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Constrained state estimation for nonlinear systems:
a redesign approach based on convexity

Daniele Astolfi, Pauline Bernard, Romain Postoyan and Lorenzo Marconi

Abstract—Given a plant whose trajectories of interest remain
in a known compact set and an associated observer, we propose
a general framework to modify this observer so that its state
remains in a given convex set for all times, without altering the
observer guaranteed performances in terms of convergence and
robustness to external disturbances. The methodology can be
applied to any time-varying continuous-time, discrete-time and
hybrid system/observer, for which a quadratic Lyapunov function
is used for the analysis. The proposed approach is relevant, for
instance, to remove the peaking phenomenon, to attenuate the
effect of impulsive outliers in the measurement, to avoid aberrant
estimates during transients, or to guarantee a given range for
variables in embedded systems.

Index Terms—Nonlinear observers, Lyapunov methods, hybrid
dynamical systems, discrete-time, nonlinear systems.

I. INTRODUCTION

A. Motivation

Numerous observer design methods are available in the
literature for continuous-time systems, see, e.g., [1]–[14],
discrete-time systems, see, e.g. [1], [15]–[21], and hybrid
systems [22], see, e.g. [23]–[36], to mention a few. In general,
the robust convergence of the state estimate to the plant state is
ensured, under suitable conditions. Now, in many applications,
the state of the plant is evolving in a given compact set
X describing the set of interest of the variables. However,
unless the observation problem is formulated as a constrained
optimization problem from the start [37], the estimated state
generated by the observer could in principle leave the set X
for some time, because of transient dynamics or perturbations.
These excursions outside X may be significant in terms of
amplitude and time, and may lead to the next issues.

• (Accuracy) When the estimate is outside X , the information
provided by the observer is likely to be inaccurate and so
potentially unexploitable by the user. A typical example is
the peaking phenomenon occurring in high-gain observers
[7].
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• (Aberrant estimates) The state estimate may violate the
physics of the plant. To give an example, when the con-
centrations of Lithium-ion in the electrodes of an electro-
chemical battery are estimated, e.g. [38], it may occur that
the estimated concentrations generated by the observer are
negative for some time, which is physically impossible. This
is the case in general for positive systems (see, e.g., [39]).

• (Implementation issues) When implementing an observer on
an embedded systems, we often need to specify the range
of the estimated states, and this range may be limited.

• (Destabilization) It may lead to instability in output feedback
designs, see e.g. [7].

• (Existence of observer dynamics) The observer dynamics
may not be well defined outside the set X . This issue is
typical when the observer is not implemented in the same
coordinates of the plant dynamics, see, e.g., [40]–[43].

A simple idea to address some of these issues is to saturate
or to project into X the state estimate generated by the
observer, while preserving its inner dynamics, as done in
the output feedback stabilization context [7], [40] or in the
context of discrete-time Kalman filtering [44]. This solution,
however, does not address some of the previous problems
(implementation issues and existence of observer dynamics) as
the inner observer state can still venture outside X . A natural
way to overcome these issues is to constrain the observer state
in a given set X̂ ⊃ X . This has nevertheless to be done with
care to preserve the observer convergence and performance. In
control problems, combining convergence with invariance con-
straints is typically handled through control barrier functions
[45], leading to the so-called safety control. However, those
methods do not transpose easily to estimation field because
the state, and thus the value of the Lyapunov function, are
unknown. Instead, several projection-based approaches have
been developed for specific classes of systems and observer
designs. In the context of continuous-time systems, projection-
based solutions have been proposed for high-gain observers in
[40], for Lur’e type systems in [46], and within the framework
of projected dynamical systems in [47] for exponentially
convergent observers with linear correction terms. Projection
methods are also very well-known in the context of constrained
Kalman filters (KF) for discrete-time systems with the so-
called equality constrained KF (ecKF), which was proved to
provide a smaller state error covariance than the unconstrained
algorithm. An alternative method named system projection
approach (spKF) is to implement the unconstrained KF on the
projected linear system through a model reduction as proposed
in [48]. More generally, nonlinear constraints have also been
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considered as extra measurements [49], but mainly treated
via linearization [37], [44], [49], or by taking the first two
orders of the Taylor development around the estimate leading
to quadratic equality constraints in [50]. A surveys of all
those methods (including inequality constraints) is available in
[51]. More recently, the case of time-varying linear equality
constraints was also considered in [52] for a continuous-time
Kalman filter. Those techniques are however not easy to extend
to other classes of observers or of constraints (nonlinear,
inequality) and can be hard to implement on-line in presence
of limited computational resources.

B. Contributions
To the best of these authors’ knowledge, there does not

exist a generic solution addressing the problem of constraining
the observer dynamics in a given compact set for continuous-
time (CT in short), discrete-time (DT) or hybrid systems. All
the designs proposed in literature are developed ad-hoc for
specific classes of observers. In this context, the objective of
this paper is to present a general methodology, that addresses
the problem of constraining the state of a given observer into a
prescribed compact set X̂ , strictly containing X , for all times,
and preserving, at the same time, the guaranteed convergence
or performance of the observer inside X̂ . To characterize the
performances of the observer, we assume the knowledge of a
(possibly time-varying) quadratic Lyapunov function for the
estimation error, whose evolution along the solutions to the
estimation error system is bounded by a given supply rate.
Hence, the performances are quantified by the supply rate
associated to the considered Lyapunov function. Our goal
is to modify the observer such that those bounds are not
changed – we can then say that the guaranteed performances
are preserved – while ensuring that the internal state of the
observer remains in the given compact set X̂ . For instance, if
the derivative of the Lyapunov function along trajectories is
bounded by a negative function, such negativity is preserved.

The main ideas of this paper stem from [41], [42] where a
gradient redesign approach, based on a convexity assumption,
is used for continuous-time high-gain observers implemented
in coordinates which are different with respect to those of the
plant’s dynamics. Following the same spirit, this approach was
then adapted to the discrete-time case in our preliminary work
[53] by adding fictitious jumps in-between each (sampling)
discrete times. The methodology in [53] has been then used
in [43] for a specific problem of coordinate-implementation
issues in continuous-time observer design.

In this paper, we generalize those constructions by present-
ing a unifying framework covering a wider class of observer
design techniques. To this end, two different tools are devel-
oped.
• Flow redesign. The idea is to modify the observer flow map

by adding an extra term that makes the chosen set X̂ ⊃ X
invariant while preserving the given bounds on the time-
derivative of the initial Lyapunov function along the system
and the modified observer solutions.

• Jump redesign. We compose the observer jump map with a
map that does not increase the Lyapunov function at jumps
and whose output is in X̂ ⊃ X .

With the proposed tools, we are therefore able to address the
desired constrained problem in the following cases.
• CT plant with CT observer and flow redesign, resulting in

a CT redesigned observer.
• CT plant with CT/hybrid observer and jump redesign, re-

sulting in a hybrid redesigned observer.
• DT plant with DT observer and jump redesign.
• Hybrid plant with hybrid observer and flow and/or jump

redesign.
With respect to [41]–[43], we cover a larger class of CT
nonlinear observers (e.g., [4]–[6]) including design with time-
varying gains [1]–[3]. With respect to [53], we allow the
Lyapunov functions to be time-dependent, thus enlarging the
classes of discrete-time observers to which the proposed
techniques can be applied, such as Kalman-like observers [1].
Moreover, a jump redesign based on a single step is proposed
and the robustness of the initial multi-step strategy from [53]
is shown based on a set-valued regularization. Finally, the new
case of hybrid systems is addressed.

The rest of the paper is organized as follows. We for-
malize the problem by stating the standing assumptions in
Section II. The flow redesign tool is developed in Section III
for continuous-time systems with continuous-time observers.
Then, the jump redesign tool is presented in Section IV for
discrete-time systems with discrete-time observers. Finally,
both tools are combined in Section V to address hybrid
observers. In Section VI, we discuss the choice of some
parameters characterizing the proposed redesign framework.
Simulation results are presented in Section VII and conclu-
sions are drawn in Section VIII.
Notation. R, R≥0 and N denote the set of real numbers, non-
negative real numbers and positive integer numbers, respec-
tively. We define Rn≥0 := R≥0 × · · · × R≥0. We denote with
| · | the standard Euclidean norm. We say that a function
f : X → R is bounded if supx∈X |f(x)| < ∞. Given to
sets S1, S2 ⊆ Rn, we define the distance from two sets as
d(S1, S2) := inf{|x− y| : x ∈ S1, y ∈ S2}, S1 ⊆ S2 denotes
an inclusion and S1 ⊂ S2 denotes a strict inclusion such that
d(S1,Rn \ S2) > 0. For a set-valued map V : Rp ⇒ R and
a scalar c, V (x) ≤ c means that v ≤ c for all v ∈ V (x).
For a set-valued map F : Rq ⇒ Rp, V : Rp → R, and
x ∈ Rq , LFV (x) = sup{LvV (x) : v ∈ F(x)}, where
LvV (x) := ∂V

∂x (x)v is the Lie derivative of V along the vector
v at the point x. We refer to the definition of outer semi-
continuity given in [22, Definition 5.9]. We refer to standard
notations of class-K and class-KL functions, see, i.e. [22,
Chapter 3].

II. STANDING ASSUMPTIONS AND MAIN IDEA

We consider a plant P modelled as a finite-dimensional
time-varying dynamical system with state x ∈ Rnx , that is
either continuous-time, discrete-time or hybrid, with measured
outputs y ∈ Rny and known inputs u ∈ Rnu , and is affected
by unknown perturbations d ∈ Rnd , with nx, nu, ny, nd ∈ N,
as formalized in the next sections.

Standing Assumption 1 (SA1) There exist subsets X0 ⊂
Rnx , U ⊂ Rnu , D ⊂ Rnd , and a compact subset X ⊂ Rnx ,
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such that any trajectory of P initialized in X0, with input in
U and perturbation in D, remains in X for all forward times.

No restriction is made on the “size” of the sets in SA1,
these can therefore be arbitrarily large. Actually, only the
knowledge of X is necessary for design. In other words,
we assume the plant trajectories to be estimated evolve in a
known compact set X , which is not required to be invariant
for the dynamics. Although this assumption could seem like
a limitation of this framework, boundedness of solutions is
commonly verified in practical applications, where the state
variables satisfy known physical bounds. Finally, note that
such a boundedness property does not necessarily mean the
plant model exhibits stability properties.

We then assume that we know an observer O for plant
P with some guaranteed properties, as formalized in the
next sections, whose state estimate is denoted x̂ ∈ Rnx . At
this stage, any existing observer can be considered; detailed
examples are discussed in the sequel. While the state x of
plant P is known to lie in X , according to SA1, it may occur
that the state x̂ of observer O leaves X for some time, as
explained in the introduction. Therefore, given a prescribed
compact set X̂ ⊂ Rn, with X̂ ⊃ X , the goal of the paper is
to redesign observer O so that the following holds.

1) The modified observer, denoted as Om, exhibits the same
guaranteed performances as the original observer.

2) The state of the redesigned observer Om remains in X̂
for all forward times when initialized in X .

As it is often the case in designs with constraints (see, e.g.,
[40], [42], [47], [54]), the solutions presented in the sequel
rely on a key convexity assumption, as formalized next.

