oxidative damage, resulting
in an oxidative imbalance in the lung. In turn, intracellular signaling events trigger the production of proinflammatory
mediators that perpetuate and aggravate the inflammatory response and may lead to tissue damage. The production of high
levels of ROS in inflammatory lung diseases can induce the phosphorylation of mitogen-activated protein kinases, the
inactivation of phosphoinositide 3-kinase (PI3K) signaling and histone deacetylase 2, a decrease in glucocorticoid binding to its
receptor, and thus resistance to glucocorticoid treatment. Hence, antioxidant treatment might be a therapeutic option for
inflammatory lung diseases. Preclinical studies have shown that antioxidants (alone or combined with anti-inflammatory drugs)
are effective in the treatment of inflammatory lung diseases, although the clinical evidence of efficacy is weaker. Despite the high
level of evidence for the efficacy of antioxidants in the treatment of inflammatory lung diseases, the discovery and clinical
investigation of safer, more efficacious compounds are now a priority.

1. Introduction

Airway inflammation is now acknowledged to have a causa-
tive role in the pathophysiology of several major lung dis-
eases, including asthma, chronic obstructive pulmonary
disease (COPD), acute respiratory distress syndrome
(ARDS), allergic rhinitis, cystic fibrosis, cough, emphysema,
and lung fibrosis. The development of inflammation is a
complex series of events that involves the release of proin-
flammatory cytokines and then the recruitment of polymor-
phonuclear neutrophils, eosinophils, and/or mononuclear
cells in the lung tissue [1]. For example, the chronic inflam-
mation in COPD involves the infiltration of the main types

of inflammatory cell (including neutrophils, monocytes/ma-
crophages, and lymphocytes) into the airway and the lung
tissue; the cells can be detected in bronchoalveolar fluid and
induced sputum [2]. Nevertheless, there are a number of
disease-specific differences in the inflammatory pathophysio-
logical processes. For example, chronic airway inflammation
of the central and peripheral airways in chronic severe
asthma is typically characterized by the same pathological
features as in mild-to-moderate persistent asthma, with
increased numbers of activated T lymphocytes (particularly
CD4+ Th2 cells) and (sometimes) eosinophils and mast cells
[3]. The most notable difference between chronic severe
asthma and mild-to-moderate persistent asthma is the
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elevated neutrophil count in the former context. In stable
COPD, chronic airway inflammation of both central and
peripheral airways is characterized by increased numbers of
T lymphocytes (particularly CD8+ cells), macrophages, and
neutrophils. The macrophage and neutrophil counts increase
with the disease progression and severity.

It is generally acknowledged that persistent chronic
inflammation contributes to both parenchyma remodeling
and bronchial remodeling [4]. Remodeling has been
observed in central airways, distal airways, and the lung
parenchyma. This process of structural changes involves
hyperplasia of the airway epithelial cells, thickening of the
reticular basement membrane, deposition of collagen, peri-
bronchial fibrosis, airway epithelial-to-mesenchymal transi-
tion, and bronchial smooth muscle cell hyperplasia [5]. The
inflammatory reaction is followed by damage to the base-
ment membrane through at least two different mechanisms:
the production of reactive oxygen species (ROS) and the syn-
thesis of proteases. In a healthy lung, the intactness of base-
ment membrane reflects the dynamic balance between
synthesis and degradation of its components—mainly prote-
ases and antiproteases. These enzymes are synthesized con-
stitutively by mesenchymal cells (such as fibroblasts,
macrophages, endothelial cells, and epithelial cells) and
inflammatory cells (such as monocytes/macrophages, neu-
trophils, and eosinophils) [6].

When treating respiratory disease, the main objectives
are to reduce symptoms and prevent and decrease the num-
ber of exacerbations by reducing inflammation. Although
today’s treatments (e.g., a combination of a corticosteroid
anti-inflammatory and a β2 agonist bronchodilator) achieve
these goals to a certain extent in asthma, it is still not possible
to prevent a decline in lung function. Moreover, the efficacy
of anti-interleukin (IL)-5 and anti-IL-13 antibodies in severe
asthma clearly demonstrates the need for both careful patient
phenotyping and the need for reliable biomarkers of patient
phenotypes and drug efficacy [7, 8].

