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Abstract

The estimation of trip lengths has been proven to be a key feature for the application of aggregated traffic models based
on the Macroscopic Fundamental Diagram. The paths and distances to be traveled by vehicles in regional networks
vary over time, due to changes in the traffic conditions. In this paper, we develop a methodological framework to ex-
plicitly determine traffic-dependent regional paths and estimate their travel distances. This framework is incorporated
into a dynamic traffic assignment module designed to target the Deterministic and Stochastic User Equilibrium in
regional networks. We first discuss how regional paths and their characteristic trip lengths are influenced by changes
in the regional traffic dynamics. We then test the proposed methodology for estimating traffic-dependent travel dis-
tances on small and medium-sized networks, considering a simulation environment. We show that our methodology
provides good estimations of the traffic-dependent trip lengths. Our results also shed light on the importance of how
time-dependent trip lengths influence the traffic dynamics in the regions.

Keywords: Traffic-dependent trip lengths, Regional paths, Regional Dynamic Traffic Assignment, Macroscopic
Fundamental Diagram, Aggregated traffic models.

Highlights1

• The distributions of trip lengths vary with traffic conditions.2

• We develop a methodological framework for estimating explicit traffic-dependent trip length distributions and3

paths in the regional network.4

• We discuss the integration of traffic-dependent trip lengths and paths into the traffic assignment for regional5

networks.6

• We validate our methodology on small and medium-sized city networks, using an MFD simulation environment.7

• The proposed methodology shows a good performance for estimating traffic-dependent trip lengths.8

1. Introduction9

Aggregated traffic models (Godfrey, 1969; Daganzo, 2007; Geroliminis and Daganzo, 2008; Vickrey, 2020) have10

been regarded as a powerful tool to describe the evolution of the traffic dynamics at the city network level, with a11

low computational effort. The application of these aggregated traffic models requires the partition of the city network12

(Figure 1 (a)) into regions where the traffic conditions are approximately homogeneous, i.e. vehicles travel at the13

same average speed. Several partitioning approaches have been discussed in the literature (Lopez et al., 2017; Saeed-14

manesh and Geroliminis, 2017; Ambühl et al., 2019). This step allows defining the regional network, where traffic15
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Figure 1: (a) City network. (b) Partitioning of the city network. (c) Graph representing the regional network.

is represented as exchange flows between regions and where routing options can be defined. We define X as the set16

of all regions included in the regional network. Figure 1 (c) depicts the graph of the regional network equivalent to17

the partitioning defined in Figure 1 (b). The nodes represent the regions, and the connections between the regions are18

given by the allowed travel directions in the city network. The Macroscopic Fundamental Diagram (MFD) reflects19

the traffic conditions in each region r ∈ X. The MFD captures the relationship between the average circulating flow of20

vehicles qr ([veh/s]) and the accumulation nr ([veh]) in a generic region r. The evolution of the vehicles’ accumulation21

nr in a region ∀r ∈ X depends on the balance between their inflow Qin,r(t) and outflow Qout,r(t) at a given small time22

interval t:23

dnr(t)
dt
= Qin,r(t) − Qout,r(t), t > 0 ∧ ∀r ∈ X (1)

In the literature one can distinguish between two kinds of MFD traffic models: the accumulation-based model24

(Daganzo, 2007; Geroliminis and Daganzo, 2008; Mariotte and Leclercq, 2019); and the trip-based model (Vickrey,25

2020; Arnott, 2013; Lamotte and Geroliminis, 2016; Mariotte et al., 2017; Leclercq et al., 2017; Mariotte and Leclercq,26

2019; Jin, 2020). In this paper, we focus our attention only on the accumulation-based model.27

Scaling-up a city into a regional network (see Figure 1 (a)-(c)) brings new challenges (Yildirimoglu and Geroli-28

minis, 2014; Batista et al., 2019; Batista and Leclercq, 2019; Batista et al., in press.), mainly related to the definition29

and characterization of paths on the regional network. These represent the basis of any traffic assignment framework.30

Figure 2 (a) depicts four trips in the city network, that cross a different sequence of regions following the city network31

partitioning, i.e. they are associated with different paths in the regional network. Figure 2 (b) shows the corresponding32

paths in the regional network. A path in the regional network is defined as the ordered sequence of traveled regions33

from the Origin to the Destination (OD1) regions (Batista et al., in press.). Figure 2 (b) shows the example of two34

regional paths crossing a different sequence of regions, and an internal path that represents trips that start and end35

within the same region. One can also observe that the different trips have different travel distances inside the regions36

they cross. This means that the regions defining a path are characterized by trip length distributions (see Figure 2 (c));37

whereas trips in the city network are defined by a sequence of links with a fixed physical length. This key difference38

between paths in the city and regional networks has been recognized by Yildirimoglu and Geroliminis (2014) and39

Batista and Leclercq (2019) in designing route guidance frameworks for regional networks. The one discussed by40

Batista and Leclercq (2019) considers trip length distributions that are explicitly calculated, based on a set of trips in41

the city network and different levels of information from its partitioning. They assume the trip length distributions42

1In this paper, we define od as the origin-destination pair in the city network. While OD stands for the Origin-Destination pair of regions in the
regional network.
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Figure 2: (a) Examples of trips in the city network. (b) The corresponding paths in the regional network, to the trips represented in (a). (c) Gray
region that is crossed by two regional paths with trip length distributions L1 and L2.

to be static, i.e. not dependent on the traffic conditions. However, the travel distances of vehicles in the regions vary43

over time due to changes in the traffic conditions. For example, if the gray region (see Figure 2 (b)-(c)) becomes44

congested, drivers traveling on the dark blue trip might shift to the magenta one, crossing a different sequence of45

regions. This leads drivers to take detours in the city network, that are associated with other paths in the regional net-46

work. These detours change the trip length distributions. In this spirit, Yildirimoglu and Geroliminis (2014) proposed47

a route guidance framework based on the Multinomial Logit model where the trip lengths are traffic-dependent and48

implicitly calculated. Yildirimoglu et al. (2015) and Yildirimoglu et al. (2018) designed a control strategy coupled49

with route guidance, also with the trip lengths implicitly calculated. Ramezani et al. (2015) discussed a perimeter50

control strategy, where the trip lengths are calculated dynamically based on exchange flows between adjacent regions.51

However, most of the MFD-based control strategies and applications (Aboudolas and Geroliminis, 2013; Geroliminis52

et al., 2013; Kouvelas et al., 2017; Haddad, 2017; Jamshidnejad et al., 2017; Sirmatel and Geroliminis, 2017; Zhong53

et al., 2017; Yang et al., 2018; Sirmatel and Geroliminis, 2018; Mohajerpoor et al., 2019; Haitao et al., 2019; Yang54

et al., 2019; Ingole et al., 2020), assume the travel distance is identical for all drivers traveling on the same region.55

This assumption plays a major role in the traffic dynamics in the regions (Batista et al., 2019).56

This paper sheds light on the importance of estimating traffic-dependent trip lengths for MFD-based applications.57

The main contributions of this paper are twofold. First, we propose a methodological framework for estimating traffic-58

dependent distributions of trip lengths. Second, we discuss the extension of the Regional Dynamic Traffic Assignment59

(R-DTA) framework proposed by Batista and Leclercq (2019) to account for time-dependent trip lengths and paths on60

regional networks. However, we note that the proposed methodology for estimating traffic-dependent trip lengths can61

also be used on MFD-based control strategies and applications.62

The remainder of this paper is organized as follows. In Sect. 2, we review the R-DTA and introduce the method-63

ological framework for estimating traffic-dependent trip lengths. In Sect. 3, we investigate the time-dependence of64

trip lengths and test the proposed methodological framework on a static scenario as well as a simulation environment65

on a small city network. In Sect. 4, we also test the proposed methodological framework on a simulation environment66

and a medium-sized real city network. In Sect. 5, we outline the main conclusions of this paper and discuss future67

research directions.68

2. R-DTA and traffic-dependent paths and trip lengths on regional networks: methodological framework69

In Sect. 2.1, we briefly describe the methodology introduced by Batista et al. (2019) for estimating static (i.e.70

traffic independent) trip length distributions. In Sect. 2.2, we discuss a new methodological framework to estimate the71

traffic-dependent trip lengths. In Sect. 2.3, we discuss how the proposed methodology to estimate traffic-dependent72

trip lengths can be incorporated into the R-DTA framework proposed by Batista and Leclercq (2019).73

In Table 1, we summarize the notation used in this paper.74
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Table 1: Nomenclature used in this paper.

City and regional networks:
o Origin node.
d Destination node.
O Origin region.
D Destination region.
p Regional path.
r Generic region r of the regional network.
a Generic link of the city network.
la Length of link a.
X Set of regions that define the regional network.
R Total number of regions in X.
N Set of nodes that define the city network.
A Set of links that define the city network.
E Set of edges that define the regional network.
Γ Set of virtual trips.
Kp Number of virtual trips linked to a generic regional path p.
ΩOD Regional choice set.
W Set of regional OD pairs.
Nod Total number of sampled origin-destination pairs in the city network.