Standing Assumption 2 (SA2) The convex hull of X is
strictly included in X̂ , i.e., there exists a compact convex set
C ∈ Rnx satisfying X ⊆ C ⊂ X̂ .

This assumption says that it will not be possible with
our approach to keep the observer state in any non-convex
set X̂ , but only in a compact convex set containing X .
For instance, our approach cannot be used to keep the ob-
server state away from singularities, or close to a non-convex
manifold. Although this assumption may seem restrictive, it
actually enables to keep the estimate within polytopes and
hyperspheres modelling known physical bounds on the plant
state, which is of significant practical interest. A more detailed
discussion about the choice of X̂ is provided in Section VI,
after presenting the main results of this work.

SA2 implies the following convexity result (see an illustra-
tion in Figure 1), which plays an essential role in the sequel.

Lemma 1 Suppose SA2 holds. Then, there exist % ∈ R>0, an
integer nc ∈ N, and a C1 function c : Rnx → Rnc≥0 such that,
by defining

C0 := {x ∈ Rnx : c(x) = 0}, C% := {x ∈ Rnx : |c(x)| ≤ %},
(1)

the following holds:
a) X ⊆ C0 ⊂ C% ⊂ X̂ .

X̂
X

C%

C0

Fig. 1. Illustration of sets X (in red), X̂ (in dash-dotted green) and C0, C%
(in dotted blue) satisfying item a) of Lemma 1 and thus SA2.

b) For any i = 1, . . . , nc, the i-th component ci : Rnx →
R≥0 of c is convex.

Proof. According to [55, (6)], any compact convex set C can
be outer-approximated as closely as desired by a polytope.
Therefore, by continuity, and since C is strictly included in
X̂ , there exist ai ∈ Rnx and bi ∈ R for i = 1, . . . , nc, with
nc large enough, such that X ⊆

⋂nc
i=1{x ∈ Rnx : a>i x ≤

bi} ⊂ X̂ . Lemma 7 in Section VI shows how to build a map
c verifying items a) and b). �

A key feature of the map c is that it vanishes on X where
the plant trajectories evolve, since X ⊆ C0. Following [41],
the main idea underlying the redesign constructions proposed
in this work, is to associate to any trajectory of the plant P
an extra “dummy” output y2 = c(x) which is constantly zero,
since x ∈ X , and to observe that the corresponding estimated
version ŷ2 = c(x̂) is not zero whenever x̂ goes outside X .
Therefore, we can modify the observer O by adding a second
output injection term, driven by the measured difference ŷ2−
y2, to correct the trajectories of the observer O outside the set
C0. This will be done by exploiting the next convexity property
of c.

Lemma 2 Consider a C1 function c : Rnx → Rnc≥0 satisfying
item b) of Lemma 1. Then, for all (x, x̂) ∈ Rnx × Rnx such
that c(x) = 0, we have

−c(x̂)> dcdx (x̂)(x̂− x) ≤ −c(x̂)>c(x̂) ≤ 0 . (2)

Proof. The convexity of ci, for i = 1, . . . , nc, implies that
ci(x) ≥ ci(x̂)+ dci

dx (x̂)(x−x̂) for all x, x̂ ∈ Rnx , and therefore
that −dcidx (x̂)(x̂−x) ≤ −ci(x̂) if c(x) = 0. Inequality (2) then
follows directly by decomposing the scalar product and using
the positivity of ci. �

As a consequence, in the rest of the paper, we suppose
the elements of Lemma 1 are known and available for the
design. Insights about the way X̂ , the function c and % can be
chosen/built are given in Section VI.

III. THE CONTINUOUS-TIME CASE

A. Problem Statement

We assume in this section that the plant P is described as

P : ẋ = f(t, x, u, d), y = h(t, x, u, d), (3)

with state x ∈ Rnx , known input u ∈ Rnu , output y ∈ Rny ,
and where d ∈ Rnd is an unknown perturbation acting on
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the dynamics and/or the measurement. We consider then a
continuous-time observer of the form

O : ˙̂x = F (t, x̂, u, y), (4)

with state x̂ ∈ Rnx . System (3) and observer (4) satisfy some
regularity properties as stated in the next assumption.

Assumption 1 The following is satisfied:
• The function h in (3) is bounded in its first argument and

the set Y := h(R≥0,X ,U ,D) is compact.
• The function F is bounded on R≥0 × X̂ × U × Y .
• The solutions of (4) exist forward in time for any initial

condition x̂(0) ∈ X , any input u in U and any output y of
system (4), i.e. no finite-escape time phenomenon is possible.

Furthermore, we assume that the observer (4) has been
designed so that the following assumption is verified.

Assumption 2 There exist a (possibly time varying) known
matrix P (t) = P (t)> > 0, differentiable in t, real numbers
λ̄ > λ > 0, and a function βc : R≥0 × Rnx × Rnx × Rnu ×
Rnd → R, such that, by defining

V (t, x, x̂) := (x̂− x)>P (t)(x̂− x), (5)

the following is satisfied

λ|x− x̂|2 ≤ V (t, x, x̂) ≤ λ̄|x− x̂|2 (6)

LFV (t, x, x̂, u, d) ≤ βc
(
t, x, x̂, u, d

)
(7)

for all (t, x, x̂, u, d) ∈ R≥0 ×X × Rnx × U ×D, with

F(t, x, x̂, u, d) := (1, f(t, x, u, d), F (t, x̂, u, h(t, x, u, d))).
(8)

Assumption 2 characterizes the performances of observer
(4) in terms of the function V and the supply rate βc. For
instance, for an exponentially stable observer which is input-
to-state stable (ISS) with respect to the perturbation, the
function βc in (7) is typically of the form

βc(t, x, x̂, u, d
)

= −ρcV (t, x, x̂) + αc(|d|), (9)

with ρc > 0 and αc ∈ K. In this case, V is the Lyapunov
function associated to the estimation error x− x̂ and ρc is the
convergence rate. Note that, when the matrix P is constant,
λ̄ and λ in (6) correspond to the maximum and minimum
eigenvalues of P , respectively.

Assumption 2 covers a large class of observers for the
design ofO in (4). For instance, the following observers satisfy
the conditions of Assumption 2 with P constant:
• linear Luenberger observers [4], when (3) is linear;
• high-gain nonlinear observers [7], [8] for systems in trian-

gular forms with Lipschitz nonlinearities;
• observer designs based on linear parameter-varying-like

techniques or the circle criterion, e.g., [5], [6].
Furthermore, Kalman filters [1] and Kalman-like observers
[2], [3] used for state-affine normal forms, also satisfy As-
sumption 2 with a time-varying P . In these cases, P is
solution to a differential Riccati or Lyapunov equation that
is independent from the estimate x̂ and uniformly upper and

lower bounded for all positive times. These extra dynamics
are implemented online and P is considered as an external
time-varying input for observer (4). See also [14, Section VI]
for further examples.

Note also that in the context of nonlinear observers, one
may need to change coordinates before designing an observer
based on a quadratic Lyapunov function (nonlinear Luenberger
design [9], high-gain design [56]). In that case, the methods
developed in this paper should be applied in those new
coordinates, as done for instance in [42], [43].

The objective of this section is to modify observer (4) in
order to solve the next problem.

Problem 1 Design a map Fm : R× Rnx × Rnu × Rny such
that the following holds.
1) For any initial condition (x(0), x̂(0)) ∈ X0×X , any input

in U and perturbation in D, the corresponding trajectory
of the modified observer

Om : ˙̂x = Fm(t, x̂, u, y) (10)

remains in X̂ for all t ≥ 0.
2) The Lyapunov function (5) satisfies

LFmV (t, x, x̂, u, d) ≤ βc
(
t, x, x̂, u, d

)
(11)

for any (t, x, x̂, u, d) ∈ R≥0 × X × X̂ × U × D, with βc
coming from Assumption 2 and

Fm(t, x, x̂, u, d) :=
(1, f(t, x, u, d), Fm(t, x̂, u, h(t, x, u, d))) .

(12)

Hence, by solving Problem 1, the state estimate generated
by observer Om remains in set X̂ and property (7) is preserved
for Om as desired.

B. Observer Redesign

We modify the dynamics of observer (4) as

Fm(t, x̂, u, y) := F (t, x̂, u, y) +M(t, x̂) (13)

where function M is defined by

M(t, x̂) := −γcP (t)−1
dc

dx
(x̂)>c(x̂) (14)

with c defined in Lemma 1, P given by Assumption 2, and
γc ∈ R>0 a parameter to be chosen large enough. Note that the
knowledge of the supply rate βc is not needed for the design
of (13). In order to state the main result of this section, we
define the set ∂C% and the positive real number δmin as

∂C% :=
{
x ∈ Rnx : |c(x)| = %

}
, (15)

δmin := inf
x∈∂C%

∣∣∣∣ dcdx (x)>c(x)

∣∣∣∣ , (16)

with c, % given in Lemma 1. We have the following result.

Theorem 1 Suppose Assumptions 1 and 2 hold and that δmin

in (16) is strictly positive. Then, there exists γ?c ≥ 0 such that,
for any γc > γ?c , Problem 1 is solved with Fm defined in (13),
(14).
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Proof. First, we define Fmax, γc,min as

Fmax := sup
(t,x̂,u,y)∈R≥0×∂C%×U×Y

|F (t, x̂, u, y)| , (17)

γ?c :=
Fmaxλ

δmin
, (18)

with Y defined in Assumption 1, and λ̄ given by Assumption 2.
In light of the properties of F in Assumption 1, and the
fact that ∂C% ⊂ X̂ in view of item (a) of Lemma 1, the
real numbers Fmax, γ

?
c are finite. Now consider the function

W (x̂) := 1
2c(x̂)>c(x̂) for any x̂ ∈ Rnx , and pick x̂ ∈ ∂C%, u

in U and x in X . By using (16), (17), (18), we compute

〈∇W (x̂), Fm(t, x̂, u, y)〉

= c(x̂)>
dc

dx
(x̂)

[
F (t, x̂, u, y)− γc P (t)−1

dc

dx
(x̂)>c(x̂)

]
≤
∣∣∣∣ dcdx (x̂)>c(x̂)

∣∣∣∣ (Fmax −
γc

λ
δmin

)
< 0

in which we used the fact that, in light of Assumption 2,
P (t) satisfies 1

λ
I ≤ P (t)−1 for all t ≥ 0, and δmin > 0.

This shows that the derivative of W along solutions to Om
is strictly negative on ∂C%, which implies that C% is forward
invariant. A fortiori, any trajectory initialized in C% remains in
X̂ as C% ⊂ X̂ according to Lemma 1 and therefore item 1) of
Problem 1 is proved since X ⊂ C% ⊂ X̂ in view of item (a)
of Lemma 1.

By using the definition of Fm and M in (12) and (14),
and the definition of βc in Assumption 2, we obtain for all
(t, x, x̂, u, d) ∈ R×X × X̂ × U × D

LFmV (t, x, x̂, u, d)
= LFV (t, x, x̂, u, d) + 2(x̂− x)>P (t)M(t, x̂)
≤ βc

(
t, x, x̂, u, d

)
− 2γc(x̂− x)> dcdx (x̂)>c(x̂).