Furthermore, it is thought that specific cytokines control
the corticosteroid insensitivity, fibrosis, and remodeling
observed in COPD, ARDS, and fibrosis. Hence, targeting these
cytokines might usefully reverse these changes. Although there
is a large body of literature data on the roles of various cyto-
kines in inflammatory disorders (except asthma), the effect
of specific cytokine blockade in inflammatory respiratory dis-
orders has not been extensively investigated. The list of cyto-
kines and chemokines implicated in the many facets of
COPD pathogenesis is very long. Some have been identified
in genome-wide association studies of COPD, lung function,
and the complications of COPD. The two largest studies pub-
lished to date involved the use of anti-TNF-α and CXCL8 (IL-
8) blocking antibodies, respectively; neither provided clinical
benefit [9]. Specific groups of COPD patients should be tar-
geted with a specific anticytokine therapy if there is evidence
of (i) high expression of that cytokine and (ii) potentially
responsive clinical features of disease [10]. The effects of
anti-IL-5 and anti-IL-5R antibodies elicited a beneficial effect
against the risk of exacerbation in phenotype patients. Thus,
patients can be taken off a treatment if it is ineffective to reduce
the risk of any possible side effects [11].

In contrast, several studies have suggested that inflamma-
somes (and particularly the NLRP3 inflammasome) might be
involved in the pathogenesis of fibrotic lung diseases, includ-
ing idiopathic pulmonary fibrosis (IPF) and diseases elicited
by known environmental exposure (e.g., asbestosis and sili-
cosis) [12]. More recent data in mice favor a role for
inflammasome-independent induction of IL-1β in driving
smoke-induced inflammation [10]. This is in line with a
recent study that showed that a monoclonal antibody neu-
tralizing IL-1β was ineffective in the treatment of stable
COPD [11].

Recently, literature data have suggested that the combi-
nation of oxidative stress and chronic inflammation in the
lungs is associated with aging and may contribute to age-
related immune dysfunction and the risk of death in older
adults infected by respiratory viruses such as severe acute
respiratory syndrome coronavirus 2 [13]. The objective of
the present chapter is to assess the involvement of oxidative
imbalance and ROS in the development of respiratory dis-
eases and review new potential treatments or adjunct thera-
pies based on antioxidant compounds.

2. The Role of ROS in the Development of
Lung Disease

ROS are ions or small molecules that contain oxygen and an
unpaired electron conferring high reactivity. In mammals,
ROS are produced by endogenous prooxidant enzymes such
as nicotinamide adenine dinucleotide phosphate (NADPH)
oxidase (NOX), xanthine oxidase (XO), peroxisomal
enzymes, and cytochrome P-450 (CYP450) [14]. A difference
between ROS production and removal results in a redox
imbalance, which can be controlled by treatment with exog-
enous antioxidants such as vitamins C and E, polyphenols,
carotenes, flavonoids, omega-3 fatty acids, and N-
acetylcysteine (NAC). Patients with respiratory diseases like
asthma and COPD show elevated levels of ROS production
and oxidative stress—suggesting that their endogenous anti-
oxidants may not be sufficient to prevent oxidative damage
by cigarette smoke exposure [6, 15–17]. Furthermore, the
inflammatory processes associated with the recruitment and
activation of phagocytic cell types (namely, neutrophils and
mononuclear cells) may also have a role in generating endog-
enous oxidative stress. Oxidants are known to interfere with
the protease/antiprotease imbalance, leading to airway
remodeling and emphysema [6, 18]. Indeed, components of
the lung matrix (such as elastin and collagen) can be directly
degraded by oxidants. We previously demonstrated the
inability of phagocytes from p47phox-/- knockout mice to
produce large quantities of ROS via the NOX pathway, which
inhibits the development of bleomycin-induced pulmonary
fibrosis. This inhibition is associated with changes in IL-6
production and in the molar ratio of matrix metalloprotein-
ase 9 (MMP-9) to tissue inhibitors of metalloproteinases
(TIMP-1)—both of which are probably key factors in airway
remodeling and fibrosis [19].

Oxidative imbalance is reportedly an important factor in
the pathogenesis of asthma [20], COPD [16], acute lung
injury [21], pulmonary fibrosis [21], and COVID-19 [13].
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Cells and tissues are steadily exposed to oxidants generated
by endogenous metabolic reactions (e.g., via mitochondrial
respiration or phagocyte activation) or absorbed from the
environment (e.g., air pollutants and cigarette smoke) [22].