MFD models:
t Small time interval.
qr Average circulating flow of vehicles in region r.
nr(t) Accumulation of vehicles in region r, during time interval t.
Qin,r(t) Inflow function of region r, during time interval t.
Qout,r(t) Outflow function of region r, during time interval t.
Pr(nr) Production MFD.
vr(nr) Speed-MFD.
vr Mean speed in region r over the time-period δt.

Trip lengths:
Lrp Set of trip lengths of regional path p inside region r.
Lrp Average trip length of regional path p inside region r.
L̂rp Estimated trip length of generic region r of regional path p.
lkrp Length of virtual trip k that is associated with regional path p and within region r.
βk

p Binary variable that equals 1 if virtual trip k is associated with regional path p, or 0
otherwise.

βar Binary variable that equals 1 if link a is in region r, or 0 otherwise.
ωr(nr) Set of discretized speeds of region r.
∆h Discretization amplitude of the speed-MFD for region r.
v f f

r Free-flow speed of region r.
S Total number of speed samples for region r.
v∗ Set of observed mean speeds.
α0, αi and αi j Regression coefficients of the multi-linear model.
µ Number of common virtual trips in the R sets.

Network equilibrium:
Continued on next page
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Table 1 – Continued from previous page
UOD

p Utility function of regional path p that connects the regional OD.
TT OD

p Travel time of regional path p that connects the regional OD.
T Simulation period.
δt Duration of the sub-interval for calculating the network equilibrium for the quasi-static

approximation.
Nmax Total number of the MSA descent step iterations.
M(λ) Number of violations that represent the difference of the regional path flows between

consecutive descent step iterations of the Method of Successive Averages.
Φ Threshold that defines the tolerance for the number of violations.
Gap Relative gap between the regional paths travel time and the travel time at the network

equilibrium.
tol Tolerance for the Gap criterion.
b MSA iteration.
ζ MSA descent step.
∆t Cumulative time period.

75

2.1. Estimation of trip lengths distributions: a review76

Batista et al. (2019) recognized the importance of the calibration of trip lengths for predicting the traffic dynamics77

in the regions, using an aggregated MFD traffic model. The authors proposed a methodology to explicitly determine78

static (i.e. not accounting for changes in the traffic dynamics) distributions of trip lengths, that require the information79

of a set of trips in the city network as well as the city network partitioning. The partitioning can be done by applying80

any of the approaches discussed in the literature (Lopez et al., 2017; Saeedmanesh and Geroliminis, 2017; Ambühl81

et al., 2019), ensuring that the regions are connected and compact. The most challenging question is how to get a82

set of trips in the city network. One option is to use data-driven methods. However, in the best scenario, one can83

only get a partial set of the daily trip patterns in the city network. Thus, we need to ensure that this partial set is84

representative of the full daily trip patterns in the city. How to ensure such representativeness, although important,85

is out of the scope of this study. For instance, Batista et al. (2019) proposed to construct a set of virtual trips by86

randomly sampling multiple origin-destination (od) pairs in the city network and then calculating the shortest-trips87

in distance for each of them. Let Γ be this set of static virtual trips. The set of virtual trips requires a complex88

calibration task as discussed by Batista et al. (2019). The authors are also currently working on a more intelligent89

sampling procedure that can identify a representative subset of od pairs from all possible trips connecting one regional90

OD pair (Batista et al., 2021), which also considers the spatial correlations between the nodes of the city network.91

This will drastically reduce the computational burden for determining the set of virtual trips. In any case, the paths92

on the regional network are determined by scaling-up these trips following the sequence of regions they cross, and93

according to the city network partitioning. For each regional OD pair, the paths are ranked according to their level of94

significance. The level of significance of a path p on the regional network is related to the total number of trips, Kp,95

it has associated. For example, the most significant path connecting one generic OD pair is the one with the largest96

Kp. We define the regional choice set as ΩOD,∀(O,D) ∈ W, where W is the set of all regional OD pairs, to contain the97

most significant paths on the regional network for each OD pair.98

Using the methodology from Batista et al. (2019), we can determine the distributions of trip lengths, Lrp, for99

region r and path p. We refer to Lrp as the reference distribution of trip lengths. They are calculated based on Γ, and100

different levels of information about the sequence of regions crossed by these trips. The latter ranges from no prior101

information about the previous and next regions to be traveled by the trips, to their path on the regional network. In102

this paper, we focus on the most detailed level of information, i.e. the related path on the regional network, following103

the discussion in Batista et al. (2019). The reference distribution of trip lengths Lrp is then:104

Lrp =
{∪
∀k∈Γ
βk

plkrp

}
(2)
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where lkr is the length of virtual trip k, associated with path p and inside region r; and βk
p is a binary variable that equals105

1 if virtual trip k is associated with path p, or 0 otherwise.106

The average trip length Lrp of a path p in region r is then:107

Lrp =

∑
k β

k
plkrp∑

k β
k
p
,∀k ∈ Γ (3)

2.2. Estimation of traffic-dependent trip lengths108

Yildirimoglu and Geroliminis (2014) and Batista et al. (2019) recognize that the travel distances are influenced by109

the traffic dynamics in the regions. Generally, this means that the distribution of trip lengths Lrp depends on the traffic110

conditions in all regions r ∈ X, that are regulated by their speed-MFDs vm(nm) as:111

Lrp = f (v1(n1), . . . , vm(nm)),∀m ∈ X (4)

where vm(nm) is the speed-MFD that reflects the traffic conditions inside a generic region m ∈ X and nm is the112

vehicles’ accumulation for that region. For a generic path p, Lrp is a multi-dimensional function where the number of113

dimensions depends on the total number of regions R that define X.114

The question is then how to determine the distribution of trip lengths Lrp according to the changes in the traffic115

conditions, without the need to recalculate the set of time-dependent virtual trips online during the MFD simulation.116

The computational cost of doing so largely increases with the number of trips and size of the city network. In this117

section, we propose an alternative formulation to do an online estimation of the distribution of trip lengths Lrp, that118

consists of three steps as depicted in Figure 3. The first step consists of discretizing the multi-dimensional space,119

considering the speed-MFDs of all regions, to construct the numerical grid. In the second step, we determine the120

set of time-dependent virtual trips for each regional OD pair and each point in the numerical grid. This permits121

constructing a library of time-dependent distributions of trip lengths Lrp for each point of the numerical grid. These122

first two steps are done offline. The third step consists of estimating the distributions of trip lengths L̂rp for a given123

set of observed mean speeds v∗ in the regions. This step is done online during the MFD simulation and utilizes the124

library of time-dependent distributions of trip lengths Lrp. Below, we describe these three steps in more detail.125

Figure 3: (a) Step 1: Set of speed-MFDs of the regional network that represents the multi-dimensional space (see Eq. 4). (b) Step 2: Calculation of
the sets of traffic-dependent shortest-trips for each point in the numerical grid. (c) Step 3: Estimation of the trip length sample L̂rp for a given a set
of observed speeds v∗.
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2.2.1. Discretization of the N-dimensional space126

The first step defines a multi-dimensional grid. As noted in Eq. 4, the distribution of trip lengths Lrp depends127

on the observed traffic conditions on all regions of the network, which are regulated by the speed-MFD (i.e. the128

relationship between the mean speed vr and the accumulation nr in each region). Figure 3 (a) depicts an example129

of a regional network, where the speed-MFDs characterize all possible traffic states in each region, i.e. the range130

of possible observed mean speeds in each region. Following this rationale, we build the multi-dimensional grid by131

discretizing the speed-MFD into intervals of equal amplitude ∆h = v f f
r
S , where v f f

r is the free-flow speed of region r,132

and S is the total number of discretized points of the speed-MFD. Notice that different parts of the speed-MFD can be133

discretized according to different criteria (i.e. values of S ). We define ωr(nr),∀r ∈ X as the set of discretized speeds134

of a generic region r. This permits constructing a uniform multi-dimensional grid of points, for which one has to135

determine the set of traffic-dependent virtual trips. This step is done offline, which means that we do not perform any136

MFD simulation at this stage. Instead, each point in the multi-dimensional grid represents one out of many possible137

observed congestion states of the entire traffic network, as permitted by the speed-MFDs of all regions.138

2.2.2. Calculation of the set of shortest virtual trips in time139

The second step calculates a set of time-dependent virtual trips for each regional OD pair and each point of the140

multi-dimensional numerical grid. Initially, for each OD pair, we uniformly sample a set of Nod pairs of nodes in the141

city network (Batista et al., 2019, in press.). These sets are considered the same for all points of the numerical grid.142

