
HAL Id: hal-03157462
https://hal.science/hal-03157462v1

Submitted on 3 Mar 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

PathTracing: Raising the Level of Understanding of
Processing Latency in Heterogeneous MPSoCs

Claudion Rubattu, Francesca Palumbo, Shuvra S Bhattacharyya, Maxime
Pelcat

To cite this version:
Claudion Rubattu, Francesca Palumbo, Shuvra S Bhattacharyya, Maxime Pelcat. PathTrac-
ing: Raising the Level of Understanding of Processing Latency in Heterogeneous MPSoCs.
DroneSE and RAPIDO ’21: Methods and Tools, Jan 2021, Budapest, Hungary. pp.46-50,
�10.1145/3444950.3447282�. �hal-03157462�

https://hal.science/hal-03157462v1
https://hal.archives-ouvertes.fr


PathTracing: Raising the Level of Understanding of
Processing Latency in Heterogeneous MPSoCs

Claudio Rubattu
University of Sassari

Sassari, Italy
crubattu@uniss.it

INSA Rennes, IETR UMR CNRS 6164
Rennes, France

claudio.rubattu@insa-rennes.fr

Francesca Palumbo
University of Sassari

Sassari, Italy
fpalumbo@uniss.it

Shuvra S. Bhattacharyya
University of Maryland

College Park, USA
ssb@umd.edu

Maxime Pelcat
INSA Rennes, IETR UMR CNRS 6164

Rennes, France
maxime.pelcat@insa-rennes.fr

ABSTRACT
Understanding and predicting response time is a major concern in
most systems. However, the complexity of heterogeneous Multi-
processor Systems-on-Chips (MPSoCs) makes it difficult to provide
early evaluation of system execution latency when executing par-
allel applications. In particular, knowledge about the factors that
determine latency is a must in order to effectively drive system-level
scheduling and applicative design decisions.

In this paper, we aim at demonstrating that a novel knowl-
edge level is required for analyzing the key factors that influence
system execution latency. For that purpose, we propose the con-
cept of Jaccard Gantt similarity score and demonstrate that the
straightforward method consisting in scheduling a Directed Acyclic
Graph (DAG) of tasks, each with a Deterministic Actor Execution
Time (DAET) set from individual task characterization, leads to low
Jaccard Gantt similarity scores. We thus propose a new level of
system analysis, called PathTracing, that relies on an evaluation of
the application critical path and on an analysis of the interferences
caused both by scheduling and by architectural costs.

KEYWORDS
model-based design, early performance analysis, MPSoC, design
space exploration, processing latency, learning-based model.
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1 INTRODUCTION
High performance embedded systems and Cyber-Physical Sys-
tems (CPS) now process, close to sensors, complex workloads that
need to be spread over heterogeneous and specialized Processing
Elements (PEs) to comply with systems timing constraints. In this
context, performance measurement is crucial in achieving efficient
solutions with respect to the relevant Key Performance Indica-
tors (KPIs), such as throughput and latency. Latency, also called
system execution latency or response time, has varied definitions in
various communities. Indeed, its definition requires the notion of a
unit of execution, potentially indefinitely repeated on input data
streams, whose lifetime defines latency. Regardless of the type of
applicative workload (signal processing, stream processing, batch
processing, etc.), response time is determined by a succession of
causal, time consuming mechanisms that are usually gathered into
a Directed Acyclic Graph (DAG) of data-dependent tasks, repre-
senting one execution iteration. The application DAG then serves
as the entry point for execution time studies [4]. On the hardware
level, heterogeneous MPSoCs are efficient solutions when execut-
ing multi-functional applications with workloads that can vary
depending on timing requirements. However, when an application
is parallelized and scheduled on an MPSoC, the performance of the
system in terms of response time is difficult to predict and under-
stand from application and architecture models. Indeed, latency is
a highly non-linear property, affected by many software, hardware,
and scheduling phenomena.