Under physiological conditions, the level of intracellular
oxidant species is dynamically stabilized by enzymatic and
nonenzymatic cellular processes that produce or eliminate
ROS [23]. Enzymatic antioxidants work by breaking down
and removing free radicals: the main enzymes are ascorbate
peroxidase (APx), glutathione peroxidase (GPx),
metallothionein-3 (MT-3), ferritin heavy chain (FHC), dihy-
drodiol dehydrogenase (DD), catalase (CAT), and superox-
ide dismutase (SOD) [24]. Intrinsic nonenzymatic
antioxidants work by interrupting free radical chain reac-
tions and notably include metal-binding proteins, glutathi-
one, uric acid, melatonin, bilirubin, and polyamines [25].

An oxidative imbalance results in the generation of ROS
and intracellular signaling events that trigger the production
of proinflammatory mediators and thus stimulate the devel-
opment of histological changes in the lung. Although the oxi-
dant agents and mechanisms are highly diverse, several
common features have emerged. It is well established that
the accumulation of highly reactive molecules causes general-
ized damage to DNA and increases lipid peroxidation and
protein carbonyl formation in lung tissue [26]. Thus, ROS
directly impact cell proliferation, cell differentiation, immune
function, and vasoregulation—all of which are involved in
the progression of lung diseases. These effects are exerted
through distinct enzymatic complexes (such as kinases, G
protein-coupled receptors, ion channel function, and tran-
scription factors) and lead to onset and progression of lung
diseases [27].

One of the first consequences of an oxidative imbalance is
lipid degradation, resulting from reactions between free rad-
icals and lipids containing carbon-carbon double bonds
(especially polyunsaturated fatty acids). If this reaction is
not limited, it can permanently damage cell membranes
due to the accumulation of lipid peroxidation end products
[28]. Levels of the end product malondialdehyde are predic-
tive of COPD exacerbations [29]. Furthermore, malondialde-
hyde levels are positively correlated with increased
expression of Toll-like receptor 4 (TLR4) and factor nuclear
kappa B (NF-κB)—signaling pathways involved in lung dis-
eases [30]. This relationship is further illustrated by data
from animal experiments in which blockade of the
TLR4/NF-κB pathway restored both functional and morpho-
logical features of the lungs in asthma [31], COPD [32], acute
lung injury [30], and pulmonary fibrosis [33] models.

A growing body of research data has evidenced the rela-
tionship between ROS and classical intracellular signaling
pathways, such as those involving mitogen-activated protein
kinase (MAPK), nuclear factor erythroid 2-related factor 2-
(Nrf2-) ARE, phosphoinositide-3-kinase- (PI3K-) Akt, and
Ca2+ in lung diseases [33, 34]. Even though it is not fully clear
how ROS activate these pathways, the oxidative imbalance
has been directly implicated in the pathogenesis of asthma
[35], COPD [36], and IPF [37].

Over the last decade, a body of scientific data has
highlighted the involvement of other important molecular

targets in the pathogenesis of pulmonary diseases, such as
endoplasmic reticulum (ER) stress (the accumulation of mis-
folded proteins in the ER), the inflammasome, and the P2X7
purinergic receptor. The ER has a major role in the synthesis,
folding, and structural maturation of many proteins made in
the cell [38]. When misfolded proteins accumulate in the ER,
the intracellular signaling pathway called the unfolded pro-
tein response (UPR) induces a set of transcriptional and
translational events that restore ER homeostasis [39]. If high
levels of ER stress persist, a terminal UPR program prompts
cells to increase ROS production; this disturbance leads to
self-destruction of the cell [40]. All the events triggered by
UPR have been linked to the pathogenesis of distinct respira-
tory conditions, including cystic fibrosis, COPD, asthma,
IPF, and lung infections [17, 38, 40].

Inflammasomes are intracellular multiprotein innate
immune complexes. Once activated, the inflammasome’s
enzymatic activity is mediated by the recruitment and activa-
tion of caspase-1 [41]. These multiprotein complexes can
influence oxidative imbalance and have emerged as an
important regulator of lung disease [42]. Activation of the
best-studied inflammasome (the NLR protein
NLRP3/NALP3) triggers the production of proinflammatory
mediators and ROS associated with lung injury [43–45]. The
involvement of oxidative imbalance in this mechanism is fur-
ther emphasized by the antioxidant-induced inhibition of
inflammasome activation—suggesting that redox signaling
is involved in NLRP3/NALP3 activation [46].