By recalling that c(x) = 0 for any x ∈ X by Lemma 1, and
since γc > 0, we obtain (11) from Lemma 2. �

The extra condition δmin > 0 in Theorem 1 is verified for
the functions c proposed in Section VI (see (62) and (63)
of Lemma 7 and Lemma 8). On the other hand, the role of
γc in (14) is to correct the vector field F when the latter
becomes too large and makes the estimate leave the set X . To
do that, we have chosen a constant gain γc whose magnitude
is large enough with respect to the maximal norm of F on
the boundary of C%. A bound on γc is given in the proof of
Theorem 1, see (18). This bound may be subject to some
conservatism and in practice γc can be adapted online to
compensate for the “current” value of F , by taking for instance

γc(t, x̂, u, y) :=
2λ|F (t, x̂, u, y)|

max
{∣∣ dc
dx (x̂)>c(x̂)

∣∣ , δmin

}
for any (t, x̂, u, y) ∈ R× Rnx × U × Y , in view of the proof
of Theorem 1, see [42].

Remark 1 The correction term M defined in (14) may also
be interpreted as an element of the normal cone to the level
set of c in the metric defined by P (t), thus suggesting a link
with the projected dynamics used in [47] for constant metric
P .

1) Consider a plant P in (3) such that SA1 holds for some compact set
X .

2) Consider an observer O in (4) such that Assumption 2 is satisfied for
some known t 7→ P (t).

3) Choose a map c such that X ⊆ C0 along the lines of Lemma 1.
4) Design the function M as in (14) and select γc > 0 sufficiently large.
5) Add the term M to the right-hand side of (4) as in (13).
6) Run the new observer (10) with Fm defined as in (13), and initial

conditions x̂(0) ∈ X .
7) Problem 1 is solved with X̂ ⊃ C% for some % > 0.

TABLE I
REDESIGN PROCEDURE FOR CONTINUOUS-TIME OBSERVERS

To conclude, the CT redesign summarizes in the steps given
in Table I, for which we only need the knowledge of the
function c (which may be a degree of freedom for design,
as shown later in Section VI), and the (possibly time-varying)
matrix P given by Assumption 2.

IV. THE DISCRETE-TIME CASE

A. Problem Statement and Sufficient Conditions

In this section, plant P is modelled as a discrete-time system
of the form

P :

{
x(k + 1) = g(k, x(k), u(k), d(k)),

y(k) = h(k, x(k), u(k), d(k)),
k ∈ N,

(19)
with state x ∈ Rnx , known input u ∈ Rnu , output y ∈ Rny ,
and where d ∈ Rnd is an unknown perturbation acting
on the dynamics and/or the measurement. For the sake of
convenience, we will denote with xk := x(k) the state x at
discrete-time k. The same notation will be adopted for all
variables and inputs. The plant (19) is therefore compactly
written as

P :

{
xk+1 = g(k, xk, uk, dk),
yk = h(k, xk, uk, dk),

(20)

and the observer is given by

O : x̂k+1 = G(k, x̂k, uk, yk) (21)

with G : R≥0 × Rnx × U × Rny → Rnx . Similarly to
the continuous-time case in Section III, the performances of
observer (21) are characterized by the next Lyapunov-like
conditions.

Assumption 3 There exist a (possibly time-varying) known
matrix Pk = P>k > 0 for all k ∈ N, real numbers λ̄ > λ > 0
and a continuous function βd : N×Rnx×Rnx×Rnu×Rnd →
R≥0, such that, by defining

Vk(x, x̂) := (x̂− x)>Pk(x̂− x), (22)

the following inequalities hold for all (k, x, x̂, u, d) ∈ N×X×
Rnx × U ×D

λ|x̂− x|2 ≤ Vk(x, x̂) ≤ λ̄|x̂− x|2 , (23)

Vk+1(xk+1, x̂k+1) ≤ βd
(
k, x, x̂, u, d

)
(24)

with the compact notation xk+1 := g(k, x, u, d), x̂k+1 :=
G(k, x̂, u, h(k, x, u, d)).
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Like Assumption 2, Assumption 3 characterizes the behav-
ior of the estimation error x− x̂ and similar considerations on
the ISS properties can be derived, see, e.g., [53, Corollary 1].
Moreover, the function βd and the parameters λ, λ̄ are likewise
used only for analysis purposes and not for design. In the case
of a constant matrix P , λ̄ and λ in (23) correspond to the
maximum and minimum eigenvalue of P , respectively.

Assumption 3 is verified for the observers proposed in [4],
[15]–[19],where P is constant; and Kalman-like observers, see
[1], [20], where P is a time-varying solution to a Riccati or
Lyapunov difference equation that is independent from the
estimate x̂ and uniformly upper and lower bounded in time
k. In this case the matrix P is computed online.

Similarly to the continuous-time case, we aim at solving the
next problem.

Problem 2 Design a (possibly set-valued) map Gm : N ×
Rnx × Rnu × Rny ⇒ Rnx such that the following holds.
1) For any initial condition (x0, x̂0) ∈ X0 × X , input in U

and perturbation in D, the corresponding trajectory x̂k of
the modified observer

Om : x̂k+1 ∈ Gm(k, x̂k, uk, yk) (25)

remains inside X̂ for all k ∈ N.
2) The Lyapunov function (22) satisfies

Vk+1(xk+1, x̂k+1) ≤ βd
(
k, x, x̂, u, d

)
(26)

for any (k, x, x̂, u, d) ∈ N × X × X̂ × U × D, xk+1 =
g(k, x, u, d), and x̂k+1 ∈ Gm(k, x̂, u, h(k, x, u, d)).

Differently from the continuous-time case in Section III, we
do not modify the dynamics of (21) by adding a term to the
map G. Instead, we build Gm by composition of the map G
given in (21) with a (possibly multi-valued) time-varying map
ψk+1 : Rnx ⇒ Rnx , namely

Gm(k, ·) := ψk+1 ◦G(k, ·) . (27)

Remark 2 Since the mapping ψk+1 is applied after the map-
ping G(k, ·), in the following we will assume that ψk+1 may
depend on Pk+1. This assumption is consistent with the cases
in which P is obtained as solution of a Riccati difference
equation for instance. It is also the reason why we index ψk+1

(and all the variables involved in its definition) with k + 1
instead of k.

The following lemma gives a sufficient condition on the
maps ψk+1, which allows solving Problem 2.

Lemma 3 Suppose Assumption 3 hold and that for all k ∈ N,
there exist a set-valued map ψk+1 : Rnx ⇒ Rnx and a set
Sk+1 ⊂ Rnx such that

Vk+1(x, ψk+1(x̂)) ≤ Vk+1(x, x̂) ∀(x, x̂) ∈ X×Sk+1 (28a)

ψk+1(Sk+1) ⊆ X̂ (28b)

and for any (k, x, x̂, u, d) ∈ N×X × X̂ × U × D,

G(k, x̂, u, h(k, x, u, d)) ∈ Sk+1. (28c)

Then, Problem 2 is solved with Gm defined in (27).

Proof. From (28b), (28c), and the definition of Gm in
(27), we derive that Gm(k, x̂, u, h(k, x, u, d)) ⊆ X̂ for any
(k, x, x̂, u, d) ∈ N × X × X̂ × U × D. With this, item 1) of
Problem 2 is satisfied. To derive the item 2) of Problem 2, we
invoke (24), (28a) and the definition of Gm in (27). �

Set Sk+1 contains the estimate x̂ after applying the nominal
observer (21) at iteration k. Therefore, it is sufficient to satisfy
the redesign constraints (28a)-(28b) for x̂ ∈ Sk+1.

The goal is now to find maps ψk+1 that verify condition
(28), namely the fact that applying ψk+1 to G(k, ·) does not
make the Lyapunov function Vk+1 increase and that its image
is contained in X̂ . The first idea we investigate is to project
G in X̂ , as presented in Section IV-B.

B. About the Existence of a Single-Step Solution

The next lemma shows that the function ψk+1 in Lemma 3
can be defined as a projection according to the norm induced
by Pk+1.

Lemma 4 For any k in N, the map ψk+1 : Rn → Rn defined
by

ψk+1(x̂) := argmin
x∈C0

(x̂− x)>Pk+1(x̂− x) (29)

with C0 given in Lemma 1, is well-defined, single-valued and
verifies condition (28) with Sk+1 = Rnx .

Proof. Take k ∈ N and define the function c̄k+1 : Rnx → Rnc≥0
as z 7→ c̄k+1(z) := c

(
P
− 1

2

k+1z
)

, with c given in Lemma 1, and

let C0,k+1 := {z ∈ Rn : c̄k+1(z) = 0}. By linearity of the
function z 7→ P

− 1
2

k+1z, and by convexity of ci in Lemma 1, each
i-th component c̄i,k+1 of c̄k+1 is convex and C1. Therefore,
C0,k+1 is convex and closed, so that the projection map ψ̄k+1

defined on Rn by

ẑ 7→ ψ̄k+1(ẑ) := argmin
z∈C0,k+1

(ẑ − z)>(ẑ − z)

takes finite values, is single-valued and verifies

(ψ̄k+1(ẑ)− z)>(ψ̄k+1(ẑ)− z) ≤ (ẑ − z)>(ẑ − z)

for all z ∈ C0,k+1. Since ψk+1(x̂) = P
− 1

2

k+1 ψ̄k+1(P
1
2

k+1x̂) for
all x̂ in Rn and X ⊆ C0, (28a) follows with Sk+1 = Rn.
Equation (28b) also holds since C0 ⊂ X̂ . Finally, (28c) holds
because Sk+1 = Rn. �

With Lemmas 1, and 3, Lemma 4 implies that Problem 2
can be solved by modifying the observer along (27) with ψk+1

defined in (29). In other words, the estimate is brought back
into C0 at each iteration through a projection of the output of
the observer jump map G according to the norm determined
by Pk+1, thus leading to the procedure highlighted in Table II.
This projection requires to solve a quadratic minimization
problem with convex constraints at each step, which we now
briefly discuss.
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1) Consider a plant P in (3) such that SA1 holds for some compact set
X .

2) Consider an observer O in (21) such that Assumption 3 is satisfied for
some known k 7→ Pk .

3) Choose a map c such that X ⊆ C0 along the lines of Lemma 1.
4) Run the new observer (25) with Gm defined as in (27) and ψk+1 the

projection map defined in (29), and with an initial condition x̂(0) ∈ X .
5) Problem 2 is solved with X̂ ⊃ C0.

TABLE II
SINGLE-STEP REDESIGN PROCEDURE FOR DISCRETE-TIME OBSERVERS

Equality Constraints: If the constraint map c is linear,
namely c(x) = Ax − b with A ∈ Rnc×nc full-rank, ψk+1

is explicitly defined for all k ∈ N on Rnx by

ψk+1(x̂) = x̂− P−1k+1A
>(AP−1k+1A

>)−1(Ax̂− b)

which is an oblique projection on the constraints subspace
{x ∈ Rnx : Ax = b} as proposed in [44] and also
used in the case of time-varying linear constraints in [52].
The expression of ψk+1 is obtained by solving (29) using
Lagrangian multipliers, which in general gives

−2(x̂− x)>Pk+1 + Λ
dc

dx
(x) = 0, c(x) = 0,

with Λ ∈ R1×nc . Unfortunately, those cannot be solved explic-
itly unless c is linear. Sometimes, it can be solved numerically
for instance through an iterative root search algorithm, as
proposed in [50].