This paper demonstrates that predicting an execution latency
by scheduling an application Directed Acyclic Graph (DAG) and
setting Deterministic Actor Execution Time (DAET) timings (i.e.
average timings statistically representative of the unitary process-
ing time of a task) leads to a very poor modeling, even for static
stream processing applications. Indeed, the structure of the parallel
execution, as represented by a Gantt chart, is lost, and the execution
variabilities due to cache misses and inter-process synchronizations
make such predictions unrealistic.

As a consequence, the paper calls for, and present preliminary
results on, a new level of system execution knowledge. This knowl-
edge level will be called PathTracing throughout the document. It
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consists of extracting from an application model a Longest-Latency
Path (LLP), i.e. a list of causal elements that embed both application-
related latency causes (the critical path) but also hardware related
interferences increasing the real latency.

Generalizing this concept, PathTracing is a new form of activity,
as it represents the emphpressure that an application workload
puts on a hardware subtrate, resulting in a particular KPI [15]. In
the current context, the LLP is the application activity for system
execution latency. Having such information on the application
workload opens up a large set of studies, ranging from abstract
Model of Architecture (MoA) design to scheduling optimizations
and design space exploration.

To the extent of our knowledge, this paper constitutes the first
effort to decompose from application behaviors the determining
factors of system response latency in an MPSoC. The contributions
of the paper are:

• a method to compare Gantt charts,
• a demonstration that classically simmulated Gantt charts do
not match real executions,

• a proposition of a new knowledge level for analyzing system
latency.

The paper is organized as follows: Section 2 proposes an analysis
of the different levels of architecture knowledge a designer can
incorporate in a latency evaluation method, introducing the new
PathTracing level. Section 3 proposes a new metric to compare two
Gantt charts and Section 4 uses this metric on use cases to show
that a latency evaluation exploiting exact scheduling information
as well as DAET extracted from tasks profiling fails modeling the
real Gantt chart. Finally, Section 5 shows on the same examples
what information can be displayed by using PathTracing, before
Section 6 concludes the study.

2 UNDERSTANDING THE CAUSES OF
PROCESSING LATENCY IN A REAL-LIFE
MPSOC

This section discusses the methods that can be employed to simu-
late the execution on an MPSoC of an application represented by a
DAG of data-triggered tasks, where vertices are tasks and directed
edges are messages sent from one task to another. We specifically
target a single-rate DAG (srDAG) representation, a subset of the
Synchronous Dataflow (SDF) [9] Model of Computation (MoC)
where all data produced by a task on a given edge are consumed
by the reveiving task when it executes. Such an srDAG can be gen-
erated either from a static tagged model such as SDF to represent
a period in a periodic time behavior, or can be generated from a
parameterized or dynamic application MoC to represent applicative
behavior for a limited portion of time. The srDAG has the advantage
of simplicity at the cost of a lack of scalability for heavily multirate
applications (e.g., see [6]). This srDAG entry point (depicted in Fig-
ure 1a) is chosen because it is common to many studies in the litera-
ture (e.g., [2, 4, 10–12]) and can be generated from many applicative
representations, ranging from advanced Dataflow (DF) algorithms
(such as SDF, Cyclo-Static Dataflow (CSDF) [1] or Parameterized
and Interfaced Synchronous Dataflow (PiSDF) in our case [3]) to
real-time application task sets.

Knowledge on latency determining factors
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Figure 1: Latency evaluation strategies depending on the
level of architecture knowledge.

2.1 Discussion on the Levels of Exploitable
Architectural Information

The next sections list incremental levels of architectural knowledge
that can be used when modeling response time of a srDAG on an
MPSoC. The discussion starts low architectural knowledge (A) up
to observation of the running target with functional code (D) and
the new proposed PathTracing level (E).

2.1.1 Level A –DAGwith Sigle DAET Tags. Several works have
analysed the theoretical latency of theDAGdepending on its Critical
Path (CP) [7, 13, 17]. As shown in Figure 1b, the DAG is divided
into task chains starting from each source node (with no predeces-
sor) and ending to every sink node (with no successor), that we
will call paths. The latency evaluation from CP analysis is usually
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performed by using heuristic approaches based on path exploration
and task characterizations. For each CP candidate, DAG nodes are
tagged with timing weights. Thus, the CP is characterized by the
following assumptions: i) it consists of a task chain that maximizes
the sum of contributions, and ii) the CP determines the latency of
the whole application (as shown in Figure 1c. In this context, since
no information about the architecture is used, CP is considered to
freely run on a system with unbounded (or large enough) memory
and infinite (or as many as necessary) number of homogeneous
PEs, as depicted in Figure 1d-A).