The P2X7 purinergic receptor (P2X7R) is an important
ATP-responsive immunomodulator. It has been implicated
in the development of inflammatory respiratory diseases
[47]. The receptor’s key role has been characterized in
models of pulmonary fibrosis, lung inflammation, asthma,
and COPD [48]. P2X7R is constitutively expressed by many
cell types (including respiratory tract epithelial cells) and par-
ticipates in the release of proinflammatory cytokines, colla-
gen deposition in the lung, activation of the NLRP3-
inflammasome pathway, and ROS production. These data
highlight P2X7R as a potential therapeutic target in lung dis-
ease. Indeed, P2X7R antagonists reduce neutrophil infiltra-
tion and proinflammatory cytokine levels in acute lung
injury [49, 50]. Various P2X7R antagonists are currently
under clinical development. Furthermore, other purinergic
receptor (P2R) agonists and antagonists have been a drug
candidate for the treatment of COPD and chronic cough; in
particular, an antagonist at P2X2/3R antagonists and some
of (P2R) agonists and antagonists might also be relevant for
the treatment of other lung diseases [51, 52].

3. The Impact of ROS on Glucocorticoid
Resistance in Inflammatory Lung Diseases

Local and systemic treatments with glucocorticoids are not
effective in some patients with inflammatory lung disea-
se—especially those with severe disease or those exposed to
respiratory viruses, cigarette smoke, or air pollution [53,
54]. In clinical terms, glucocorticoid resistance is defined as
a failure to raise forced expiratory volume in the first second
(FEV1) by 15% following a 7-day course of oral
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corticosteroid at a daily prednisolone dose equivalent of
20mg. Although these patients do not benefit from cortico-
steroid therapy, they nevertheless experience the characteris-
tic adverse drug reactions linked to systemic glucocorticoid
treatment [55].

Several mechanisms have been linked to the development
of corticosteroid resistance, including immune-mediated
dysregulation of cytokines, excessive activation of mitogen-
activated MAPK, activating peptide-1 (AP-1) and factor
nuclear kappa B (NF-κB), defects in the ability of the gluco-
corticoid receptor (GR) to bind the drug and translocate into
the nucleus, amplified GRβ isoform expression, and abnor-
mal histone acetylation [54]. The Th17 immune response
appears to have a key role in steroid resistance in inflamma-
tory lung diseases because there is a correlation between
Th17 cell-induced elevation of IL-17 and steroid-resistant
disease through neutrophil accumulation [55]. Nevertheless,
merely preventing neutrophilic inflammation may not be
effective in corticosteroid-resistant lung diseases because
the neutralization of TNF-α (a powerful inducer of neutro-
phil chemotaxis) did not improve FEV1 in patients with
severe asthma after high-dose corticosteroid treatment [56].

Some of the cytokines produced in excess by patients
with severe asthma (including IL-2, IL-4, and IL-13) enhance
p38MAPK activity. The MAPK-induced phosphorylation of
serine 134 on the GR leads to steroid resistance by impeding
nuclear translocation, protein stabilization, and DNA bind-
ing [57–59]. We showed previously that repeated allergen
exposure induces glucocorticoid-insensitive asthma,
increased phosphorylation of GATA-3 and p38MAPK, and
reduced GR availability in A/J mice [60].

The inactivation of GR by MAPKs decreases the recep-
tor’s ability to induce histone acetylation, which in turn pre-
vents the interaction with proinflammatory transcription
factors AP-1 and NF-κB [61]. Additional steroid resistance
mechanisms include the reduction of histone deacetylase
(HDAC) 2 activity by phosphoinositide 3-kinase (PI3K) δ
[62]. Lastly, numbers of inflammatory cells expressing GRβ
isoform immunoreactivity are higher in glucocorticoid-
resistant patients than in glucocorticoid-sensitive patients.
Although the β isoform of the GR only differs from the α iso-
form at its carboxyl-terminal region, this is enough to pre-
vent glucocorticoids from binding. Nevertheless, the GRβ is
able to bind to the glucocorticoid response element—even
in the absence of the ligand—but cannot activate the pro-
moter of glucocorticoid-responsive genes. When GRβ is
strongly expressed, activation of GRα by glucocorticoids does
not therefore result in gene transactivation; consequently,
glucocorticoid resistance is observed [63].