Inequality Constraints: In the case where the constraints
can be written as convex inequalities, namely c(x) = 0 ⇔
ζi(x) ≤ 0 for i = 1 . . . nc with some convex maps ζi :
Rn → R as a polytope (62) or an ellipse (63), then solving
(29) is equivalent to solve the Karush-Kuhn-Tucker (KKT)
conditions, namely finding scalars λ1, . . . , λnc and xp ∈ C0
such that

1) −2(x̂− xp)>Pk+1 +

nc∑
i=1

λi
d ζi
dx

(xp) = 0,

2) λi ≥ 0 for all i = 1 . . . nc,
3) λ1ζ1(xp) = . . . = λncζnc(xp) = 0.

Various iterative algorithms such as interior-point methods,
sub-gradient methods or semi-definite programming, are avail-
able to solve this convex optimization problem. In the partic-
ular case where C0 is a polytope (62) with ζi(x) = a>i x− bi,
the first condition can be solved explicitly in xp as a function
of x̂ and of the adjoint variables λi. Injecting its expression
in the second and third conditions leads to a polyhedral
partition of the state space, with a particular feasible value
of (λ1, . . . , λnc) in each of the regions. It follows that ψk+1

is in that case a piecewise-linear map of the form

ψk+1(x̂) = x̂− 1

2
P−1k+1

nc∑
i=1

λi(x̂)ai

where λi(x̂) depends on the zone of the partition where x̂
is. It is interesting to note that the partition depends on the
constraints ai and on Pk+1 only. In particular, if P is constant,
the partition can be determined offline beforehand, so that the
computational burden at each iteration reduces to determining

the region in which x̂ lies. More details about the way this
can be done efficiently can be found in [57], [58].

Towards a Multi-Step Algorithm: According to the previous
analysis, we conclude that, unless c is linear, an explicit
solution to the minimization problem (29), namely a close
form of ψk+1, is not available and algorithms have to be used
to evaluate it. Therefore in practice, ψk+1 is computed as

ψk+1 = ψk+1,θ ◦ · · · ◦ ψk+1,1 , (30)

for some θ > 1, where each composition represents a numer-
ical step. This implicitly requires that between any “discrete”
times, we are allowed to carry out an algorithm involving
several computations. As explained in [53], in the context of
sampled-data systems, this means that the digital controller is
fast enough with respect to the sampling frequency. Although
such algorithms have been extensively studied and optimized,
it may not be possible to go through all the computations in
between successive sampling times when the computational
power is limited or when the sampling period is small. In this
case, if the algorithm is stopped prematurely, condition (28a)
is not guaranteed to hold and the observer performance (26)
may be destroyed. In the following section, we overcome these
potential issues by proposing a map ψk+1 defined as (30) with
θ > 1, but where the decrease of Vk+1 is guaranteed after each
composition. This extends the idea first proposed in [53] and
constitutes the main result of Section IV.

C. Multi-Step Solution

We introduce the map Mk+1 : Rnx → Rnx defined by1

Mk+1(x̂) := −γdP−1k+1

dc

dx
(x̂)>c(x̂) , (31)

with Pk coming from Assumption 3, c given by Lemma 1
and γd a strictly positive scalar to be chosen small enough,
this time, contrary to Theorem 1 in Section III. We have the
following result.

Lemma 5 Suppose Assumption 3 holds. For any compact set
X̂max ⊂ Rnx , there exists γ?d ∈ R>0 ∪ {+∞} such that, for
any 0 < γd < γ?d , the functions Vk and Mk defined in (22)
and (31) satisfy

Vk(x, x̂+Mk(x̂)) ≤ Vk(x, x̂) ∀(x, x̂) ∈ X × X̂max (32a)

Vk(x, x̂+Mk(x̂)) ≤ Vk(x, x̂)− γd%2

∀(x, x̂) ∈ X × (X̂max \ int(C%)) (32b)

for all k ∈ N, and with % given by Lemma 1.

Proof. Given the compact set X̂max, define

δmax := max
x∈X̂max

∣∣∣∣ dcdx (x)

∣∣∣∣ , (33)

γ?d :=


λ

δ2max

, if δmax 6= 0

+∞ , otherwise
(34)

1Observe that Mk(x) corresponds to M(t, x) defined in (14) with Pk
instead of P (t).
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with c given by Lemma 1 and λ given by Assumption 3. Note
that δmax < ∞ because c is C1 and X̂max is compact. Take
x in X and x̂ in X̂max. In light of (31),

Vk(x, x̂+Mk(x̂))
= Vk(x, x̂) + 2Mk(x̂)>Pk(x̂− x) +Mk(x̂)>PkMk(x̂)
≤ Vk(x, x̂)− 2γdc(x̂)> dcdx (x̂)(x̂− x)

+γ2dc(x̂)> dcdx (x̂)P−1k
dc
dx (x̂)>c(x̂).

Since c(x) = 0 for all x ∈ X by Lemma 1, using (2) from
Lemma 2, (31), and (33), we obtain

Vk(x, x̂+Mk(x̂))
≤ Vk(x, x̂)− γdc(x̂)>

(
2I − γd dcdx (x̂)P−1k

dc
dx (x̂)>

)
c(x̂)

≤ Vk(x, x̂)− γd|c(x̂)|2
(
2− γdλ−1δ2max

)
≤ Vk(x, x̂)− γd|c(x̂)|2 ≤ Vk(x, x̂)

in which we used |P−1| ≤ λ−1 and the fact that γdλ−1δ2max <
1 for any γd < γ?d . Hence (32a) holds. Moreover, when x̂ ∈
Rnx \ int(C%), we have |c(x̂)| ≥ % and hence (32b) holds. �

According to Lemma 5, the interest of the map Mk+1 in
(31) is that, if X̂max denotes a compact set where the estimate
x̂ remains, modifying x̂ as x̂ + Mk+1(x̂) makes Vk+1(x, x̂)
decrease no matter where the plant state x actually is in X ,
provided that γd is sufficiently small (see (32a)). Furthermore,
this decrease is strict when x̂ is outside int(C%), with C%
defined in (1), see (32b). Since C% ⊂ X̂ , our strategy is
therefore to repetitively use Mk+1 to bring the estimate back
into X̂ at each iteration k. The redesign thus consists in
correcting the state estimate G(k, x̂k, uk, yk) with the map
Mk+1 as long as the estimate is outside C%, namely the
function ψk+1,i in (30) are selected as

ψk+1,i(x̂) =

{
x̂+Mk+1(x̂) if x̂ ∈ Rnx \ C%
x̂ otherwise (35)

for all i = 1 . . . θ and all k ∈ N. As it can be noted by the
expression of Mk+1, the correction (35) uses the gradient of
the convex map c, namely −dc/dx, to bring x̂ back to X̂ along
level sets of Vk+1. The recursive algorithm (30) stops when
we cross C%. This strategy is depicted in Figure 2. Note that
this could not be achieved in one iteration because γd needs to
be sufficiently small to ensure that Vk+1 decreases, as shown
in Lemma 5. This justifies the θ steps.

The definition of ψk+1,i in (35) is not outer-semicontinuous
on the boundary of C%. Although it makes sense to implement
(35) in practice, namely to stop the computations as soon
as the estimate reaches C%, we consider here a more general
algorithm where the choice is left on the boundary of C% to
either stop the computations or to apply Mk+1 again. This will
enable us to endow our results with some nominal robustness
with respect to numerical errors. The counterpart is that the
map ψk+1 is then set-valued. A way to write this more general
algorithm is to use a local state q ∈ {0, 1} and define on

Rnx × {0, 1} the set valued map

ψ̃k+1,i(x̂, q)

=



(
x̂+Mk+1(x̂)

0

)
if (x̂, q) ∈ (Rnx \ C%)× {0}(

x̂+Mk+1(x)
0

)
∪
(
x̂
1

)
if (x̂, q) ∈ ∂C% × {0}(

x̂
1

)
if (x̂, q) ∈ int(C%)× {0}(

x̂
1

)
if (x̂, q) ∈ C% × {1}

(36)
where Mk+1 is defined in (31), and ∂C% in (15). By initializing
q to 0 and iteratively applying ψ̃k+1,i, we see that as long as
the x̂ is outside C%, it is corrected using the map Mk+1 and
q is kept equal to 0. If x̂ reaches the boundary of C%, there
is a choice between correcting it with Mk+1 or keeping it the
same. In that latter case or if the estimate reaches the interior
of C%, q is switched to 1 and x̂ is kept constant until the end of
the θ jumps. In other words, ψ̃k+1,i becomes the identity and
the latest estimate is kept. The following result shows that by
applying this algorithm the component x̂ ends up in X̂ while
making Vk+1 decrease. To this end, we define, for k in N, the
maps ψ̃k+1 as

ψ̃k+1 = ψ̃k+1,θ ◦ · · · ◦ ψ̃k+1,1 , (37)

with ψ̃k+1,i defined in (36), and, for k in N, the map ψk+1 :
Rnx → Rnx as

ψk+1(x̂) = Projx̂ ψ̃k+1(x̂, 0) (38)

with ψ̃k+1 defined in (37). The map Projx̂ so defined is simply
the selection of the nx first components of ψ̃k+1(x̂, 0) of
dimension nx + 1, namely the removal of the inner state q.

Finally, in order to state the main result of this section, let
us define the real number vmax as

vmax := sup
(k,x,x̂,u,d)∈N×X×X̂×U×D

βd
(
k, x, x̂, u, d

)
, (39)

with βd given by Assumption 3, and according to its definition,
for any k ∈ N, let us define the sets X̂k+1,max

X̂k+1,max := {x̂ ∈ Rnx : ∃x ∈ X , Vk+1(x, x̂) ≤ vmax}.
(40)

Theorem 2 Suppose Assumption 3 holds and that vmax de-
fined in (39) is finite. Then, there exists γ?d ∈ R>0 ∪ {+∞}
such that, for any γd satisfying 0 < γd < γ?d , there exists
a nonnegative scalar θ such that for all k ∈ N, the map
ψk+1 defined in (38) is outer semi-continuous and verifies
conditions (28) of Lemma 3 with Sk+1 = X̂k+1,max defined in
(40), namely Problem 2 is solved.

Proof. The proof is postponed to Appendix A. �

In order to use ψk+1 defined in (38), we need to be able to
make (at most) θ + 1 recursive computations at each discrete
step k. Note, however, that in this case, the Lyapunov function
decreases even if we perform less than θ+ 1 steps. Therefore,
in case of limited computational power, it is still interesting
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X̂max

C%

X̂

x̂k,1

ψk+1,θ+1

Fig. 2. Refining strategy (30) with (35), starting from x̂k,1 =
G(k, x̂k, uk, yk). Dash-dotted blue ellipses: Lyapunov level sets of Vk+1.
Red ellipsoid: C%. Green polygon: X̂ . Dotted black ellipse: X̂max, a compact
set where the solution is proved to remain. Dashed black line: path of
x̂k,i+1 = ψk,i(x̂k,i), i = 1, . . . , θ.

to do as many θm ∈ {0, . . . , θ} steps as possible, as long
as the estimate is outside of C%: the Lyapunov function will
decrease by θmγd%2 which will make the algorithm converge
faster and make the estimate stay closer to X̂ . This is a
clear advantage compared to the projection-based algorithm
presented in Section IV-B.