2.1.2 Level B – DAG with Sigle DAET Tags and Architecture
with a Specified Number of PEs. With a known number of
homogeneous PEs and a bounded memory (see Figure 1d-B), a
heuristic-based scheduling/mapping strategy can be applied in or-
der to achieve an optimized solution in terms of timing performance
[16]. This procedure leads to a more realistic model of execution
in which paths do not need to be analyzed in the latency repre-
sentation, usually depicted with a Gantt chart. As tasks share PEs
and messages share memory, contentions appear on architectural
resources among tasks or communication operations. These con-
tentions lead to interferences in DAG execution, which in turn
increase latency and, if not predicted, reduce latency predictability.

2.1.3 Level C – Architecture with a Specified Number of PEs
of Different Types, and DAG tagged with one DAET per PEs
Type. A more accurate solution in terms of the DAG execution
time can be achieved by distinguishing the types of the PEs in the
target system (see Figure 1d-C). Nevertheless, with respect to the
homogeneous case, this implies to provide latency prediction with
the characterization of: i) the tasks for each type of PE, and ii) the
elements of the hardware infrastructure. To do so, a Design Space
Exploration (DSE) consisting of a statistical evaluation of the target-
dependent costs associated to computation and communicationmay
be required.

2.1.4 Level D (Trace) – DAG with Start and End Time Tags
and Real Architecture. Figure 1d-D) highlights the differences
between i) themodel of the system interconnects and the bus system
linking multiple PEs, and ii) the abstract memory and its actual
hierarchical structure. This case corresponds to an execution trace,
extracting from code executions the start and end times of all tasks.
It can be used as the reference Gantt chart to be looked for by
models. At this post-execution stage, system latency is perfectly
known. However, such a trace does not provide a full knowledge on
the execution, as only start and end times of tasks are known but
the causal chain of latency-causing phenomena is still unknown.

2.1.5 Proposed Level E: PathTracing – DAG with Start and End
Time Tags, Full Scheduling Information and Architecture
with a Specified Number of PEs. We propose PathTracing as a
new level of latency explaining system model (Figure 1d-E). This
level extracts the LLP as the subset of tasks causing latency. At a
PathTracing level, the objective of the analysis is to be able to tag
the Gantt chart, knowing whether a particular task execution or
message effectively belongs to the Longest-Latency Path (LLP), and
to remove all tasks that do not participate to latency. Pathtracing
can be evaluated by a heuristic, evaluating start and end times, and
tracing the most probable causal chain. Apart from critical path

tasks, the LLP may contain different types of interferences. Sched-
uling interferences are tasks which execution delay the execution
of a critical path task. Dependency interferences are tasks, or parts
of tasks representing waiting time by a critical path task for data
produced by non-CP tasks. Other types of interferences can be de-
fined and traced, to refine the level of understanding on the parallel
execution.

The next sections will demonstrate the need for the PathTracing
level by showing the large differences between a predicted Gantt
chart of levels A) to C) and the measured Gantt chart of level D.
For this purpose, the next section introduces a novel Gantt chart
comparison method based on Jaccard distance.

3 ON USING JACCARD SCORE TO EVALUATE
A GANTT CHART PREDICTION

For each step in Figure 1d, example Gantt charts are shown in Fig-
ure 1e (where the CP actors are depicted in strong blue). Although
level C requires a rather high knowledge on tasks execution times
and tasks causality, we aim at demonstrating on real use cases that
it provides low accuracy estimations and improper explainability
of the real execution. For evaluating this mismatch, we translate
the concept of Jaccard score for comparing Gantt charts. We name
this metric Jaccard Gantt Similarity (JGS), and compute it by apply-
ing the method of Intersection over Union (IoU) to the context of
parallel processing. This score between 0 and 1 indicates the degree
of similarity between two Gantt charts X and Y:

𝐺𝑆 (𝑋,𝑌 ) =
𝑇∑
𝑖=0

[𝐼𝑜𝑈 (𝑋𝑖 , 𝑌𝑖 )] ·𝑤𝑖 =

=

𝑇∑
𝑖=0

[
𝑎𝑟𝑒𝑎(𝑋𝑖 ∩ 𝑌𝑖 )
𝑎𝑟𝑒𝑎(𝑋𝑖 ∪ 𝑌𝑖 )

]
· 𝑎𝑟𝑒𝑎(𝑌𝑖 )
𝑎𝑟𝑒𝑎(𝑌 )

(1)

where T is the number of tasks present in the srDAG, and Xi and
Yi represent the boxes associated to the execution times of the i-th
task in X and Y respectively. Xi and Yi are represented as rectangles
with arbitrary constant height. Since tasks affect execution with
different weights, wi balances the contributions of the different
tasks.

With respect to the example shown in Figure 1, a comparison
between the Gantt charts of the level C and D leads to a GS = 0.43
(see Figure 1f). In reality in an MPSoC, the mismatch can be much
higher, as shown in the next section, due to variations in tasks
processing times and communications.

4 GANTT SIMILARITY ANALYSIS APPLIED
TO USE CASES

The chosen applications for testing Gantt similarities have been
designed in the PREESM dataflow compiler [14], which uses a non-
preemptive ASAP multi-core list scheduling [8] to generate code
for a variety of MPSoCs. PREESM manipulates parameterized appli-
cations so a variety of data-, task-, and pipeline-parallel application
versions can be manipulated. Three applications have been eval-
uated for this study, each with 6 parameter configurations, and
run onto an 8-core heterogeneous Exynos processor with 4 ARM
Cortex-A7 cores and 4 ARM Cortex-A15 cores [5].



RAPIDO ’21, Jan 20, 2021, Budapest, Hungary Rubattu, et al.

4.1 Use-case Applications
In the context of image/video processing, the selected applications
show distinct features in terms of tasks, firing, and parallelism.
These have been evaluated in 6 different scenarios by tuning their
parameters in order to change the dataflow graph structure (see
Table 1)
Work-dominated — Stabilization: The video stabilization appli-
cation reduces the effects of undesired camera movements during
video recording. Post-processing techniques make it possible to
compute image motion, leading to the generation of a new video in
which movements are compensated. For each frame, the proposed
solution1 consists of a task graph with only one very costly data
parallel actor. In this application running on 8 cores, the latency
is due more to the total amount of processing (work) than to the
application critical path because the critical path is very short.
Balanced Work and Span — Stereo Matching: From the com-
parison of two different regularized images of the same scene, the
stereo matching application computes the depth information per
pixel. Indeed, its values corresponds to the distance between the
locations of the same pixel in the two views. The considered imple-
mentation2 running on 8 cores presents a latency due to both the
total amount of processing (work) and to the application critical
path.
Span-dominated — SIFT: In the context of computer vision, Scale
Invariant Feature Transform (SIFT) computation is an algorithm
used to detect representative features of an image. Keypoints are
extracted by the comparison between corresponding points of the
input image and of the same image evaluated in its blurred versions
and at different resolutions. In particular, the evaluated implemen-
tation3 shows a limited parallelism so the latency is caused by the
application critical path.

Table 1: Instances of the edges and actors in the 6 scenarios
of the use-case applications.

S STABILIZATION STEREO SIFT
actors edges actors edges actors edges

1 9 41 24 80 101 550
2 13 57 28 94 118 645
3 15 65 32 102 135 740
4 22 93 38 136 152 835
5 73 297 74 331 172 951
6 127 513 218 1099 222 1229