Then, for each point of the numerical grid and each OD pair, we calculate the set of time-dependent virtual trips (see143

Figure 3 (b)) based on the fixed set of od pairs. We consider the calculation of shortest-trips in time, where the travel144

time of a generic link a is determined as:145

ta =
laβar

v j
r(nr)
,∀a ∈ A ∧ ∀ j = 1, . . . , S (5)

where la is the length of link a; A is the full set of links that define the city network; and βar is a binary variable that146

equals 1 if link a is in region r, or 0 otherwise.147

Each set of time-dependent virtual trips determined for each point of the numerical grid, is then scaled-up accord-148

ing to the sequence of traveled regions, i.e. according to the definition of the city network partitioning. This permits149

determining the corresponding paths in the regional network, and explicitly characterizes their distributions of trip150

lengths Lrp.151

2.2.3. Estimation of L̂rp given v∗152

The third step is the online estimation of the distributions of trip lengths L̂rp for a given set of observed mean153

speeds in the regions v∗ = {v∗r },∀r ∈ X. Figure 3 (c) shows a schematic representation of this step. For ease of the154

illustrative scheme, we show an example of a two-regions network, where vk and vl are the respective speed-MFDs.155

The goal is to estimate the samples l̂rp of the distribution of travel distances L̂rp, given a set of observed speeds v∗.156

For this step, we make the following important assumption:157

Assumption. We assume that locally in the vicinity of v∗, the topology of the Lrp function, defined in Eq. 4, can be158

approximated by a hyper-plane in the R-dimensional space.159

We discuss the coherence of this assumption in the Sect. 3.3. Note that, a hyper-plane is spanned by R− 1 linearly160

independent vectors. For this reason and each OD pair, we select the R points in the vicinity of v∗, for which we161

gather the distributions of trip lengths Lrp from the library. We then identify the total number µ of common trips to162

all R sets of virtual trips. Let lrp be a generic trip length sample from the distribution Lrp, of each of the common163

trips. The goal is to estimate the samples l̂rp that define the distribution of trip lengths L̂rp. For this purpose, we fit a164

multi-dimensional linear regression model to the R samples lrp, and determine the predictors α0, αi and αi j, as follows:165

lrp = α0 +
∑
i∈X

(
αivi +

∑
j∈X
i, j

αi jviv j

)
,∀r ∈ p ∧ ∀p ∈ ΩOD (6)
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where vi are the speed samples of region i, i.e. the coordinates in the numerical grid. Note that, we only account for166

the paths in the regional network, that are tagged as available in the previous step.167

In the next step, we estimate each sample l̂rp as follows:168

l̂rp = α0 +
∑
i∈X

(
αiv∗i +

∑
j∈X
i, j

αi jv∗i v∗j

)
,∀r ∈ p ∧ ∀p ∈ ΩOD (7)

This methodology permits to determine the samples l̂rp of trip lengths that define the estimated distribution L̂rp =169

{l̂rp},∀r ∈ p ∧ ∀p ∈ ΩOD. Note that, this distribution only encompasses samples l̂rp of the identified common trips to170

all R sets of virtual trips that are gathered from the library.171

This methodology can be implemented to estimate traffic-dependent trip lengths on all MFD-based applications,172

where one needs to update the trip lengths according to the traffic conditions in the regions. Important examples173

include applications of MFD-based models for perimeter control and the R-DTA described by Batista and Leclercq174

(2019). In the next section, we discuss how the developed methodological framework to estimate traffic-dependent175

trip lengths can be incorporated into the R-DTA.176

2.3. Regional Dynamic Traffic Assignment with time-dependent trip lengths177

In this section, we discuss how to determine the classical Deterministic and Stochastic User Equilibrium in re-178

gional networks (Batista and Leclercq, 2019), considering traffic-dependent regional paths and trip lengths. We con-179

sider the R-DTA framework proposed by Batista and Leclercq (2019). Figure 4 depicts a schematic representation of180

the different steps of the R-DTA. For notation purposes, we define the city network as the connected graph G(N, A),181

where N and A represent the set of nodes and links. Similarly, the regional network corresponds to the connected182

graph G(X, E), where E defines the edges that connect the regions (see Figure 1 (c)).183

In this paper, we determine the regional network equilibrium using a quasi-static approximation. This means that184

the total simulation period T is divided into several sub-intervals of duration δt, where the network equilibrium is185

calculated. A schematic representation of this procedure is depicted in Figure 4. The regional path flows are kept186

constant over each δt. The length of δt can be adjusted in different trials for better capturing rapid changes in the187

demand or sudden changes in the regional traffic dynamics.188

In the R-DTA version proposed by Batista and Leclercq (2019), the set of regional paths and trip length dis-189

tributions are determined following the procedure discussed in Sect. 2.1 and uploaded only at the beginning of the190

simulation time, i.e. at t = 0. Both of them are obtained from a static set of virtual trips that do not account for191

the detour ratios due to the changes in the regional traffic dynamics. The box within the red dashed line in Figure 4192

represents the inner-loop where the network equilibrium is calculated at each interval δt, until the total simulation time193

T is reached. In this paper, we also target the Deterministic and Stochastic User Equilibrium principles as in Batista194

and Leclercq (2019). The authors have noted that the travel time of a regional path, TT OD
p ,∀p ∈ ΩOD ∧ ∀(O,D) ∈ W,195

depends on the empirical distributions of trip lengths {Lrp} and on the time-varying speed MFD vr(nr). It is determined196

as:197

TT OD
p =

∑
r∈X

(
Lrp

vr(nr)

)
βrp,∀p ∈ ΩOD ∧ ∀(O,D) ∈ W (8)

Note that, in Eq. 8, the trip length distributions Lrp can be directly and explicitly determined based on a set of198

traffic-dependent virtual trips, or estimated using the methodological framework described in the previous Sect. 2.2.199

Batista and Leclercq (2019) approximate the utility function of regional path p, UOD
p , by doing a first order Taylor200

series expansion of Eq. 8 around the mean values Lrp and vr. The mathematical details of these calculations are201

described in Batista and Leclercq (2019). In the case of the Deterministic User Equilibrium (DUE), none of the terms202

are considered to be distributed, and UOD
p is calculated as:203

UOD
p =

∑
r∈X

(
Lrp

vr

)
βrp,∀p ∈ ΩOD ∧ ∀(O,D) ∈ W (9)
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Figure 4: Flowchart of the R-DTA that accounts for time-dependent trip lengths and regional paths. A scheme explaining the quasi-static approxi-
mation to calculate the dynamic regional network equilibrium is also depicted.
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In the case of the Stochastic User Equilibrium (SUE), both terms are considered to be distributed, and the first204

order Taylor series expansion yields that UOD
p is:205

UOD
p =

∑
r∈X

(
Lrp

vr
+

Lrp

vr
−

Lrpvr

v2
r

)
βrp,∀p ∈ ΩOD ∧ ∀(O,D) ∈ W (10)

Both of the regional network equilibria are calculated using the classical Method of Successive Averages (MSA).206

At each descent step b, in the case of the DUE, drivers are assigned to the regional path with minimal perceived207

utility (see Eq. 9), based on an all-or-nothing procedure. In the case of the SUE, Monte Carlo simulations are used208

to account for the distributions {Lrp} and vr(nr) in Eq. 10. The goal is to draw samples from these two distributions209

and locally solve deterministic problems. This means that for each set of draws, drivers are also assigned based on an210

all-or-nothing procedure to the path with the minimal perceived utility. The new regional path flows are updated by211

averaging over the choices of drivers for all draws. The regional network equilibrium is achieved when the relative212

Gap (Sbayti et al., 2007) is inferior to a pre-defined tolerance and/or when the number of violations M(λ) (Sbayti et al.,213

2007) is inferior to a given thresholdΦ. The relative Gap is an indicator that describes how far are the path travel times214

from the User Equilibrium conditions (Sbayti et al., 2007). The number of violations represents the difference in the215

regional path flows between two consecutive descent step iterations of the Method of Successive Averages. There is216

also a maximum number Nmax of allowed iterations. To ensure the good convergence properties of the MSA, we need217

to choose an adequate step size of eta = 1
s .218

In this paper, we propose to extend this R-DTA framework to include an outer loop represented by the blue dashed219

line in Figure 4. The goal is to update the set of regional paths and trip lengths for the next assignment period δt,220

based on the observed traffic conditions from the previous period, i.e. v∗. This proposed extension works as follows.221

The first period δt represents a warm-up period that corresponds to the network loading. We need to determine the222

available regional paths and their trip lengths. To do so, we look for the R closest points in the vicinity of v∗, and we223

gather the trip lengths sets from the library as discussed in the previous section. We tag the common regional paths224

to all R sets as available in ΩOD. All the remaining paths are set as unavailable for the drivers’ choices. The trip225

lengths are estimated using the methodology discussed in the previous section. We then load the regional paths and226

determine the regional network equilibrium that corresponds to the inner-loop. For the next period between δt and 2δt,227

we update the regional paths tags and their trip lengths in the outer-loop, according to the observed traffic conditions228