As detailed in the proof of Theorem 2, the number θ defined
in (70) gives the largest number of refining steps needed to
bring x̂ in C% and increases with the size of the sets X̂k+1,max.
In practice, this number may be significantly smaller, as the
analysis is made on the conservative assumption that at each
step, the decrease rate of Vk+1 is γd%2. Note that an estimate of
γ?d is given in (33). According to Lemma 5, the true decrease
is γd|c(x̂)|2, which is larger than γd%

2 when x̂ is far from
C%, due to the convexity assumption in Lemma 1. In fact, the
definition of ψ̃k+1,i in (36) provides, from a computational
point of view, a fast way to interrupt the algorithm once x̂ is
in C%.

An important observation is that although x̂k+1 is in X̂ ,
the intermediary estimates x̂k,i, obtained while implementing
(37), can leave this set. However, according to the proof of
Theorem 2, they remain in a compact set X̂max properly
defined. Therefore, X̂max gives the magnitude of the numbers
to be computed throughout the algorithm. This information
can be useful to optimize the variables encoding and increase
numerical precision in case of limited memory, in embedded
systems for instance. Actually, this set could be made more
precise by considering the evolution of Vk given by (24) and
the maximal initial error e0 = x̂0 − x0.

To conclude, this multi-step DT redesign may be summed
up as in Table III. Note, that, as in the CT-case, only the
knowledge of Pk and c are required.

Remark 3 We might wonder whether ψk+1 defined in Theo-
rem 2 is an iterative way of approaching ψk+1 as defined in
Lemma 4 when the number of iterations, namely θ, goes to
infinity. It turns out on examples that it is not. Actually, by
compactness of C0 and convexity of c, it is possible to show
by contradiction that, ψk+1(x̂) defined in (29) is not the only
solution to (28a) on Rn. More precisely, given x̂ in Rn, there
exists a neighborhood of ψk+1(x̂) such that (28a) still holds.

1) Consider a plant P in (3) such that SA1 holds for some compact set
X .

2) Consider an observer O in (21) such that Assumption 3 is satisfied for
some known k 7→ Pk .

3) Choose a map c such that X ⊆ C0 along the lines of Lemma 1.
4) Design the function Mk+1 as in (31), and select γd > 0 small enough.
5) Design the function ψk+1 as in (30) with ψk+1,i defined in (35);

alternatively, if outer semi-continuity is sought, select ψk+1 as in (38),
with ψ̃k+1 defined in (37) and ψ̃k+1,i in (36).

6) Select θ large enough and run the new observer (25) with Gm defined
as in (27) and ψk+1 as in the previous step, and with an initial condition
x̂(0) ∈ X .

7) Problem 2 is solved with X̂ ⊃ C%.

TABLE III
MULTI-STEP REDESIGN PROCEDURE FOR DISCRETE-TIME OBSERVERS

Remark 4 The robustness of the modified observer with re-
spect to the perturbation d is characterized by βd in (26),
which is the same as for the initial observer. In fact, the
added computational steps due to ψk+1 are not affected by
perturbations, they are carried out independently from the
plant and the observer: their only role is to bring the estimate
back into the viable set X̂ . Therefore, the only robustness we
could be concerned about for conditions (28), is with respect
to numerical errors in the recursive computation of ψk+1. In
light of the outer semi-continuity of ψ̃k+1,i, the maps ψ̃k+1,
ψk+1 (and thus Fm) are outer semi-continuous and locally
bounded, which ensure sequential compactness of solutions
to (25), and thus robustness of the result of Theorem 2 with
respect to numerical errors, see [22, Assumption 6.5].

V. THE HYBRID CASE

A. Problem Statement

In this section, we exploit the results of the previous two
sections to address the scenario where plant P is given by the
hybrid model (see [22], [59])

P :



τ̇ ∈ fτ (τ)
ẋ ∈ f(τ, x, u, d)

}
(τ, x, u, d) ∈ C

τ+ ∈ gτ (τ)
x+ ∈ g(τ, x, u, d)

}
(τ, x, u, d) ∈ D

y = h(τ, x, u, d),

(41)

where C and D are the flow and the jump sets respectively,
(fτ , f) and (gτ , g) are the flow and jump maps respectively,
x and y are respectively the state and the output of the plant.
Variable τ ∈ Rnτ is another state variable2, which is supposed
to be available for the observer design, and which can be a
timer keeping track of the time and/or jumps to model the
time-dependency of F and G. For instance, τ , nτ = 1, could
model the time t with fτ ≡ 1, and gτ = Id, or a counter of
jumps with fτ ≡ 0 and gτ (τ) = τ + 1, or the time elapsed
since the previous jump with fτ ≡ 1 and gτ ≡ 0. Due to the
presence of τ , we need to reformulate SA1 as follows.

2Its dynamics fτ and gτ could also depend on (x, u, d) as long as τ is
available to the observer.
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Standing Assumption 3 (SA1’) There exist subsets T0 ⊂
Rnτ , T ⊂ Rnτ , X0 ⊂ Rnx , U ⊂ Rnu , D ⊂ Rnd , and a
compact subset X ⊂ Rnx , such that any maximal solution
([59]) of (41) initialized in T0 × X0, with input in U and
perturbation in D, remains in T × X at all forward times.

Since we are interested only in solutions satisfying SA1’,
in the following we suppose that

C ⊆ T × X × U ×D , D ⊆ T × X × U ×D . (42)

Furthermore, to simplify the following statements, we denote
Tc and Td the projections of C and D on the first nτ
components, namely sets verifying Tc ∪ Td ⊆ T and

(τ, x, u, d) ∈ C =⇒ τ ∈ Tc (43a)
(τ, x, u, d) ∈ D =⇒ τ ∈ Td . (43b)

We assume now that we know an observer whose jumps
are synchronized with those of the plant, i.e., such that the
complete system can be written as

τ̇ ∈ fτ (τ)
ẋ ∈ f(τ, x, u, d)
˙̂x ∈ F (τ, x̂, u, h(τ, x, u, d))

 (τ, x, u, d) ∈ C,
x̂ ∈ Rnx ,

τ+ ∈ gτ (τ)
x+ ∈ g(τ, x, u, d)
x̂+ ∈ G(τ, x̂, u, h(τ, x, u, d))

 (τ, x, u, d) ∈ D,
x̂ ∈ Rnx ,

(44)
with flow map F := (fτ , f, F ) and jump map G := (gτ , g,G).
It is important to notice that the domain of solutions to (44)
are determined by (τ, x, u, d) only: for any solution (τ, x, x̂)
of (44), (τ, x) is solution to (41) so that x̂ inherits the domain
of (τ, x), at least as long as it is defined. This implicitly
assumes that the jump times of (41) are known and can be
used in the observer. This context covers a lot of designs, as
detailed below. As before, we assume that the observer has
been designed based on a quadratic Lyapunov function and
we state the following assumption.

Assumption 4 There exist a known differentiable P (τ) =
P (τ)> ∈ Rnx×nx > 0 for τ ∈ Rnτ , positive real numbers
λ̄ > λ > 0, functions βc : Rnτ ×Rnx×Rnx×Rnu×Rnd → R
βd : Rnτ × Rnx × Rnx × Rnu × Rnd → R≥0, such that the
map defined on Rnτ × Rnx × Rnx by

V (τ, x, x̂) := (x̂− x)>P (τ)(x̂− x) , (45)

verifies for all (τ, x, x̂) ∈ T × X × Rnx ,

λ|x̂− x|2 ≤ V (τ, x, x̂) ≤ λ̄|x̂− x|2 , (46)

and for all x̂ ∈ Rnx ,

LFV (τ, x, x̂, u, d) ≤ βc
(
τ, x, x̂, u, d

)
∀(τ, x, u, d) ∈ C,

(47a)

V (G(τ, x, x̂, u, d)) ≤ βd
(
τ, x, x̂, u, d

)
∀(τ, x, u, d) ∈ D .

(47b)

The results of this section cover the following cases.
• A continuous-time plant with a sampled-data hybrid ob-

server with g = Id, and τ a timer determining the sampling
times: see, among others, [24] for periodic sampling with P

constant, [25] for aperiodic sampling with P time-varying,
but also [26]–[28], [60] and references therein.

• A hybrid plant with known jump times and a hybrid syn-
chronized observer as in the context of switched systems
with common P [29] or switched P [30], [31] and τ
denoting the switching signal, impulsive systems [32], or
general linear hybrid systems [33] among others.

• A continuous-time plant with a continuous-time observer as
in Section III, with G ≡ ∅, D = ∅, τ = t ∈ R, F defined
in (8), and C = R×Rnx ×Rnu ×Rnd . In this context, we
aim at redesigning the continuous-time observer by using
the technique in Section III, thus remaining in the context
of continuous-time observers, or by using the technique in
Section IV, thus obtaining a hybrid observer. An example
of the two different constructions is given in Section VII-A.

• A continuous-time plant with a hybrid observer, see for
instance [34]–[36].

• A discrete-time plant with a discrete-time observer as in
Section IV with F ≡ ∅, C = ∅, τ = k ∈ N, G = (τ +
1, f, F ) with f and F defined in (20)-(21), and D = N ×
Rnx × Rnu × Rnd .

B. Nominal Redesign

Using the tools previously developed for flow/jump redesign
in Sections III and IV, we want to modify F and G so that
the component x̂ of the modified system

τ̇ ∈ fτ (τ)
ẋ ∈ f(τ, x, u, d)
˙̂x ∈ Fm(τ, x̂, u, h(τ, x, u, d))

 (τ, x, u, d) ∈ C,
x̂ ∈ Rnx ,

τ+ ∈ gτ (τ)
x+ ∈ g(τ, x, u, d)
x̂+ ∈ Gm(τ, x̂, u, h(τ, x, u, d))

 (τ, x, u, d) ∈ D,
x̂ ∈ Rnx ,

(48)
with flow map Fm = (fτ , f, Fm) and jump map Gm =
(gτ , g,Gm), remains in X̂ and the performances stated in
Assumption 4 are preserved when x̂ ∈ X̂ . An additional
constraint we must add is that the maximal solutions of the
modified observer (48) should be defined at least as long as
the corresponding maximal solutions of the initial observer
(44). Otherwise, a trivial solution would be to take Fm = F ,
Gm = G and restrict the flow/jump maps to x̂ ∈ X̂ , but the
solutions could then die prematurely when x̂ points out X̂ , thus
altering the observer performances. Inspired by the previous
sections, for (τ, x, x̂, u, y) ∈ Rnτ ×Rnx ×Rnx ×Rnu ×Rny ,
we define

Fm(τ, x̂, u, y) := F (τ, x̂, u, y) +Mc(τ, x̂) (49a)

Gm(τ, x̂, u, y) := ψ
(
gτ (τ), G(τ, x̂, u, y)

)
(49b)

with Mc ≡ M defined in (14) and ψ a map to be defined.
In fact, this map ψ(gτ (τ), ·) is going to be the equivalent of
ψk+1 used in Section IV, which is coherent with the fact that
for discrete systems, τ stands for k and gτ (τ) for k + 1.