Levels of ROS and their metabolites are higher in patients
with COPD and severe asthma than in healthy subjects [64,
65]. Furthermore, the in vitro activation of peripheral blood
neutrophils or mononuclear cells obtained from patients
with COPD or asthma increased ROS production and serves
as a severity marker for these two inflammatory lung diseases
[66–69]. Therefore, elevated ROS production in these dis-
eases might be linked to glucocorticoid resistance. The crea-
tion of prooxidant cellular environment in vitro (achieved
by treatment with tertiary butyl hydroperoxide, an organic

hydroperoxide) prevented glucocorticoids from inhibiting
IL-8 production by macrophages [69]. Furthermore, H2O2
also decreases glucocorticoid response element activation in
human lung epithelial BEAS-2B cells in vitro—suggesting
that glucocorticoid resistance had been induced [70].

In a murine model of asthma, ozone-induced exacerba-
tion of asthma is accompanied by elevated levels of oxidative
stress, IL-17 production, airway neutrophilia, and the devel-
opment of glucocorticoid resistance. This glucocorticoid
insensitivity on the murine asthma model was associated
with an increase in the phosphorylation of p38MAPK and
the reduction of MKP-1 activation. In addition, the inhibi-
tion of MAPK by SB239063 in this model reversed the ability
of glucocorticoid to inhibiting inflammatory response and
airway hyperresponsiveness through the reduction in
p38MAPK phosphorylation and increase in MKP-1 activa-
tion [71]—suggesting that ROS may provoke corticosteroid
resistance by excessive activation of p38MAPK. Indeed,
in vitro ROS-induced glucocorticoid resistance in monocytes
and macrophages was related to an increase in p38MAPK
phosphorylation and a reduction in HDAC activity, respec-
tively [69, 72].

Nitrosylation and oxidation of the GR reduce the gluco-
corticoid binding, nuclear translocation, and DNA binding
[73, 74]. The ROS-induced impaired nuclear translocation
of GR appears to be mediated by the oxidation of the recep-
tor’s Cys-481 residue [74]. Furthermore, nitrosylation can
modulate GR expression. For instance, neuronal nitric oxide
synthase is an endogenous inhibitor of GR expression in the
hippocampus [75]. Nevertheless, this action is subject to
debate because inhaled NO restored endotoxin-induced
downregulation of the GR expression in the lung, liver, and
kidney [76]. In severe asthma and COPD, inducible nitric
oxide synthase is upregulated [21]. The high resulting NO
production might explain the decrease in glucocorticoid
responsiveness. Although this mechanism might be relevant
in glucocorticoid-resistant patients, selective inducible nitric
oxide synthase inhibitors have not yet been evaluated in the
clinic.

Tyrosine nitration of HDAC2 results in its inactivation,
ubiquitination, and degradation [77]. ROS also increased
the activity of PI3Kδ, which leads to the phosphorylation
and inactivation of HDAC2 [62]. Furthermore, H2O2
induced steroid insensitivity and reduced β2 adrenoceptor-
dependent cAMP production via the inhibition of PI3Kδ sig-
naling in U937 cells in vitro [78]. HDAC2 inactivation is
related to glucocorticoid insensitivity in COPD patients [79,
80], suggesting that ROS have a fundamental role in the
development of glucocorticoid resistance.

4. Could Antioxidant Treatment Be Effective in
Lung Diseases?

As discussed above, oxidative imbalance and the generation
of ROS are known to contribute to the pathogenesis of a
number of important lung diseases. Hence, several therapeu-
tic strategies have been suggested for eliminating ROS and/or
restoring the redox balance. Here, we summarize current
knowledge on ROS and oxidative imbalance as therapeutic
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targets. Antioxidant drugs can be divided into three large
groups, as a function of their mechanism of action: (i) those
that functionally enhance endogenous antioxidant enzymes
such as SOD, CAT, and GPx, which accelerates the conver-
sion and inactivation of free radicals; (ii) nonenzymatic scav-
engers of excess free radicals and lipid peroxyl radicals, which
keep the cell membrane intact; and (iii) drugs with other
mechanisms.