4.2 Jaccard Gantt Similarity (JGS) Evaluation
Results

The level C) of Figure 1 uses advanced knowledge on the target
rchitecture. Thus, one would expect that the real Gantt chart of
level D) is close to the predicted Gantt chart of level C). However,
Figure 2 shows that on all considered applications, the Jaccard Gantt
similarity score is low, even carefully selecting DAET timings for
task executions. Figure 2 demonstrates that lavel C) is not sufficient
1github.com/preesm/preesm-apps/.../org.ietr.preesm.stabilization
2github.com/preesm/preesm-apps/.../org.ietr.preesm.stereo
3github.com/preesm/preesm-apps/.../SIFT

to model the latency in a complex MPSoC, and that an analysis of
the latency-causing features in the application is needed. In details,
for the Stereo application, the accuracy of the Gantt estimation
decreases along the scenarios, as the number of actors raises. In
the other two applications dominated by work or span, the values
of JGS does not present high variations. However, the similarity
between the predicted and the measured Gantt charts remains low
for all the applications, showing the limits of the latency estimates
when.

Figure 2: Gantt similarity evaluation through Jaccard score
between Levels C (scheduling-based simulation with actors
DAET) and D (board measurements). 1 refers to a perfect
match. We see that in most case, the match is under 40%, i.e.
the Gantt intersection is less than 40% of the Gantt union.

5 PATHTRACING RESULTS ON THE
CONSIDERED APPLICATIONS

This section illustrates results that can be obtained by applying
PathTracing analysis on the three applications. PathTracing is per-
formed through a heuristic which detailed description is not covered
in this publication. After a critical path evaluation through inter-
task slack analysis, the heuristic traces successively scheduling and
dependency interferences. Figures 3 to 5 show PathTracing results
on the three applications in a fixed Scenario.

These results have in fact been used to determine that, on the
considered MPSoC, the stabilization application is work-dominated,
the stereo matching application is balanced between its work and
span contribution, and the Scale-Invariant Feature Transform (SIFT)
computation application is span-dominated. Indeed, PathTracing
allows a designer to precisely observe if the critical path dominates
latency (span domination), if application concurrency "fills" the
architecturewith processingwhilemaking critical path negligible in
its effect on latency (work domination), or if critical path and work
both have a non-negligible effect on the measure latency. The ratio
between CP tasks and interferences shows how much the scheduler
has added new tasks in the LLP, increasing latency due to the

github.com/preesm/preesm-apps/.../org.ietr.preesm.stabilization
github.com/preesm/preesm-apps/.../org.ietr.preesm.stereo
github.com/preesm/preesm-apps/.../SIFT
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Figure 3: PathTracing of the Stabilization, work-dominated
application.

Figure 4: PathTracing of the StereoMatching, balancedwork
and span application.

Figure 5: PathTracing of the SIFT point computation, span-
dominated application.

amount of work. Additionally, depending on the sophistication of
the heuristics used for computing PathTracing, and on the number
of defined interference categories, more insights can be given on
the causes of an underperforming parrallel execution.

6 CONCLUSION
In this work, a new level of multicore execution analysis has been
proposed, and called PathTracing. PathTracing aims at explaining
the factors determining system execution latency in an MPSoC. A
new metric called Gantt Jaccard Similarity has been introduced
in order to evaluate Gantt Chart similarity between a simulation
and the real execution of an application. Tested on three use cases
running on an 8-core heterogeneous MPSoC, this Gantt assessment
shows the strong difficulties related to predicting and understand-
ing response time based on DAET. Moreover, even knowing ex-
act start and end dates of actors execution (level D), the cause of
potential execution underperformances remain unknown. In this

context, PathTracing aims at providing latency explainability for
applications described by a single-rate (sr)DAG MoC tagged with
monitored execution times by highlighting in the Gantt chart the
tasks that do affect latency, and by classifying them into either
critical path or a form of interference.

The considered applications for the demonstration are image/video
stream processing applications and cover span-dominated, work
dominated, as well as balanced work/span application cases. Task
processing time cost is hypothesized to dominate inter-task com-
munication costs, and the list of tasks effectively causing latency is
referred to as Longest-Latency Path (LLP).

Apart from demonstrating the need for such a new level of ex-
ecution understanding, this paper shows preliminary results on
PathTracing-level latency analysis. Future work will aim at consol-
idating these results, generating explainable Gantt charts that will
offer a new tool to system designers for evaluating their MPSoC-
based designs.
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