Consider

Fmax := sup
(τ,x̂,u,x,d)∈Tc×∂C%×U×X×D

|F (τ, x̂, u, h(t, x, u, d))|, (50)

with C% defined in (15). Then, we have the following result.
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Lemma 6 Suppose that: Assumption 4 holds; δmin defined
in (16) is strictly positive; Fmax defined in (50) is finite. Fix
γc > γ?c > 0 with γ?c defined in (18) with Fmax given in
(50) and λ̄ in Assumption 4. Assume there exist maps ψ :
Rnτ × Rnx ⇒ Rnx and S : Rnτ ⇒ Rnx such that for all
τ ∈ Td,

V (τ+, x, ψ(τ+, x̂)) ≤ V (τ+, x, x̂)

∀(τ+, x, x̂) ∈ gτ (τ)×X × S(τ) (51a)
ψ(gτ (τ),S(τ)) ⊆ C% (51b)

and moreover, for any (τ, x, u, d) ∈ D and any x̂ ∈ X̂ , we
have

G(τ, x̂, u, h(τ, x, u, d)) ∈ S(τ). (51c)

Then, the functions V , Fm, Gm, defined by (45), (49), satisfy

LFmV (τ, x, x̂, u, d) ≤ βc
(
τ, x, x̂, u, d

)
∀x̂ ∈ X̂ , ∀(τ, x, u, d) ∈ C, (52a)

V (Gm(τ, x, x̂, u, d)) ≤ βd
(
τ, x, x̂, u, d

)
∀x̂ ∈ X̂ , ∀(τ, x, u, d) ∈ D. (52b)

In addition, any maximal solution (τ, x, x̂) to (44) initialized
in T0 × X0 × X with input in U and perturbation in D, is
such that x̂ remains in X̂ at all times and (τ, x) is a maximal
solution to (41).

Proof. Equation (52a) follows in the same way as in the proof
of Theorem 1 using (42). Equation (52b) follows directly from
(49b), (51a) and (51c). Besides, combining (49b), (51a) and
(51b), we get

Gm(τ, x̂, u, h(τ, x, u, d)) ⊆ C% ∀(τ, x, u, d) ∈ D , x̂ ∈ X̂ .
(53)

Now take a solution (τ, x, x̂) to (44) initialized in T0×X0×X .
Because of the flow/jump sets are the same as the initial plant,
(τ, x) is solution to (41) and from SA1’, (τ, x) is in T × X .
Since X0 ⊂ X ⊂ C%, x̂(0, 0) ∈ C%. As long as (44) flows for
t ∈ [0, t1], x̂(t, 0) remains in C% by Theorem 1. Then, at the
first jump, x̂(t1, 0) ∈ C% ⊂ X̂ , and by definition of solutions
(τ, x, u, d)(t1, 0) ∈ D, so that, from (53), x̂(t1, 1) ∈ C%.
Repeating the same reasoning from that initial condition, we
deduce that x̂ remains in C% ⊂ X̂ . Because the flow/jump
conditions of (48) are independent from x̂, any maximal
solution (τ, x, x̂) of (44) is such that (τ, x) is maximal for
(41) unless x̂ explodes in finite time during flow. This latter
case is impossible since X̂ is compact. �

Lemma 6 says that, if the map ψ used in Gm in (49b)
verifies conditions (51), the Lyapunov properties of the ob-
server are preserved and the estimate x̂ remains in X̂ . More
importantly, the estimate is defined as long as the underlying
plant solution is, which was not necessarily the case of the
initial observer (44). Therefore, the modification does not alter
the properties of the solutions and keeps x̂ in X̂ .

Remark 5 Conditions (51) are trivially satisfied with
ψ(τ, ·) = Id if G(τ, x̂, u, h(τ, x, u, d)) ∈ C% for all
(τ, x, u, d) ∈ D and x̂ ∈ X̂ . In that case, Gm = G, namely
only the flow map is modified. Otherwise, it is necessary to

modify the jump map in order to guarantee solutions are in
X̂ after the jumps.

Similarly to Lemma 4, the map ψ : Rnτ × Rnx defined by

ψ(τ, x̂) := argmin
x∈C0

(x̂− x)>P (τ)(x̂− x) (54)

satisfies conditions (51) with S(τ) = Rnx for all τ ∈ Rnτ .
However, as mentioned in Section IV-B, this map may be
difficult to implement. Alternatively, we can follow the design
of Section IV-C. For that, we introduce the map Md : Rnτ ×
Rnx → Rnx defined by

Md(τ, x̂) := −γdP (τ)−1
dc

dx
(x̂)>c(x̂) , (55)

with γd a strictly positive scalar, and P (τ) coming from
Assumption 4. As in Theorem 2, if

vd,max := max
(τ,x,x̂,u,d)∈Td×X×X̂×U×D

βd
(
τ, x, x̂, u, d

)
(56)

is finite and by choosing γd sufficiently small, we can bring
x̂+ = G(τ, x̂, u, y) back into C% ⊂ X̂ after each jump, without
making V increase, by repetitively using Md(τ

+, ·) a finite
number of times. In order to avoid heavy notations, we do not
explicitly rewrite the map ψ gendered by this method which
is a direct transposition of Section IV-C. Instead, we notice
that, in the hybrid context, such a composition of functions
can be more easily modeled by a succession of jumps that
can directly be encoded in the hybrid system. This leads to
the hybrid redesign presented in the following section.

C. Hybrid Redesign

Inspired by (36), we add a toggle state q to the observer
state x̂, and define the map ψ̃ : Rnτ × Rnx → Rnx × {0, 1}
as

ψ̃(τ, x̂) =



(
x̂+Md(τ, x̂)

0

)
if x̂ ∈ (Rnx \ C%)(

x̂+Md(τ, x)
0

)
∪
(
x̂
1

)
if x̂ ∈ ∂C%(

x̂
1

)
if x̂ ∈ int(C%)

(57)
we consider the new observer dynamics

(τ̇ , ẋ, ˙̂x, q̇)> ∈ F̃(τ, x, x̂, u, d), (τ, x, x̂, q, u, d) ∈ C̃,
(τ+, x+, x̂+, q+)> ∈ G̃(τ, x, x̂, u, d), (τ, x, x̂, q, u, d) ∈ D̃,

(58)
with F̃ = (fτ , f, F, 0),

C̃ := {(τ, x, x̂, q, u, d) : (τ, x, u, d) ∈ C , x̂ ∈ X̂ , q = 1} ,

D̃ is the domain of definition of the jump map defined by

G̃ =



G̃11 if q = 1 , (τ, x, u, d) ∈ D , x̂ ∈ int(X̂ )

G̃11 ∪ G̃10 if q = 1 , (τ, x, u, d) ∈ D , x̂ ∈ ∂X̂
G̃10 if q = 1 , (τ, x, u, d) ∈ D , x̂ ∈ Rnx \ X̂

or q = 1 , (τ, x, u, d) ∈ cl(C) \D ,

x̂ ∈ cl(Rnx \ X̂ )

G̃0 if q = 0 , (τ, x, u, d) ∈ cl(C) ∪D ,
x̂ ∈ Rnx

(59)
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with

G̃11(τ, x, x̂, u, d) := (gτ (τ), g(τ, x, u, d),

G(τ, x̂, u, h(τ, x, u, d)), 1) (60a)

G̃10(τ, x, x̂, u, d) := (τ, x, x̂, 0) (60b)

G̃0(τ, x, x̂, u, d) := (τ, x, ψ̃(τ, x̂)) (60c)

Still assuming that vd,max defined in (56) is finite, we consider
the compact sets

X̂d,max := {x̂ ∈ Rnx : ∃τ ∈ Td ,
∃x ∈ X , V (τ, x, x̂) ≤ vd,max} . (61)

Theorem 3 Select γd > 0 satisfying γd < γ?d defined in
(33)-(34) with X̂max := X̂ ∪ X̂d,max. Then, any solution
φ = (τ, x, x̂, q) of (58) initialized in T0×X0×X̂×{1}, verifies
domφ = D1 ∪ D0, with D0 and D1 such that q(t, j) = 0 for
all (t, j) ∈ D0 and q(t, j) = 1 for all (t, j) ∈ D1, and the
following.
• The projection of D0 on t is of null Lebesgue measure.
• The hybrid arc s = (τ, x, x̂, u, d)|D1

verifies x̂(t, j) ∈ X̂
for all (t, j) ∈ dom s, and, for all (t, j) ∈ dom s,

d

dt
V
(
(τ, x, x̂)(t, j)

)
≤ βc

(
(τ, x, x̂, u, d)(t, j)

)
and for all (t, j) ∈ dom s such that (t, j + 1) ∈ dom s,

V
(
(τ, x, x̂)(t, j + 1)

)
≤ βd

(
(τ, x, x̂, u, d)(t, j)

)
.

• Removing the trivial jumps from (τ, x) gives a maximal
solution of the plant (41).

The first item says that the part D0 of the time domain
where q = 0 consists only of jumps (no flow), and the second
item, that along the solutions restricted to the rest of the time
domain D1 where q = 1, x̂ ∈ X̂ and the Lyapunov properties
are preserved. In other words, we are only adding jumps,
“correction phases” where q = 0, designed to bring x̂ back
into X̂ whenever it attempts to leave X̂ . Besides, the third item
says that modulo the added jumps in D0, we indeed browse
the entire domain of the underlying plant solution, i.e. our
modification does not make solutions stop prematurely. The
following proof further explains the behavior of the solutions.

Proof. As long as x̂ ∈ int(X̂ ), q remains equal to 1, and
(τ, x, x̂) evolves according to the initial observer dynamics
(44) with F̃ = (F , 0) and G̃ = G̃11 = (G, 1). If x̂ reaches
the boundary of X̂ after flow or jump, it can either carry on
evolving according to (44) if possible, or use G̃10 to reset q to
0; if x̂ exits X̂ after jump, q is necessarily reset to 0 through
G̃10. In both cases, either x̂ comes from flow and x̂ ∈ ∂X̂ ⊆ X̂ ,
or x̂ is an output of G and x̂ ∈ X̂d,max by definition of X̂d,max.
Therefore, at this point, x̂ ∈ X̂max and q = 0, so that no flow
is possible, and the solution necessarily jumps via G̃0. Since
∂X̂ ∩ C% = ∅ according to Lemma 1, x̂ ∈ Rnx \ C% and x̂
is reset to x̂+Md(τ, x̂) while (τ, x) remains unchanged and
q is kept to 0. According to Lemma 5, V (τ, x, ·) decreases
through the jump, so that x̂ is still in X̂max. Along the same
lines as the proof of Theorem 2, we can show that the solution

jumps a finite number of times via G̃0, until x̂ ∈ C% and q
is switched back to 1. The states (τ, x) have not changed
throughout this “correction phase” and since C% ⊂ int(X̂ ),
the solution restarts evolving according to the initial observer
dynamics (44). Therefore, the domain of any trajectory of (58)
initialized in T0 ×X0 × X̂ × {1} is composed of two parts:
• a part D1 where the system evolves according to the original

observer dynamics (44) and where x̂ ∈ X̂ .
• “correction phases” D0 made of sequences of a finite

number of successive jumps occurring at times where x̂ has
left (or is about to leave) X̂ . During this phase, (τ, x) is
kept unchanged and the final value of x̂ is back in C% ⊂ X̂ .