(v∗ = {v∗r },∀r ∈ X) of the previous period. We then determine again the network equilibrium in the inner-loop. This229

process of the inner and outer loops is repeated at every δt, over the cumulative period ∆t(g) = ∆t(g − 1) + δt < T ,230

where g is an iterative variable over the different assignment periods. The maximum value of h is reached at T/δt.231

Note that, in Figure 4, the first δt is depicted as the warm-up period only for illustration purposes. This can be adjusted232

in different trials.233

3. Analysis of the time-dependent trip lengths on a small city network234

We now discuss the implementation of the methodological framework introduced in the previous section. First,235

we investigate how the traffic dynamics influence the significance level of paths and trip lengths. Second, we discuss236

how to properly calibrate the number of od pairs, Nod, as well as of the number of points in the numerical grid. Third,237

we investigate how the proposed methodological framework performs in an MFD simulation environment. These tests238

are performed on a small city network.239

3.1. Description of the test network and demand scenarios240

The small size city network is the 6th district of Lyon (France) depicted in Fig. 5 (a). We refer to this network as241

L6. It contains 757 links and 431 nodes, and it is partitioned into four regions, for which we fitted the speed-MFD242

functions depicted in Fig. 5 (b). The free-flow speeds are v f f
r = {4.95, 4.33, 4.87, 5.14},∀r = 1, . . . , 4, while the243

critical speeds are vcrit.
r = {2.8, 3.2, 3.1, 2.9},∀r = 1, . . . , 4. We note that in this section, the speeds are expressed244

in m/s. We have set up the free-flow speeds to around 5 m/s (i.e. 20 km/h) as this network represents a residential245

neighborhood composed of mainly one-way streets with a lot of parking and crossing pedestrians. The definition of246

the network partitioning is based on administrative regions as defined by the municipality, and as also discussed in247
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Batista et al. (2019) and Batista and Leclercq (2019). The speed-MFDs are calibrated using a similar procedure as the248

one presented in these two studies.249
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Figure 5: (a) 6th district Lyon network (L6) divided into four regions. (b) Speed-MFDs of the L6 network. The demand scenarios for the L6
network are depicted in (c) for a free-flow case and in (d) for a congested case.

Figure 6: Flowchart representing the online validation, i.e. in an MFD simulation environment, of the developed methodological framework for
estimating the trip length distributions.
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The testing of the methodology to estimate the time-dependent trip lengths described in the previous section250

includes two steps. First, we investigate how the traffic conditions influence the significance level Kp and trip lengths251

of both an internal and regional path in the L6 network. We focus on paths p = {1} and p = {124} (Fig. 5 (a)). We252

then estimate the trip lengths for these two paths for different settings of the traffic conditions in the regions. For253

this test, we construct the multi-dimensional numerical grid by discretizing the speed-MFDs of the four regions as254

ω1(n1) ∈ [0.15 : ∆h : 4.95], ω2(n2) ∈ [0.33 : ∆h : 4.33], ω3(n3) ∈ [0.07 : ∆h : 4.87] and ω4(n4) ∈ [0.34 : δv : 5.14],255

where ∆h = 0.4 (m/s). For each point in the multi-dimensional grid, we sample Nod = 200 od pairs in the Origin and256

Destination regions of the paths.257

Second, we investigate how the methodology to estimate the trip lengths performs in an MFD simulation environ-258

ment on the L6. To that end, we discuss how to properly calibrate Nod for the set of trips and the number of points259

S for discretizing the speed-MFDs to construct the multi-dimensional numerical grid. We then perform the MFD-260

simulations considering the proper calibration of Nod and S . With this, we can validate the developed methodology261

to estimate online (i.e. in the MFD simulation environment) the traffic-dependent distributions of trip lengths. Fig. 6262

depicts a flowchart that shows how this validation process is done. This consists of two approaches. One of these263

approaches represents the benchmark where the distributions of trip lengths are explicitly determined based on the264

direct recalculation of the time-dependent set of virtual trips given a set of observed mean speeds v∗ in the regions.265

In the other approach, we utilize the developed methodology to estimate the distributions of trip lengths for a given266

observed set of mean speeds v∗. This methodology takes as an input the definition of the multi-dimensional grid and267

the library of distributions of trip lengths Lrp calculated for each OD pair and each point of the grid. These two inputs268

are calculated offline as depicted in Fig. 6.269

For the simulations, we set a simulation period of T = 8000 seconds, that is split into several intervals of length270

δt = 200 seconds. For each interval, we determine the DUE. The equilibrium conditions are achieved when Gap ≤ 0.2271

and when M(λ) ≤ 0. We also set a maximum number of descent step iterations Nmax = 100. We set two demand272

scenarios: (i) a demand scenario where all regions are in free-flow conditions (Fig. 5 (c)); and (ii) another one273

where regions 2 and 3 become congested (Fig. 5 (d)). The demand scenarios are composed by two OD pairs: 1-274

4; and 2-3. We have in total seven possible regional paths. Based on a full enumeration, the regional choice sets are275

Ω14 = {124, 134, 1234, 1324} and Ω23 = {23, 243, 213}. The traffic dynamics are reproduced using an accumulation-276

based MFD-model (Daganzo, 2007; Mariotte and Leclercq, 2019).277

3.2. Time-dependence of the trip lengths on the traffic states278

In this section, we investigate how the traffic conditions influence the significance level Kp and the average trip279

lengths Lrp of the paths p = {1} and p = {124} of the L6 network. The first p = {1} represents an internal path within280

region 1, i.e. for trips that happen only inside this region. The second p = {124} represents a regional path that permits281

to travel from regions 1 to 4. Fig. 7 depicts the evolution of the significance level Kp and the average trip lengths Lrp282

of p = {1} and p = {124}, as a function of the traffic conditions. For p = {1}, we fix three values of v1 = 4.95, 2.8, 1.6283

(m/s) and vary v2 and v3. Region 4 is maintained at the free-flow speed. For the regional path p = {124} we maintain284

regions 1 and 4 at the free-flow speed and vary v2 and v3.285

We first focus our analysis on the internal path p = {1}. We observe that under free-flow conditions in region 1,286

the influence of the traffic dynamics of regions 2 and 3, on Kp and the average trip length L1, are negligible. This is287

evidenced by the negligible difference of 2 trips in Fig. 7 (a) and of 1 meter in Fig. 7 (b). However, the influence of the288

traffic dynamics of regions 2 and 3 on Kp and L1, become more important as v1 decreases. As region 1 becomes more289

congested while regions 2 and/or 3 are still in free-flow conditions, Kp decreases, and therefore L1 decreases as well.290

A lower v1, means longer link travel times in region 1. This leads to detours in the virtual trips, as regions 2 and 3291

present shorter link travel times than region 1. As region 1 becomes more congested, a driver that would travel on the292

internal path p = {1}, will now shift to other paths, such as p = {1, 2, 1}, p = {1, 3, 1}, p = {1, 3, 2, 1} or p = {1, 2, 3, 1}.293

This causes a decrease of Kp and consequently of L1, as evidenced by the blue color in Fig. 7 (e) and 7 (f). However,294

as regions 2 and 3 become also more congested, i.e. v2 and v3 decrease, the link travel times of these regions increase,295

leading drivers to shift back again to internal trips in region 1. This causes the increase of Kp and consequently of L1,296

as evidenced by the yellow color in Fig. 7 (e) and 7 (f).297

We can also observe a similar trend for p = {124}. When region 2 is in free-flow conditions, there are no298

significant changes in Kp and the average trip lengths. However, as region 2 becomes congested and region 3 is in299
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Figure 7: (a - f) Evolution of the significance level Kp and average trip lengths L1 for internal path p = {1}. The results are depicted for v1 = 4.95m/s
(a-b), v1 = 2.8m/s (c-d) and for v1 = 1.6m/s (e-f). (g) Evolution of the significance level Kp for regional path p = {124} as a function of the traffic
dynamics in regions 2 and 3. Evolution of the average trip lengths for the Origin (h), Intermediate (i) and Destination (j) regions of regional path
p = {124} also as a function of the traffic conditions in regions 2 and 3. The average trip lengths Lrp are listed in meters.
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free-flow conditions, the virtual trips suffer some detours. To go from region 1 to 4, the virtual trips switch to links300

in region 3 as their travel times are shorter than those in region 2. These virtual trips will then be associated with a301

different regional path, i.e. p = {134}. This decreases the significance level (i.e. Kp) of p = {124}, influencing the302

average trip lengths along the regions of this path.303

In summary, in free-flow conditions, the detour ratios of the time-dependent virtual trips due to changes in the304

traffic conditions, do not influence Kp and the average trip lengths. However, these detours make a clear difference305

once the regions become more congested. We also observe that both the average trip length and Kp of an internal path306

are less sensitive to changes in the traffic conditions than those of a regional path. We show in the next sections, that307

this is well captured by the traffic-dependent framework we defined in Sect. 2.2.308