4.1. Antioxidant Drugs Can Enhance the Function of the
Endogenous Antioxidant Enzyme System. NAC is a classical
antioxidant that provides cysteine for the increased intracel-
lular production of glutathione. In fact, NAC is a pleiotropic
drug with various pharmacologic characteristics. It was
developed as a mucolytic agent, since it breaks down mucin
disulfide cross-links, reduces the viscosity of mucus and lung
secretions, and reestablishes oxygen saturation in the blood
[77]. NAC also directly inactivates reactive electrolytes and
free radicals in a nonenzymatic manner and maintains the
oxidant/antioxidant balance in cells. At higher doses, NAC
reduces the formation of proinflammatory cytokines, such
as IL-9 and TNF-α [81] [82]. For years, it was believed that
NAC’s beneficial effects on the lung were predominantly
due to its mucolytic property. Nevertheless, this belief is out-
dated, and more prominence has been given to NAC’s anti-
inflammatory effects [82]. The results of several studies have
indicated that NAC reduces COPD exacerbations [83, 84],
although further analysis of these data showed that this
reduction was greatest in current smokers and patients not
treated with inhaled corticosteroids [85]. The beneficial effect
of NAC observed in several studies might correspond to the
sum of these characteristics. Several studies also have
addressed NAC’s ability to relieve IPF. Despite encouraging
results in animal models of fibrosis [86], NAC supplementa-
tion has not been highly effective in the clinic [87].

The membrane-bound complex NADPH oxidase (NOX)
is a major source of ROS. In COPD and IPF, the principal
cellular sources of ROS are NOXes and the mitochondria
[88]. There are several isoforms of the catalytic component
of NOX, including NOX1-5 and the dual oxidases DUOX1
and 2 [89]. Several NOX inhibitors have been developed to
counteract oxidative stress [88]. Various studies indicate that
NOX inhibitors may be beneficial in lung disease [90]. Apoc-
ynin is a nonselective NOX inhibitor; in cigarette-smoke-
exposed mice, it reduced the levels of inflammatory cytokines
and chemokines in bronchoalveolar fluid [91]. When admin-
istered by nebulization to COPD patients, apocynin reduced
H2O2 and nitrite reduction in the exhaled breath condensate
of COPD patients but no clinical parameters were reported
[92]. Furthermore, recent studies have suggested that
NOX4 is an important factor in the development of IPF,
based on the enzyme’s ability to induce alveolar epithelial cell
death, (myo)fibroblast differentiation, and collagen deposi-
tion [93]. Setanaxib is a dual NOX1/4 inhibitor currently
clinical development in an indication of IPF; it has demon-
strated excellent tolerability and a reduction in various
markers of chronic inflammation [94].

SODs are the only enzymes that can convert superoxide
radicals to H2O2. There are three types of SOD: cytosolic

copper-zinc SOD (cytosolic Cu/ZnSOD), mitochondrial
manganese SOD (MnSOD), and extracellular SODs
(ECSOD). In human studies, SOD activity in the bronchial
epithelium, in the cells in bronchoalveolar fluid, and in bron-
chial brushings is lower in patients with asthma than in con-
trol subjects [95]. The role of SOD in the progression of IPF is
less well understood. In fact, SOD1 is reportedly elevated in
patients with IPF [96], and SOD1 knockout mice developed
less oxidative stress and were protected from asbestos-
induced pulmonary fibrosis, relative to wild-type littermates
[97]. Although many previous antioxidant therapies have
disappointed, newly characterized SOD mimetics appear to
protect against oxidant-related lung disorders in animal
models.

CAT is an antioxidant enzyme found almost in all living
tissues that utilize oxygen. The enzyme uses either iron or
manganese as a cofactor and catalyzes the degradation or
reduction of hydrogen peroxide (H2O2) to water and molec-
ular oxygen, consequently completing the dismutation reac-
tion that occurs enzymatically by SOD [98]. Different lines
of evidence have indicated that under inflammatory condi-
tions, the levels of gene expression and the enzyme activities
of CAT can be improved under treatment with metformin
[99] [100]. Metformin, a biguanide derivate, is commonly
used to treat patients with type 2 diabetes mellitus [101]
and possesses its activities dependent of AMP-activated pro-
tein kinase (AMPK) [102]. It has been reported that AMPK
activation acts via multiple mechanisms to reduce oxidative
stress and is associated with increased levels of the antioxi-
dant enzymes, including catalase [103]. Although the precise
molecular mechanisms of AMPK have not been fully eluci-
dated, there is cumulative evidence suggesting that AMPK
activation protects against the development of emphysema
and COPD by regulating Nrf2 activation [104].