Therefore, x̂ is bounded and because C% ⊂ X̂ , the “correc-
tion phases” are always separated by flow or jump of the
component (τ, x). This means that, after removing the trivial
jumps added during the “correction phases”, we recover a
maximal solution (τ, x) of the plant (41). As for the Lyapunov
performances, (47) is obviously preserved during the phases
where the solution evolves according to (44), and V (τ, x, ·) is
non increasing throughout the “correction phase”. Therefore,
the Lyapunov properties (47) are preserved along the solutions
once restricted to D1. �

Note that the same conclusions hold by taking F̃ =
(fτ , f, Fm, 0) with Fm defined in (49a) since it does not
change (47a). The only difference is that Fm naturally forces
x̂ to remain in C% during flow, so that fewer hybrid “correction
phases” are necessary.

Remark 6 In the case where P is generated dynamically by
Riccati/Lyapunov dynamics, the trivial jumps of τ added in
(58) during the “correction phases” where q = 0 are simply
traduced by trivial jumps in the dynamics of P . In other words,
P is kept constant throughout the correction process.

VI. CHOICE OF DESIGN PARAMETERS

A. Choice of X̂
Throughout this work, X̂ is the set in which we want/need

to constrain the observer solutions. However, in practice, we
have some freedom to select this set. Often, we only want the
state x̂ of the observer to remain as close as possible to the
set X where the plant state x to be estimated evolves in view
of SA1. Then, the design of X̂ and C satisfying SA2 consists
in choosing the convex map c of Lemma 5 such that C0 is as
close to X as possible, and then select % > 0 and X̂ := C%′
for some 0 < % < %′.

Sets C0, C% and X̂ can thus be arbitrarily close by choosing
% < %′ arbitrarily small. Nevertheless, a very small % may
induce a very large gain γc in the CT correction term (14)
due to δmin defined in (16) being very small, or a very
large number of jumps θ in the DT multi-step redesign in
order to bring c under the threshold %, see (70). Therefore, a
compromise must be found between constraints and numerical
feasibility.

It is important to mention that although item a) of Lemma 1
imposes to take a strict inclusion C% ⊂ X̂ , the observer
solutions are actually shown to remain in C% in the CT redesign
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of Theorem 1, the multi-step DT redesign of Theorem 2 and
the nominal hybrid redesign of Lemma 6. As for the single-
step DT redesign of Lemma 4, solutions actually remain in
C0. In fact, only in the hybrid redesign of Theorem 3 is the
strict inclusion C% ⊂ X̂ exploited to properly define the jump
logic and guarantee non-Zeno solutions.

Finally, note that, in the spirit of keeping the observer
trajectories as close as possible to X , the redesign can also
be done without any explicit choice of X̂ by:
• choosing γc as large as numerically acceptable in the CT

redesign (Table I);
• choosing the desired threshold % under which c must be

brought at each iteration in the multi-step DT redesign
(Table III);

• using the single-step DT redesign (Table II) thus project-
ing directly into C0.

B. Construction of the map c

We next show how to build the map c in the common
practical cases where the plant solutions are known to remain
in a polytope or an ellipsoid. Those typically arise when the
states are known to remain within physical bounds.

Lemma 7 Suppose there exists vectors ai ∈ Rnx and scalars
bi, i = 1 . . . nc, satisfying

X ⊆
nc⋂
i=1

{x ∈ Rnx : a>i x ≤ bi} ⊂ X̂ .

Then the function c : Rnx → Rnc≥0 defined as

c(x) := (c1(x), . . . , ci(x), . . . , cnx(x)), (62)

ci(x) := max
{
a>i x− bi, 0

}2
is C1 and satisfies items a)-b) of Lemma 1 for some % > 0.

Proof. Consider B :=
⋂nc
i=1{x ∈ Rnx : a>i x ≤ bi}, and B :=⋂nc

i=1{x ∈ Rnx : a>i x ≤ b̄i} satisfying X ⊂ B ⊂ B ⊂ X̂ , for
b̄i > bi for i = 1, . . . , nc. Pick any point x◦ ∈ X ⊂ B. By
construction, it satisfies a>i x

◦ ≤ bi for all i = 1, . . . , nc, so
that ci(x◦) = 0 for all i = 1, . . . , nc, and therefore c(x◦) = 0.
As this holds for any point in X , this shows that X ⊂ C0,
with C0 defined in (1). Then, select % := mini{b̄i − bi}2.
Pick any point x ∈ C% with C% defined in (1). Hence, we
have that |ci(x)| ≤ % for any i = 1, . . . , nc. It follows that
|a>i x − bi| ≤

√
% ≤ b̄i − bi which implies a>i x ≤ b̄i, for all

i = 1, . . . , nc, and thus x ∈ B. Since by construction B ⊂ X̂ ,
this shows that any point in C% is also in X̂ and prove item
a). Finally, in order to show item b), it is enough to observe
that the functions ci are quadratic outside their zeroing set,
and therefore convex. This concludes the proof. �

Other definitions can be considered by exploiting the shape
of X . For instance, when X is an ellipsoid, a scalar function
c can be constructed as follows.

Lemma 8 Suppose there exists a positive definite matrix Q
of dimension nx× nx, a scalar r > 0 and a vector x0 ∈ Rnx

satisfying X ⊆ {x ∈ Rnx : (x − x0)>Q(x − x0) ≤ r} ⊂ X̂ .
Then, the function c : Rnx → R≥0, nc = 1, defined as

c(x) := max
{

(x−x0)
>Q(x−x0)
r − 1, 0

}2

. (63)

is C1 and verifies the items a)-b) of Lemma 1 for some % > 0.

Proof. Similar to Lemma 7. �

VII. EXAMPLES

A. Flow and Jump Redesign for Kalman-like Observers

The goal of this section is to illustrate and compare the two
redesign techniques (flow or jump redesign) for a continuous-
time observer. Inspired by the example in [13], we consider
the case in which system (3) is given by

ẋ = A(u)x+ ϕ(x), y = Cx (64)

where x ∈ R3 is the state, C =
(
1 0 0

)
, A(·) and ϕ(·) are

defined as

A(u) =

0 u 0
0 0 u
0 0 0

 , ϕ(x) =

 x1 − 1
3x

3
1

ε(3 sin(x1)− x2 − η)
x3 − 1

5x
5
3 + x1x2

1+x2
2

 ,

with ε, η > 0 some known parameters, and u an external
known input. In this example we consider the case in which
there are no disturbances, i.e. we consider d = 0 in (3). By
using a quadratic-like Lyapunov function, it can be shown
that SA1 is satisfied for some X0,X ,U and D = ∅. See for
instance Figure 3, in which we selected ε = 0.8, η = 5,
x(0) = (2,−2,−2), and u = sin(t+ π

2 ). From simulations, we
take the following numerical values for SA1: X = {x ∈ R3 :
|xi| ≤ Lmin , i = 1, 2, 3} and Lmin = 8 for an appropriate
X0 ⊂ X . The set X̂ in SA2 is selected then as X̂ = {x ∈
R3 : |xi| ≤ Lmax , i = 1, 2, 3} with Lmax = 11. Finally,
the function c of Lemma 1 is chosen as in (62) with nc = 6,
and a1 = (1, 0, 0), a2 = (0, 1, 0), a3 = (0, 0, 1), a4 = −a1,
a5 = −a2, a6 = −a3, b1 = b2 = b3 = b4 = b5 = b6 = Lmin,
and we choose % = 1.

Following the high-gain extended-Kalman filter design in
[3], we design the observer

˙̂x = A(u)x̂+ ϕs(x̂) + `D`S(t)C>(y − Cx̂) (65)

where D` = diag(1, `, `2) with ` ≥ 1 the high-gain parameter,
ϕS a function to be properly chosen, and S(t) is computed as
solution to the following differential Riccati equation

Ṡ = `(SA(u)> +A(u)S +Q− 2SC>CS + aS), (66)

where Q and S(0) are positive definite symmetric matrices.
We have then the following result.

Proposition 1 Let ϕs be any C1 function satisfying |ϕ(x)−
ϕs(x̂)| ≤ δ|x− x̂| for any (x, x̂) ∈ X ×Rnx , for some δ > 0.
Then, system (64) and observer (65), (66) verify Assump-
tions 1, 2 with P (t) = D−1` S(t)−1D−1` , βc = −(a` − δ)V.
and some λ̄ > λ > 0.

Proof. The proof follows the computations given in [3] and
it is omitted for space reasons. �



14

Fig. 3. Evolution of the solution to system (64) for t ∈ [0, 20] with initial
conditions x0 = (2,−2,−2).
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(c) x̂3

Fig. 4. Solutions of the plant (64) (blue), the nominal observer (65), (66) (red),
the modified observer with flow redesign (yellow), the modified observer with
jump redesign (purple), with x̂0 = (7,−7, 6), ` = 20, a = 1.

In Figure 4, we compare the different observation strategies.
With the nominal observer (65), (66), depicted in red, the
peaking phenomenon [7] causes the observer state to go far
away from X during the transient. A first solution is to apply
the flow redesign tool presented in Section III (see Table I),
which enables to constrain the observer state into the set C%
and cut away the peaking. More precisely, we add to the
observer dynamics (65) the correction term M(t, x̂) defined
in (14) with γc = ` and P (t) = D−1` S(t)−1D−1` (trajectories
in yellow in Figure 4). Another solution is to apply the hybrid
redesign of Section V-C (with D = ∅). In other words,
whenever x̂ attempts to leave X̂ , jumps are triggered to bring
it back into X̂ . This can be done by successive jumps using
Md as in Section V-C, or directly by projecting x̂ into C0 along
(54). Indeed, C0 being a polytope, this optimization problem
reduces here to a QP with linear inequality constraints which
can be solved on Matlab via the function quadprog. The
result of simulations of this latter method appears in purple in
Figure 4. Note that we have been able to use the optimization
approach thanks to the polytopic form of X̂ , but in the case of a
hyper-sphere, we should probably have followed the technique
proposed in Theorem 2. This is not shown for space reasons,
an illustration of Theorem 2 can indeed be found in [53].

Simulations confirmed the validity of the proposed ap-
proaches (flow-redesign and hybrid redesign), and suggest to
actually combine both: the flow redesign keeps x̂ as much
as possible in X̂ , but if for some reason (γc too small or
perturbations), x̂ still attempts to leave X̂ , then the jumps
act as a back-up, all this without altering the Lyapunov
performances. It would be necessary to investigate in details
the computational load of each method to determine which
is more efficient: flow or hybrid redesign? With quadratic
projections or successive jumps?