3.3. Calibration of Nod and S309

In this section, we investigate how our methodology performs to estimate traffic-dependent trip lengths on a static310

scenario, i.e. without considering the application of a traffic model to simulate congestion. We consider the trip311

lengths for the regional path p = {124} and for 300 sets of possible mean speeds (v∗r ,∀r = 1, . . . , 4) in the four regions312

of the L6 network (Fig. 5 (a)). Each sampled set represents different observed traffic dynamics in the regions. The313

sampled points vary between the free-flow speed of each region (v f f
r ) and a minimum speed of 2 m/s. For this, we314

also consider a different number of od pairs Nod for the virtual set of trips and a different number of points S for315

discretizing the speed-MFDs to construct the multi-dimensional numerical grid.316

The average trip lengths strongly depend on the number of trips, Nod, considered to construct the virtual set of trips317

(Batista et al., 2019). One possibility would be to consider the full set of possible combinations of od pairs in regions318

1 and 4. This yields a set of Nod = 5658 virtual trips that need to be calculated for each point of the discretized four-319

dimensional space of the L6 network. This is still attainable for such a small network partitioned into a low number320

of regions (i.e. four). However, it is unfeasible from a pragmatic perspective for larger city networks partitioned into321

a larger number of regions. Instead, we consider a subset of Nod pairs. This value needs to be properly set (Batista322

et al., 2019, in press.). We use four Nod values: 100, 200, 300 and 400.323

We also need to discretize the speed-MFDs into S points for constructing the multi-dimensional grid. As discussed324

in the previous section, the average trip lengths are more sensitive to the regional traffic dynamics in the congested325

rather than in the free-flow regime. The speed-MFDs are then discretized into a different number of points in the free-326

flow and congested branches. We discretize the free-flow branch of the speed-MFDs (Fig. 5 (b)) into two intervals of327

length ∆h = v f f
r −vcrit.

r
2 . The congested branch is discretized with S − 1 points, leading to S intervals of length ∆h = vcrit.

r
S .328

We set three values of S , ranging from 3 to 5.329

There are a total of 12 possible combinations of Nod and S values previously set. The goal is to investigate how our330

methodology performs on the estimation of the trip lengths for the regional path p = {124} for each combination of331

Nod and S values. For this, we follow the procedure depicted in Fig. 6. The only difference is that we sample 300 trials332

of possible observed mean speeds (v∗r ,∀r = 1, . . . , 4), within the range between 2 m/s and the free-flow speed of each333

of the four regions, instead of performing an MFD simulation. This permits to mimic of different traffic dynamics334

in the regions. The subset of od pairs is fixed for the same value of Nod and this experiment. This means that we335

only sample once the subset of Nod od pairs. That way, we can keep the consistency between the different 300 trials336

of observed mean speeds. For the benchmark approach, we determine the trip lengths (Lrp) by directly calculating337

the time-dependent virtual trips for each trial of observed speeds (v∗r ,∀r = 1, . . . , 4). We then apply the developed338

methodology to estimate the distributions of travel distances. We determine the time-dependent virtual trips for the339

fixed set of Nod od pairs and for each point in the multi-dimensional numerical grid; so we can construct the library340

of time-dependent trip lengths. Based on this, we estimate the distributions of trip lengths (L̂rp) for the regional path341

p = {124}, for all 12 possible combinations of Nod and S values. Then, we determine the relative error ε between342

the estimated distributions of trip lengths (L̂rp) and the ones determined for the benchmark approach (Lrp), for each343

region r of path p = {124}:344

ε =
L̂rp − Lrp

Lrp
× 100% (11)
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Figure 8: Relative differences ε on the average trip lengths for the Origin (O), Intermediate (I), and Destination (D) regions. The results are depicted
for all combinations Nod and S values considered.

Ideally, ε should have a low value close to 0%. This means that the estimated distributions of trip lengths L̂rp345

should be close to the ones determined directly through the recalculation of the time-dependent virtual trips, i.e.346

L̂rp ≈ Lrp. Fig. 8 depicts the box-and-whisker diagrams of the relative differences ε, for all 12 combinations of Nod347

and S . The horizontal red lines represent the median of the ε distribution, while the red points represent the outliers.348

From Fig. 8, one can observe that the median of the ε distributions are close to 0%. Moreover, the interquartile-349

range of these distributions is highly centered around the medians, which shows that the relative errors are relatively350

small for all Nod and S values. This confirms the good performance of the developed methodological framework351

for estimating the distributions of trip lengths compared to the benchmark approach. However, we can observe the352

presence of several outliers. To better understand the source of these outliers, we analyze the relationship between353

the relative error ε and the number of virtual trips identified to estimate the trip length distribution, and then L̂rp.354

Recall that our methodology consists of identifying the R closest points of the multi-dimensional numerical grid in355

the vicinity of the observed mean speeds v∗r ,∀r = 1, . . . , 4. We then filter all the µ common virtual trips of all of these356

sets. We estimate the trip lengths l̂rp for all of the identified common trips, and update the trip length distribution357

L̂rp = {l̂rp},∀r ∈ p∧∀p ∈ ΩOD that has length µ. Fig. 9 depicts the relation between the relative error ε and the length358

of the estimated trip length distribution µ, for the Origin, Intermediate, and Destination regions of path p = {124}.359

These results include all the estimated trip lengths for all 12 combinations of Nod (i.e. Nod = 100, 200, 300, 400) and360

S (i.e. S = 3, 4, 5) values. One can observe that dispersion of the relative error ε reduces as the number of common361

trips µ increases. Low values of common virtual trips µ might not be statistically significant, leading to possible large362

relative errors ε. This explains the outliers of the box-and-whisker diagrams shown in Fig. 8.363

Overall, the previous analysis guides on how to properly select the Nod and S values. The results depicted in364

Fig. 8 show that the developed methodology performs well when estimating the time-dependent distributions of travel365
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Figure 9: Relative error ε as a function of the number of common trips µ, for all 12 combinations of Nod and S . The results are depicted for the
Origin, Intermediate and Destination regions of path p = {124}. The horizontal black dashed line indicates a reference point at ε = 0%.

distances even for low Nod = 100 and S = 3 values. However, this performance depends on the total number µ of366

common trips as shown in Fig. 9. By setting a small value of Nod, t can happen that one cannot identify a statistically367

significant number of common virtual trips µ. By increasing Nod, one might avoid the previously mentioned limitation.368

However, this increases the computational cost required to build the uniformly distributed multi-dimensional grid as369

one also increases the total number of shortest-trips in time to compute for each point of the grid.370

We also analyze the computational time required to estimate the distributions of trip lengths using the devel-371

oped methodological framework, and by the benchmark approach which requires the direct calculation of the traffic-372

dependent shortest-trips in time. Fig. 10 depicts the box-and-whisker diagrams of the computational times taken by373

developed methodology and the benchmark approach. As one can observe, our methodology requires a much lower374

computational time. The median computational time required by the developed methodology was 0.093 [s], compared375

to 0.48 [s] for the benchmark approach. Therefore, the developed methodological framework to determine the traffic-376

dependent trip lengths not only provides accurate estimations but also requires a much lower computational time than377

if one has to recalculate the shortest virtual trips in time.378
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Figure 10: Evolution of the IQR values as a function of S , for the Origin, Intermediate and Destination regions of path p = {124}. The results are
depicted for Nod = 100, 200, 300, 400.