GPx activity is significantly reduced in subjects with
asthma or COPD that indicates its prominent role in lung
antioxidant defense [105] [106]. In addition, there is a direct
relationship between systemic GPx activity and FEV1 [107],
and oxidative stress correlates with both lung function and
body mass index in COPD [108]. Strategies to enhance the
GPx-like activity have been used in the treatment of distinct
pathological conditions, including COPD [109]. Ebselen is
an organoselenium compound with hydroperoxide- and
peroxynitrite-reducing activity that acts as an GPx mimetic
being effective in reducing airway inflammation induced by
ozone in rats [110] and inflammatory cytokines in the lungs
of cigarette-smoke-exposed mice [91]. Ebselen has been used
in clinical trials of acute ischemic stroke [111]; however, no
studies have yet been reported on its protective role in
asthma or COPD yet.

Myeloperoxidase is produced in neutrophils and macro-
phages. It has a damaging effect not only on bacteria but also
on tissue. Thus, the selective, irreversible myeloperoxidase
inhibitor 2-thioxanthine inactivated NF-κB and reduced oxi-
dative stress and the development of emphysema in guinea
pigs exposed to cigarette smoke [112].

Antioxidant enzyme defense systems (including SOD,
CAT, GPx, reduced glutathione, and heme oxygenase-1) are
directly regulated by Nrf2. Thus, owing to its antioxidant
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effect, Nrf2 is a potential therapeutic target in lung disease
[113]. Sulforaphane (a compound extracted from broccoli)
was found to be a Nrf2 activator; experiments on human
macrophages or mouse models suggest a preventive effect
on COPD exacerbation [114]. Clinical studies have evi-
denced elevated Nrf2 expression in the lungs of patients with
IPF [115]. However, further research on Nrf2 as a target in
IPF treatment is needed.

4.2. Nonenzymatic Antioxidant Drugs. Dietary antioxidants
(including vitamin C (ascorbic acid), vitamin E (α-tocoph-
erol), resveratrol, and flavonoids) have been suggested as
antioxidant treatments [116, 117]. The antioxidant and
anti-inflammatory effects of these compounds have been
demonstrated in the in vitro and in vivo model of inflamma-
tion induced by bleomycin, lipopolysaccharide, and cigarette
smoke, among others [116]. Nevertheless, dietary antioxi-
dant intake has not been shown to improve lung function
or relieve clinical features in COPD. Furthermore, other
researchers have shown that an antioxidant diet protects
against emphysema but increases mortality in cigarette-
smoke-exposed mice [117]—suggesting that the indiscrimi-
nate use of antioxidant dietary supplementation is even risk-
ier. Unfortunately, large randomized clinical trials have
yielded disappointing results, and recent meta-analyses con-
cluded that indiscriminate, high-dose vitamin E supplemen-
tation results in increased mortality [118]. Indeed, we
showed previously that supplementation with NAC and vita-
min E was associated with elevated plasma levels of cortico-
sterone in the rat [119].

4.3. Other Drugs That Affect Oxidative Stress. The treatments
of COPD include oxygen supplementation, as well as oral,
inhaled, or transdermal bronchodilators and/or inhaled cor-
ticosteroids [120]. These treatments may work together by
affecting the redox imbalance. The results of clinical trials
indicate that symptom relief alone might not be directly
linked to a better prognosis. This is probably because treat-
ment with a bronchodilator alone may fail to fully prevent
ischemia; hence, ROS will still be generated and cause inflam-
mation, due to the ischemic cascade or ischemia-reperfusion
injury [121]. The disparities in the effects on symptoms and
the prognosis suggested that oxygen supplementation has
more direct disease-modifying action in COPD than bron-
chodilators do.

Pirfenidone is one of only two drugs approved by the US
Food and Drug Administration in an indication of IPF. This
compound is thought to have antioxidative, anti-inflamma-
tory, and antifibrotic effects, although the exact mechanisms
in IPF have not been clearly characterized. In vivo studies of
bleomycin-induced murine pulmonary fibrosis indicate that
pirfenidone reduces markers of oxidative stress, decreases
the secretion of proinflammatory cytokines, and inhibits
fibroblast proliferation, myofibroblast differentiation, and
TGF-β-induced collagen production [122].