B. Hybrid Redesign for the Bouncing Ball

Consider a bouncing ball with gravity coefficient g > 0 and
restitution coefficient 0 < λ < 1, modelled as a hybrid system
with state x = (x1, x2) representing the height and velocity
of the ball, flow/jump maps

f(x) = Ac x−
(

0
g

)
, g(x) = Ad x

with Ac = ( 0 1
0 0 ), Ad =

(−1 0
0 −λ

)
and flow/jump sets

C = R≥0 × R , D = {(x1, x2) ∈ R2 : x1 = 0 , x2 ≤ 0} .

We assume that the height of the ball h(x) = x1 = 0 is
measured at the jumps only, i.e., the impacts of the ball can be
detected by some sensor. No measurement is available during
flows. In [33], an observer is designed for this system by
adding a linear correction term in the jump dynamics, with an
appropriately chosen gain, and by synchronizing the observer
with the plant. This leads to the dynamics

ẋ = f(x)
˙̂x = f(x̂)

}
x ∈ C , x̂ ∈ Rnx ,

x+ = g(x)
x̂+ = g(x̂)− L(x̂1 − x1)

}
x ∈ D , x̂ ∈ Rnx ,

(67)
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The gain L must then be chosen depending on the available
knowledge about the time elapsed between successive jumps.
In this particular example, since λ < 1, we know that any
maximal solution is Zeno, namely exists on a finite time
horizon [0, T ) with an infinite number of jumps, i.e., the time
between two successive jumps tj+1 − tj tends to 0 when j
tends to +∞. Let us fix a bounded set X0 of initial conditions
of interest, and let τM ≥ 0 so that tj+1 − tj ∈ [0, τM ] for
all j ∈ N along any solution initialized in X0. According to
[33], exponential convergence is ensured by choosing L so
that there exist ac ∈ R and ad < 0, and a positive definite
symmetric matrix P ∈ Rn×n such that

A>c P + PAc ≤ acP
(Ad − LdHd)

>P (Ad − LdHd) ≤ eadP
acτM + ad < 0

Indeed, then the Lyapunov function V (x, x̂) = (x̂−x)>P (x̂−
x) decreases more at jumps than it increases during flow,
so that V decreases overall. Following [33, Example 4.2],
we choose Ld = (−1,−0.1487). The corresponding observer
trajectory is plotted in Figure 5(a)-5(b) (red), and the decrease
of the Lyapunov function illustrated in Figure 5(c) (blue).
Convergence is indeed achieved but we observe that the height
estimate becomes strongly negative during the transient, which
is not physically possible. In the following, we thus redesign
the observer in order to ensure the estimate remains as close
as possible to the set X = [0, 10]× [−10, 10].

The set X being a polytope, the function c of Lemma 1 is
chosen as in (62) with nc = 4, and a1 = (1, 0), a2 = (0, 1),
a3 = −a1, a4 = −a2, b1 = b2 = b4 = 10, b3 = 0, and % = 1.
Then, C0 = X .

Following the hybrid redesign strategy (48)-(49), we obtain

ẋ = f(x)
˙̂x = f(x̂) +M(x̂)

}
x ∈ C , x̂ ∈ Rnx ,

x+ = g(x)

x̂+ = ψ
(
g(x̂)− L(x̂1 − y)

) }
x ∈ D , x̂ ∈ Rnx ,

(68)
where ψ : R2 → X is the quadratic projection defined by

ψ(x̂) = argminx∈X (x̂− x)>P (x̂− x)

implemented with quadprog and P =
(

0.2885 −0.0012
−0.0012 0.2733

)
and

M is defined on R2 by M(x̂) = −γcP−1 dcdx (x̂)>c(x̂) with
γc = 10. Insights about the selection of P are given in [33] and
more extensively in [61]. Here, we do not specify a particular
choice of X̂ because our goal is to keep x̂ close to X and
this is achieved by taking γc sufficiently large as explained in
Section VI. The result of the simulation is provided on Figures
5(a)-5(b) (yellow). We can see that the observer actively uses
the information that x ∈ X during the first interval of flow
to prevent x̂ from leaving. This practically acts like an extra
measurement and enables the Lyapunov function to decrease
during the transient (unlike in the original design) as illustrated
on Figure 5(c) (red).

(a) x1: plant ; x̂1: nominal observer ; x̂1 (redesign): redesigned
observer

(b) x2: plant ; x̂2: nominal observer ; x̂2 (redesign): redesigned
observer

(c) V (x, x̂) with nominal observer (blue) and modified observer
(red)

Fig. 5. Solutions of the nominal observer (67), and redesigned observer (68)
with x0 = (4, 2) x̂0 = (1,−7).
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VIII. CONCLUSION

For a given dynamical system with the state evolving in a
known compact set, we supposed to know an observer with
performances characterized by a quadratic Lyapunov function
of the error, and we addressed the problem of constraining
the observer state in a desired convex set, while preserving
those performances. By exploiting the knowledge of a convex
function which is zero on this desired convex set, we proposed
a methodology which consists in redesigning the observer’s
dynamics outside such a set by means of a gradient ap-
proach, and therefore avoiding the use of on-line optimization
techniques. In this work we proposed a unifying point of
view covering (possibly nonlinear, time-varying) continuous
time, discrete time and hybrid systems that allows to use
these techniques for a large number of different observers.
For this, we showed how to redesign a given observer, under
the same convexity assumption, in a continuous-fashion way
(flow-redesign) or discrete one (jump-redesign).

The proposed methodology may find a large number of
applications such as removing peaking phenomenon, avoiding
numerical issues [43], [53], improving the performances in
presence of large measurement noise or output feedback
stabilization [41], [42]. As shown in [41]–[43], it can be also
used when the coordinates of the observer and the plant’s
dynamics are not the same, and such change of coordinates is
not globally defined. As a future work, it would be useful to
quantify and compare the computational loads of the various
proposed techniques.
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APPENDIX

A. Proof of Theorem 2

In light of (24), the number vmax defined in (39) is the
largest possible value of Vk+1 after a jump with G(k, ·) from
xk ∈ X , x̂k ∈ X̂ , uk ∈ U , dk ∈ D and for any k ∈ N.
Now, in light of the definition of Vk in (22), the sets X̂k+1,max

defined in (40) are compact elliposides, and, by using (23) and
the fact that vmax is bounded, we conclude that X̂k+1,max are
uniformly bounded. Therefore, there exists a compact set X̂max

such that
⋃
k∈N X̂k+1,max ⊆ X̂max. With this X̂max so defined,

let δmax, γ
?
d be defined according to the proof of Lemma 5 as

in (33) and (34). Finally, let vmin > 0 be defined as3

vmin := max
{
v ∈ R≥0 : ∀ x ∈ X , ∀k ∈ N

{x̂ ∈ Rnx : Vk+1(x, x̂) ≤ v} ⊆ C%
}
.

with C% defined in Lemma 1. In other words, vmin is the largest
positive number such that the following property holds for all
k ∈ N

x ∈ X and Vk+1(x, x̂) ≤ vmin =⇒ x̂ ∈ C% ⊂ X̂ . (69)

3vmin is finite and positive thanks to (23) and X compact.

Pick any strictly positive γd satisfying γd < γ?d , and with
vmax, vmin defined above, let θ ∈ N be defined as

θ := ceil

(
max{vmax − vmin, 0}

γd%2

)
, (70)

with % given by Lemma 1. With all the parameters so defined,
the rest of the proof consists in showing that, by applying
Mk+1 at most θ ∈ N times, the value of Vk+1 is brought below
the threshold vmin. This, in turn, implies that, in light of the
previous definitions, the value G(k, x̂k, uk, yk) ∈ X̂k+1,max is
brought back into C% and therefore in X̂ ⊃ C% in view of item
a) of Lemma 1.

To this end, let (k, x̂) ∈ N×X̂k+1,max, and define x̂k,1 = x̂

and qk,1 = 0. By definition of X̂k+1,max in (40), there exists
xk ∈ X such that Vk+1(xk, x̂k,1) ≤ vmax. First, let us show
that for any sequence of points (x̂k,i, qk,i)i=1,...,θ+1 such that

(x̂k,i+1, qk,i+1) ∈ ψ̃k+1,i(x̂k,i, qk,i) ∀i = 1 . . . θ (71)

we have xk,i+1 ∈ X̂k+1,max and

Vk+1(x̂k,i+1, x) ≤ Vk+1(x̂k,i, x) ∀x ∈ X , (72)

for all i = 1 . . . θ. From (36), we have(
x̂k,2
qk,2

)
∈
(
x̂k,1 +Mk+1(x̂k,1)

1

)
∪
(
x̂k,1

0

)
,

with the second option being only possible if x̂k,1 ∈ C%.
By construction, X̂k+1,max ⊆ X̂max, so x̂k,1 ∈ X̂max,
and according to (32a) in Lemma 5, (72) holds in both
cases for i = 1. Besides, Vk+1(xk, x̂k,1) ≤ vmax so that
Vk+1(xk, x̂k,2) ≤ vmax and x̂k,2 ∈ X̂k+1,max. Iterating
and using the same arguments recursively, we obtain that
x̂k,i ∈ X̂k+1,max for all i = 1, . . . , θ + 1 and that for all
x ∈ X , Vk+1(x, x̂k,j+1) ≤ Vk+1(x, x̂k,j), j = 1, . . . , θ, which
gives Vk+1(x, x̂k,θ+1) ≤ Vk+1(x, x̂). Observing that for any
z ∈ ψk+1(x̂), there exists a sequence (x̂k,i, qk,i)i=1,...,θ+1

verifying (71) with qk,1 = 0 and z = x̂k,θ+1, we deduce
that (28a) holds with Sk+1 = X̂k+1,max.

In order to prove (28b), recall that at the first step, qk,1
is initialized at 0, and after that, we compute (x̂k,i+1, qk,i+1)
according to (36). From this definition, we can see that either
qk,i = 0 for all i = 1 . . . θ + 1, or there exists 1 ≤ θk ≤ θ
such that qk,i = 0 for all i = 1 . . . θk, and qk,i = 1 for
all i = θk + 1 . . . θ + 1. In the latter case, still from the
definition of ψ̃k+1, it means that x̂k,θ+1 = x̂k,θk ∈ C%, and by
recalling item a) in Lemma 1, we obtain x̂k,θ+1 ∈ X̂ . Now
suppose that such θk does not exists, namely, qk,i = 0 for all
i = 1 . . . θ+1. From (36), this means that for all i = 1, . . . , θ,
x̂k,i ∈ Rnx\int(C%), and x̂k,i+1 = x̂k,i+Mk+1(x̂k,i. As a con-
sequence, we can use inequality (32b) for each i = 1, . . . , θ,
obtaining Vk+1(xk, x̂k,θ+1) ≤ vmax − θγd%

2 ≤ vmin, by
the definition of θ in (31). Since xk ∈ X , using (69) and
item a) of Lemma 1, gives x̂k,θ+1 ∈ C% ⊂ X̂ . This implies
that ψ̃k+1(X̂k+1,max × {0}) ⊆ X̂ × {0, 1}, and therefore,
ψk+1(X̂k+1,max) ⊆ X̂ which is (28b). As for (28c), it holds
by construction and Assumption 3.
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