In this section, we also investigate the validity of the assumption made in Sect. 2.2. We assumed that the topology379

of the Lrp function (defined in Eq. 4) can be approximated by a hyper-plane in the vicinity of v∗ in the R-dimensional380

space. We focus on the coefficient of determination calculated for fitting the Lrp function, and then predict l̂rp. A381

coefficient of determination approximately equal to 1, shows the existence of the multi-linear relationship between382

the prediction l̂rp and the predictor variables v∗r . Fig. 11 depicts the histograms of the coefficient of determination, for383

the Origin, Intermediate and Destination regions of path p = {124}. The results include all the estimations of the trip384

lengths l̂rp, for all 12 combinations of Nod (i.e. Nod = 100, 200, 300, 400) and S (i.e. S = 3, 4, 5) values. As one can385

observe in Fig. 11, the coefficient of determination is 1.0 for almost all the estimations, therefore validating our initial386

assumption.387
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3.4. Validation of the methodology to estimate traffic-dependent trip lengths on the L6 network388

In this section, we investigate how the methodology for estimating the time-dependent trip lengths performs in an389

MFD simulation environment, on the L6 network. This permits validating the developed methodology to estimate the390

traffic-dependent distributions of trip lengths against the benchmark approach discussed in Fig. 6. Moreover, based391

on the discussion of the previous section, we set Nod = 200 and S = 5.392

Fig. 12 and Fig. 13 depict the evolution of the traffic states, i.e. mean speeds vr,∀r = 1, . . . , 4, for both free-393

flowing and congested scenarios. The results are shown for the DUE (in Fig. 12) and SUE (in Fig. 13) conditions394

of the network. We model the traffic states for three different cases to determine the trip lengths. In the first one,395

we determine the trip lengths based on the shortest-trips in terms of distance, i.e. static trip lengths. The results are396

represented by the blue curve in Fig. 12 and by the red curve in Fig. 13, for the DUE and SUE conditions, respectively.397

In the second case, we estimate the trip lengths based on the developed methodology for each sub-interval δt in the398

outer-loop of the R-DTA, see Fig. 2. We refer to this case as the estimated one. The results are represented by the399

green and gold color curves in Fig. 12 and Fig. 13, for the DUE and SUE respectively. In the third case, we update400

the time-dependent trip lengths in the outer loop based on the R-DTA based on the calculation of the virtual trip set,401

given the observed traffic conditions, i.e. v∗r ,∀r = 1, . . . , 4, from the previous period δt. Recall that this represents the402

benchmark scenario, which is represented by the black dashed curves in Fig. 12 and Fig. 13. This third case is set up403

as the reference, but the computational costs are large, and it is not reasonable to apply it in practice. However, we404

consider it here just for validation purposes. For both the DUE and SUE conditions, we fix the choice set, and path405

flows for the benchmark approach, based on the results from the estimated case.406

We first analyze the traffic states in the regions predicted for the static trip lengths. For the free-flow scenario, and407

under DUE conditions, all drivers traveling on OD14 choose regional path p = {124}. The only two exceptions occur408

at t = 2200 and t = 2600 seconds, where drivers equally choose paths p = {124} and p = {134}. One can observe that409

the mean speed v1 decreases between ∼ 2000 and 4000 seconds. This is due to an increase in the demand traveling410

on OD14 during this period. After this period, the speed v1 slightly increases to ∼ 4.5 m/s. Between 4000 and 6000411

seconds, there is a demand peak on OD23. The demand of this OD is assigned interchangeable in the proportions of412

55% and 45% to the regional paths p = {23} and p = {213}, between consecutive assignment periods. This leads to413

small increases and decreases of the mean speeds in region 1 that are offset between consecutive assignment periods414

depending on which path is assigned the larger fraction of the demand. These fluctuations of the mean speed are also415

observed in regions 2 and 3, between 2000 and 3000 seconds. They are also offset. For example, at t = 2200 seconds,416

drivers also choose to travel on path p = {134}. This leads to an increase of v2, and a decrease of v3 at this time417

instant. After ∼ 3500 seconds, we observe a decrease of v2, and v3. This is thanks to the demand increase traveling on418

OD23. In region 4, between ∼2000 and 3500 seconds, the demand peak of drivers traveling on OD14 starts to arrive419

at their destination, leading to a reduction of v4. In the case of the SUE, ∼ 65% of the OD14 demand is assigned to420

path p = {124}, while the remaining is assigned to p = {134}. In the case of the OD23 demand, ∼ 55% is assigned421

to p = {23}. The remaining vehicles are assigned to p = {213}. The path flow distributions remain approximately422

constant over the whole simulation period, leading to the disappearance of the fluctuations present on v1, v2 and v3423

in the DUE conditions. In contrast, in the congested scenario, the fluctuations increase for the DUE conditions in424
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Figure 12: Evolution of the regional mean speeds vr ,∀r = 1, . . . , 4 in the regions of the L6 network for the free-flow (a-d) and congested (e-h)
scenarios. The results are depicted for the static (blue and gold curves), estimated (green and red curves), and calculated (black dashed curves) trip
lengths, and for the DUE.
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Figure 13: Same as in Fig. 12, but for the SUE.
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regions 1, 2, and 3. Between ∼ 2000 and 4000 seconds, the demand of OD14 is assigned interchangeably in the425

proportions of 95% and 5% to the paths p{124} and p = {134}. This explains the lagged increase and decrease of426

the mean speed in regions 2 and 3. The fluctuations observed in region 1, are explained by the different distances427

traveled by drivers on both paths and in region 1. The average trip length for p{124} in region 1 is 280 meters, while428

for p{134} in region 1 is 342 meters. Drivers traveling on path p{134} need more time to complete their trips in region429

1, than the ones traveling on path p{124}. Then, when regional path p{134} is chosen, the accumulation in region 1430

increases for a longer period, leading to a larger decrease of the mean speed v1. Also, in the congested scenario, for431

the static trip lengths and under SUE conditions, there are fours paths chosen by drivers: p{124}, p{134}, p{23} and432

p{213}. Similarly to the static SUE case, in the free-flow scenario, the path flows remain approximately constant over433

the whole simulation period, and the fluctuations vanish.434

The results depicted in Fig. 12 and Fig. 13 also highlight the importance of updating the trip lengths according to435

the changes in the traffic conditions over time. This is also in line with the discussion by Yildirimoglu and Geroli-436

minis (2014). We observe that in free-flow scenarios, the differences between the predicted traffic conditions for the437

static and the time-dependent trip lengths are not significant. However, these differences become evident when the438

congestion level in the regions increases.439

We now analyze how the estimation methodology performs in an MFD-simulation environment. For this, we440

compare the evolution of the traffic states between the estimated distributions of trip lengths and the benchmark441

approach. We observe in Fig. 12 and Fig. 13 that the predicted traffic states for the estimated trip lengths (green and442

gold color curves) match the evolution trend of the recalculated trip lengths (black dashed curves). This is true for443

both free-flow and congested scenarios and when the network is under DUE and SUE conditions.444

We also determine the relative error ε for the Origin, Intermediate, and Destination regions of all chosen paths,445

using Eq. 11. In the case of the trip length distributions, we calculate the relative differences (Φ) between the estimated446

trip length sample (l̂rp) and the one determined directly by the recalculation of the shortest virtual trip in terms of time447

(lrp):448

Φ =
l̂rp − lrp

lrp
× 100% (12)

Fig. 14 depicts the box-and-whisker diagrams of the relative differences ε and Φ, for the Origin (O), Intermediate449

(I) and Destination (D) regions of all used paths during the simulation period. The results are shown for the free-flow450

and congested scenarios and when the network is under DUE and SUE conditions. The horizontal red lines represent451

the median of the distributions; they are all close to 0%. One can also observe that the distributions are narrow452

around 0%, highlighting the good performance of the estimation methodology for the trip lengths. The estimation453

methodology performs worse for estimating the trip lengths for the Destination regions, as highlighted by the presence454

of some outliers. Nevertheless, we reinforce the fact that the distributions of the relative errors for the Destination455

regions are narrow around 0%. The standard deviations range between 1% to 2% for the Origin and Intermediate456

regions and between 4% to 8% for the Destination regions.457

4. Validation of the methodology to estimate traffic-dependent trip lengths on medium-sized city network458

In the same spirit as the previous section, we do similar testing of the proposed methodology for estimating the trip459

lengths in an MFD simulation environment, but for a medium-sized network and more complex demand scenarios.460

The medium-sized network is depicted in Fig. 15 (a), and includes the 3rd and 6th districts of Lyon and the city of461

Villeurbanne (France). We refer to this network as L63V. It contains 3127 nodes and 3363 links. It is partitioned462

into seven regions, for which we fitted the speed-MFDs depicted in Fig. 15 (b). The free-flow speeds are v f f
r =463

{5.2, 6.5, 5.8, 5.5, 5.4, 7.0, 6.0},∀r = 1, . . . , 7, while the critical speeds are vcrit.
r = {2.6, 3.3, 2.9, 2.8, 2.7, 3.5, 3.0},∀r =464

1, . . . , 7. Again, in this section, the speeds are expressed in m/s. The calibration of the speed-MFDs and partitioning465

of the city network follow Batista and Leclercq (2020). Fig. 15 (c) depicts the demand scenarios. We consider a total466

of 6 OD pairs: 1-2; 2-5; 4-4; 4-7; 5-1; and 6-4. We have a total of 73 regional paths. For calculating the library of trip467

lengths used for the online estimation, we have calibrated Nod and S as discussed in the previous sections. We then468

set Nod = 200 and S = 7.469
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Figure 14: Relative differences ε for the DUE and the (a) free-flow and (c) congested scenarios. Relative differences Φ for the SUE and the (b)
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Figure 15: (a) 3rd and 6th district Lyon network and the city of Villeurbarnne (L63V) divided into seven regions. (b) Speed-MFDs of the L63V
network. (c) Demand scenarios.