ROS may have a role (either directly or via the formation
of lipid peroxidation products such 4-hydroxy-2-nonenal
and F(2)-isoprostanes) in enhancing the inflammation
through the activation of stress kinases (JNK, MAPK, p38,

and PI3K) and thus increased activity of transcriptional fac-
tors such as NF-κB, AP-1, and Nrf2. These enhanced intra-
cellular signals are associated with the pathogenesis of
COPD, IPF, and asthma. Thus, agents that modify these tar-
gets are the drug candidates for various lung diseases [123].

The association between corticosteroid resistance and
PI3K inhibition was discussed above. Hence, treatment with
a combination of a PI3K inhibitor and a corticosteroid
should be a practical means of resolving inflammation in
COPD. p38 MAPK inhibitors are capable of suppressing
the release of proinflammatory mediators from alveolar mac-
rophages and other immune/inflammatory cells taken from
patients with COPD [124]. The dual p38α/β oral inhibitor
losmapimod has also been investigated: it decreased the
number of moderate-to-severe COPD exacerbations in
patients with blood eosinophil counts ≤ 2% [125]. Further-
more, it was recently shown that the orally administered
p38 MAPK inhibitor acumapimod decreased the number of
hospital readmissions for COPD exacerbation [126]. More-
over, the p38αMAPK inhibitor can reinstate corticosteroid
sensitivity in alveolar macrophages obtained from patients
with asthma [58, 127]. Nevertheless, one should bear in mind
that the p38MAPK inhibitor has potential negative effects. In
particular, abrogation of the physiologic functions exerted by
p38 MAPK (notably with regard to innate immunity and
antibacterial surveillance) could increase the patient’s risk
of infections, skin rash, and gastrointestinal, hepatic, cardiac,
and central nervous system toxicity. Taken as a whole, these
data suggest that there are still several barriers to the use of
p38 MAPK inhibitors in IPF or COPD [128].

In the setting of chronic inflammatory lung disease, oxi-
dative stress activates kinases and redox-sensitive transcrip-
tion factors and modulates epigenetic chromatin
modifications—resulting in changes in gene transcription.
Recent studies have focused on identifying genes that
undergo epigenetic modifications. In patients with asthma,
microarray profiling of genes expressed in peripheral blood
mononuclear cells can predict glucocorticoid sensitivity
[129]. Novel means of circumventing steroid-refractory dis-
ease are currently being developed. Activation of HDAC2
and the reversal of oxidative posttranslational modifications
of HDAC2 constitute other possible epigenetic-based thera-
peutic principles for severe asthma and COPD [130]. In the
future, epigenetic profiling might be used to choose the best
treatment option for lung disease [131]. However, the treat-
ment of nonneoplastic lung diseases with epigenetic modify-
ing drugs is in its infancy, with preclinical studies in vitro and
in vivo models [132–134].

Another point to bear in mind is that although many
studies have found that the accumulation of oxidative dam-
age in cellular macromolecules is immensely toxic, the ROS
produced by normal cell metabolism are vital for cellular
homeostasis—especially for immune competence and the
activation of several signal transduction pathways. Lastly,
several different approaches to antioxidant treatment of lung
disease have been explored in vitro and in vivo models but
few have been clinically effective—perhaps because the oxi-
dative stress (but not disease onset or progression) was
affected in the preclinical studies. Nevertheless, today’s
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knowledge of mechanisms of ROS regulation might lead to
the pharmacological manipulation of antioxidants and the
development of novel, truly effective drugs. The antioxidant
treatment approach might provide a ray of hope in the other-
wise difficult setting of COPD, asthma, and IPF. However,
much work remains to be done.

5. Concluding Remarks

A growing body of evidence shows that oxidative imbalance
has several pivotal roles in the pathophysiology of inflamma-
tory lung diseases. Elevated ROS levels directly or indirectly
affect a variety of receptors, other signaling molecules, pro-
teins, and ion levels. The depletion of antioxidants and the
accumulation of ROS reduce the cell’s ability to mount an
effective antioxidant response and thus contribute to the
development of inflammatory lung and airway diseases.
Therefore, a better understanding of the mechanisms
through which the ROS affect intracellular homeostasis, cell
signaling, and thus the onset and/or aggravation of inflam-
matory lung diseases may aid in the identification of new
molecular pathways and the development of innovative,
effective therapeutic strategies.
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