Fig. 16 and Fig. 17 depict the evolution of the traffic dynamics in the regions of the L63V network, for the DUE470

and SUE conditions, respectively. The blue and red curves represent the results predicted for the static trip lengths471

and the network under DUE and SUE conditions, respectively. The green and gold color curves represent the results472

for the estimated trip lengths when the network is under DUE and SUE conditions, respectively. The black dashed473

lines represent the traffic states predicted with the benchmark approach, where we recalculate the shortest-trips in time474
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Figure 16: Evolution of the regional mean speeds vr ,∀r = 1, . . . , 7 in the regions of the L63V network. The results are depicted for the static (blue
curve), estimated (green curve) and calculated (red curve) trip lengths, for the DUE conditions.

given the observed traffic conditions. One can observe the close evolution of the traffic states in the regions between475

the case when one estimates the distributions of the trip lengths and the benchmark approach. Moreover, these results476

also highlight the importance of updating the trip lengths according to the traffic dynamics in the regions.477
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Figure 17: Same as in Fig. 16, but for the SUE conditions.
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5. Discussion and conclusions478

In this paper, we develop a methodological framework for estimating traffic-dependent distributions of trip lengths,479

given the observed traffic conditions in the regions, and without the need to recalculate the set of virtual trips at each480

step. We discuss how this framework is incorporated in the R-DTA proposed by Batista and Leclercq (2019), to target481

the Deterministic and Stochastic User Equilibrium. We show that the significance level of paths and the trip lengths are482

influenced by the traffic dynamics in the regions. This is particularly observed for congested regions that cause detours483

on the shortest virtual trips in time. We validate the methodology to estimate time-dependent trip lengths on small and484

medium-size city networks, and in an MFD simulation environment. The estimated trip lengths allow us to predict485

the evolution of traffic dynamics with results similar to those from the calculation of the shortest virtual trips in terms486

of time. This shows the good performance of our methodological framework for estimating online traffic-dependent487

trip lengths for MFD-traffic models. Our simulation results also put in evidence the importance of updating the trip488

length distributions according to the observed traffic conditions, also following the discussion by Yildirimoglu and489

Geroliminis (2014). We also show that the computational time required by the developed methodological framework490

is much lower than the one required by a benchmark approach where one has to recalculate the set of traffic-dependent491

virtual trips and then the corresponding distributions of trip lengths.492

The current methodology for estimating traffic-dependent trip lengths requires the construction of a multi-493

dimensional grid where for each point one has to determine a set of time-dependent set of virtual trips. This re-494

quires the proper calibration of Nod and S points of the multi-dimensional grid, to ensure the good performance of495

the methodology. This permits constructing the library of distributions of trip lengths that will be used in the online496

estimation procedure, i.e. within an MFD-based simulation environment. Despite these calculations being done of-497

fline, they can become computationally expensive especially for large city networks, as they involve the computations498

of several thousands of shortest-trips in time. On the other hand, it is also important to note that the Monte Carlo499

procedure, used to sample the od pairs in the city network, neglects existing possible correlations between regional500

OD pairs. Driven by these limitations, it is desirable to develop a more robust sampling methodology of the od pairs501

in the city network, ensuring that: (i) the determined set is representative of the full set of possible trips connecting502

one OD pair; and (ii) the existing spatial correlations between regional OD pairs have been properly taken into ac-503

count. This will reduce the computational costs of gathering the library of regional paths and trip lengths, allowing504

the further extension of our methodological framework to large city networks. Another interesting line of research is505

to investigate how realistic are the determined time-dependent distributions of trip lengths against real trip patterns506

of drivers, e.g. trip patterns from Global Positioning System trajectories. One promising idea in this direction lies in507

the characterization of a time-dependent trip detour ratio (Yang et al., 2018), i.e. how much the real trips of drivers508

deviate from the shortest-trip in distance.509

Acknowledgements510

The authors thank the anonymous reviewers for their critical assessment of our paper as well as for their comments511

and suggestions that have much improved this paper. S. F. A. Batista and M. Menéndez acknowledge support by the512

NYUAD Center for Interacting Urban Networks (CITIES), funded by Tamkeen under the NYUAD Research Institute513

Award CG001 and by the Swiss Re Institute under the Quantum CitiesT M initiative. L. Leclercq acknowledges funding514

by the European Research Council (ERC) under the European Unions Horizon 2020 research and innovation program515

(grant agreement No 646592 - MAGnUM project).516

Authors contributions517

S. F. A. Batista contributed to the conceptualization, methodology, validation and results analysis, and writing518

of the original draft of the paper. Ludovic Leclercq and Mónica Menéndez contributed to the conceptualization,519

methodology and review & editing of the paper. All the authors have approved the final version of this paper submitted520

to publication.521

24



References522

Aboudolas, K., Geroliminis, N., 2013. Perimeter and boundary flow control in multi-reservoir heterogeneous networks. Transportation Research523

Part B: Methodological 55, 265–281.524

URL https://dx.doi.org/10.1016/j.trb.2013.07.003525

Ambühl, L., Loder, A., Zheng, N., Axhausen, K. W., Menendez, M., 2019. Approximative network partitioning for mfds from stationary sensor526

data. Transportation Research Record.527

URL https://dx.doi.org/10.1177/0361198119843264528

Arnott, R., 2013. A bathtub model of downtown traffic congestion. Journal of Urban Economics 76, 110–121.529

URL https://dx.doi.org/10.1016/j.jue.2013.01.001530

Batista, S., Leclercq, L., 2020. Regional dynamic traffic assignment with bounded rational drivers as a tool for assessing the emissions in large531

metropolitan areas. Transportation Research Interdisciplinary Perspectives 8, 100248.532

URL https://dx.doi.org/10.1016/j.trip.2020.100248533

Batista, S. F. A., Cantelmo, G., Menendez, M., Antoniou, C., 2021. On the calculation of a virtual set of trips for the calibration of aggregated534

traffic models. In: 100th Annual Meeting Transportation Research Board. Washington DC, USA.535

Batista, S. F. A., Leclercq, L., 2019. Regional dynamic traffic assignment framework for mfd multi-regions models. Transportation Science 53,536

1563–1590.537

URL https://dx.doi.org/10.1287/trsc.2019.0921538

Batista, S. F. A., Leclercq, L., Geroliminis, N., 2019. Estimation of regional trip length distributions for the calibration of the aggregated network539

traffic models. Transportation Research Part B: Methodological 122, 192–217.540

URL https://dx.doi.org/10.1016/j.trb.2019.02.009541

Batista, S. F. A., Seppecher, M., Leclercq, L., in press. Identification and characterizing of the prevailing paths on a urban network for mfd-based542

applications. Transportation Research Part C: Emerging technologies.543

URL https://dx.doi.org/10.1016/j.trc.2020.102953544

Daganzo, C., 2007. Urban gridlock: Macroscopic modeling and mitigation approaches. Transportation Research Part B: Methodological 41, 49–62.545

URL https://dx.doi.org/10.1016/j.trb.2006.03.001546

Geroliminis, N., Daganzo, C., 2008. Existence of urban-scale macroscopic fundamental diagrams: Some experimental findings. Transportation547

Research Part B: Methodological 42, 759–770.548

URL https://dx.doi.org/10.1016/j.trb.2008.02.002549

Geroliminis, N., Haddad, J., Ramezani, M., 2013. Optimal perimeter control for two urban regions with macroscopic fundamental diagrams: a550

model predictive approach. IEEE Transactions on Intelligent Transportation Systems 14, 348–359.551

URL https://dx.doi.org/10.1109/TITS.2012.2216877552

Godfrey, J. W., 1969. The mechanism of a road network. Traffic Engineering and Control 11, 323–327.553

URL https://trid.trb.org/view.aspx?id=117139554

Haddad, J., 2017. Optimal perimeter control synthesis for two urban regions with aggregate boundary queue dynamics. Transportation Research555

Part B: Methodological 96, 1–25.556

URL https://dx.doi.org/10.1016/j.trb.2016.10.016557

Haitao, H., Yang, K., Liang, H., Menendez, M., Guler, S. I., 2019. Providing public transport priority in the perimeter of urban networks: A bimodal558

strategy. Transportation Research Part C: Emerging Technologies 107, 171 – 192.559

URL https://dx.doi.org/10.1016/j.trc.2019.08.004560

Ingole, D., Mariotte, G., Leclercq, L., 2020. Perimeter gating control and citywide dynamic user equilibrium: A macroscopic modeling framework.561

Transportation Research Part C: Emerging Technologies 111, 22 – 49.562

URL https://dx.doi.org/10.1016/j.trc.2019.11.016563

Jamshidnejad, A., Papamichail, I., Papageorgiou, M., De Schutter, B., 2017. Sustainable model-predictive control in urban traffic networks: Effi-564

cient solution based on general smoothening methods. IEEE Transactions on Control Systems Technology 26 (3), 813–827.565

URL https://dx.doi.org/10.1109/TCST.2017.2699160566

Jin, W.-L., 2020. Generalized bathtub model of network trip flows. Transportation Research Part B: Methodological 136, 138 – 157.567

URL https://doi.org/10.1016/j.trb.2020.04.002568

Kouvelas, A., Saeedmanesh, M., Geroliminis, N., 2017. Enhancing model-based feedback perimeter control with data-driven online adaptive569

optimization. Transportation Research Part B: Methodological 96, 26–45.570

URL https://dx.doi.org/10.1016/j.trb.2016.10.011571

Lamotte, R., Geroliminis, N., 2016. The morning commute in urban areas: Insights from theory and simulation. In: Transportation Research Board572

95th Annual Meeting. pp. 16–2003.573

Leclercq, L., Sénécat, A., Mariotte, G., 2017. Dynamic macroscopic simulation of on-street parking search: A trip-based approach. Transportation574

Research Part B: Methodological 101, 268–282.575

URL https://dx.doi.org/10.1016/j.trb.2017.04.004576

Lopez, C., Leclercq, L., Krishnakumari, P., Chiabaut, N., van Lint, H., 2017. Revealing the day-to-day regularity of urban congestion patterns with577

3d speed maps. Scientific Reports 7, 1–11.578

URL https://dx.doi.org/10.1038/s41598-017-14237-8579

Mariotte, G., Leclercq, L., 2019. Flow exchanges in multi-reservoir systems with spillbacks. Transportation Research Part B: Methodological 122,580

327 – 349.581

URL http://www.sciencedirect.com/science/article/pii/S019126151731175X582

Mariotte, G., Leclercq, L., Laval, J. A., 2017. Macroscopic urban dynamics: Analytical and numerical comparisons of existing models. Transporta-583

tion Research Part B 101, 245–267.584

URL https://dx.doi.org/10.1016/j.trb.2017.04.002585

25

https://dx.doi.org/10.1016/j.trb.2013.07.003
https://dx.doi.org/10.1177/0361198119843264
https://dx.doi.org/10.1016/j.jue.2013.01.001
https://dx.doi.org/10.1016/j.trip.2020.100248
https://dx.doi.org/10.1287/trsc.2019.0921
https://dx.doi.org/10.1016/j.trb.2019.02.009
https://dx.doi.org/10.​1016/​j.​trc.​2020.​102953
https://dx.doi.org/10.1016/j.trb.2006.03.001
https://dx.doi.org/10.1016/j.trb.2008.02.002
https://dx.doi.org/10.1109/TITS.2012.2216877
https://trid.trb.org/view.aspx?id=117139
https://dx.doi.org/10.1016/j.trb.2016.10.016
https://dx.doi.org/10.1016/j.trc.2019.08.004
https://dx.doi.org/10.1016/j.trc.2019.11.016
https://dx.doi.org/10.1109/TCST.2017.2699160
https://doi.org/10.1016/j.trb.2020.04.002
https://dx.doi.org/10.1016/j.trb.2016.10.011
https://dx.doi.org/10.1016/j.trb.2017.04.004
https://dx.doi.org/10.1038/s41598-017-14237-8
http://www.sciencedirect.com/science/article/pii/S019126151731175X
https://dx.doi.org/10.1016/j.trb.2017.04.002


Mohajerpoor, R., Saberi, M., Vu, H. L., Garoni, T. M., Ramezani, M., 2019. H∞ robust perimeter flow control in urban networks with partial586

information feedback. Transportation Research Part B: Methodological.587

URL https://dx.doi.org/10.1016/j.trb.2019.03.010588

Ramezani, M., Haddad, J., Geroliminis, N., 2015. Dynamics of heterogeneity in urban networks: aggregated traffic modeling and hierarchical589

control. Transportation Research Part B 74, 1–19.590

URL https://dx.doi.org/10.1016/j.trb.2014.12.010591

Saeedmanesh, M., Geroliminis, N., 2017. Dynamic clustering and propagation of congestion in heterogeneously congested urban traffic networks.592

Transportation Research Procedia 23, 962–979.593

URL https://dx.doi.org/10.1016/j.trb.2017.08.021594

Sbayti, H., Lu, C.-C., Mahmassani, H. S., 2007. Efficient implementation of method of successive averages in simulation-based dynamic traffic595

assignment models for large-scale network applications. Transportation Research Record: Journal of the Transportation Research Board 2029,596

22–30.597

URL https://dx.doi.org/10.3141/2029-03598

Sirmatel, I. I., Geroliminis, N., 2017. Economic model predictive control of large-scale urban road networks via perimeter control and regional599

route guidance. IEEE Transactions on Intelligent Transportation Systems.600

URL https://dx.doi.org/10.1109/TITS.2017.2716541601

Sirmatel, I. I., Geroliminis, N., 2018. Economic model predictive control of large-scale urban road networks via perimeter control and regional602

route guidance. IEEE Transactions on Intelligent Transportation Systems 19, 1112–1121.603

URL https://dx.doi.org/10.1109/TITS.2017.2716541604

Vickrey, W., 2020. Congestion in midtown manhattan in relation to marginal cost pricing. Economics of Transportation 21, 100152.605

URL https://dx.doi.org/10.1016/j.ecotra.2019.100152606

Yang, H., Ke, J., Ye, J., 2018. A universal distribution law of network detour ratios. Transportation Research Part C: Emerging Technologies 96, 22607

– 37.608

Yang, K., Menendez, M., Zheng, N., 2019. Heterogeneity aware urban traffic control in a connected vehicle environment: A joint framework for609

congestion pricing and perimeter control. Transportation Research Part C: Emerging Technologies 105, 439 – 455.610

URL https://dx.doi.org/10.1016/j.trc.2019.06.007611

Yang, K., Zheng, N., Menendez, M., 2018. Multi-scale perimeter control approach in a connected-vehicle environment. Transportation Research612

Part C: Emerging Technologies 94, 32–49.613

URL https://dx.doi.org/10.1016/j.trc.2017.08.014614

Yildirimoglu, M., Geroliminis, N., 2014. Approximating dynamic equilibrium conditions with macroscopic fundamental diagrams. Transportation615

Research Part B: Methodological 70, 186–200.616

URL https://dx.doi.org/10.1016/j.trb.2014.09.002617

Yildirimoglu, M., Ramezani, M., Geroliminis, N., 2015. Equilibrium analysis and route guidance in large-scale networks with mfd dynamics.618

Transportation Research Part C: Emerging Technologies 59, 404 – 420, special Issue on International Symposium on Transportation and Traffic619

Theory.620

URL https://dx.doi.org/10.1016/j.trc.2015.05.009621

Yildirimoglu, M., Sirmatel, I. I., Geroliminis, N., 2018. Hierarchical control of heterogeneous large-scale urban road networks via path assignment622

and regional route guidance. Transportation Research Part B: Methodological 118, 106–123.623

URL https://dx.doi.org/10.1016/j.trb.2018.10.007624

Zhong, R., Chen, C., Huang, Y., Sumalee, A., Lam, W., Xu, D., 2017. Robust perimeter control for two urban regions with macroscopic fundamental625

diagrams: A control-lyapunov function approach. Transportation Research Procedia 23, 922–941.626

URL https://dx.doi.org/10.3141/2493-09627

26

https://dx.doi.org/10.1016/j.trb.2019.03.010
https://dx.doi.org/10.1016/j.trb.2014.12.010
https://dx.doi.org/10.1016/j.trb.2017.08.021
https://dx.doi.org/10.3141/2029-03
https://dx.doi.org/10.1109/TITS.2017.2716541
https://dx.doi.org/10.1109/TITS.2017.2716541
https://dx.doi.org/10.1016/j.ecotra.2019.100152
https://dx.doi.org/10.1016/j.trc.2019.06.007
https://dx.doi.org/10.1016/j.trc.2017.08.014
https://dx.doi.org/10.1016/j.trb.2014.09.002
https://dx.doi.org/10.1016/j.trc.2015.05.009
https://dx.doi.org/10.1016/j.trb.2018.10.007
https://dx.doi.org/10.3141/2493-09

	Introduction
	R-DTA and traffic-dependent paths and trip lengths on regional networks: methodological framework
	Estimation of trip lengths distributions: a review
	Estimation of traffic-dependent trip lengths
	Discretization of the N-dimensional space
	Calculation of the set of shortest virtual trips in time
	Estimation of rp given v*

	Regional Dynamic Traffic Assignment with time-dependent trip lengths

	Analysis of the time-dependent trip lengths on a small city network
	Description of the test network and demand scenarios
	Time-dependence of the trip lengths on the traffic states
	Calibration of Nod and S
	Validation of the methodology to estimate traffic-dependent trip lengths on the L6 network

	Validation of the methodology to estimate traffic-dependent trip lengths on medium-sized city network
	Discussion and conclusions

