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Abstract—Facing Distributed Denial-of-Service (DDoS) attacks that are growing in both number
and intensity, cloud service providers’ network stability is at stake. Mitigation systems must
provide highly responsive lines of defense while handling terabits per second. Combining
reconfigurability with guaranteed throughput and latency, FPGAs are recognized targets for
high-speed network applications. Although traditional hardware development flows struggle to
be responsive, hardware construction languages (HCLs) bring new opportunities to hardware
development. This article showcases how Chisel HCL unleashes the power of agile development
methodologies through three successive development iterations of a hash-table, a core network
processing module in OVHcloud mitigation systems.

THE INTERNET TRAFFIC carries indifferently
legitimate and malicious packets, with among
other risks, distributed denial of service (DDoS)
attacks. These attacks aim at taking down a
targeted cloud service –or even at unsettling
a whole network infrastructure– by saturating
network devices or computing resources [1].

Only best-in-class network devices are able to
handle the latest record-breaking DDoS attacks
that reached peak traffic rate over 1.5 terabits
per second (Tbps). To stay in business, cloud
service providers are compelled to protect their
customers and their infrastructures. This leads
to a cat and mouse game, where attackers con-
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tinuously sharpen their strategies, and mitiga-
tions strategies must be continuously updated
–often within days– to remain efficient.

As reconfigurable devices implementing
digital circuits, FPGAs exhibit an interesting
trade-off between performances and lifetime
management, which makes them well-suited
to build network processing systems. They
indeed benefit from the digital circuits abil-
ity to accurately control both latency and
throughput of implemented algorithms, while
retaining update capabilities. However devel-
opment is hindered by the time-consuming
process of designing and implementing cir-
cuits for FPGAs using Hardware Description
Languages (HDLs). To tackle this issue, pre-
vious research focuses on increasing the ab-
straction level of hardware development con-
sidering two main approaches [2][3]. The first
path consists in expressing functionality in-
stead of describing hardware. This includes
High-Level Synthesis (HLS), where software
languages are compiled into hardware architec-
tures, and Domain-Specific Languages (DSL),
where domain-dependent primitives are pro-
vided to describe the design. The second path
takes an opposite direction by bringing high-
level software principles into a hardware level
abstraction, to provide advanced configuration
and generation capabilities. This path led to
the proposal of HCLs, such as Chisel [4] or
PyMTL [5].

To protect our worldwide network with
more than 20 Tbps connected to the Internet,
at OVHcloud we have developed our own anti-
DDoS protection system which successfully
mitigates thousands of attacks a day. It consists
of multiple custom layers featuring both high-
performance FPGAs and CPUs. Our aim being
to keep hardware development synchronized
with software continuous improvement, HDLs
have not proven to be efficient, raising a need
for an improved agile hardware development
flow. After first adapting our organization to
increase agility, we now need to move towards
more flexible hardware design tools and lan-
guages to match the pace of software develop-
ment [6][7]. As our main focus is to achieve
agility through design iterations, we want to
apply the principle of least power, which comes

with the following philosophy:

1) Complexity is your enemy
2) Do not fear refactoring
3) Do not over engineer

In this article we present how an higher
abstraction can increase agility and allow an
iterative process when implementing hard-
ware network applications. Specifically this real
industry-oriented use-case enables us to:

• discuss how existing higher-abstraction so-
lutions can be leveraged and combined to
improve the whole development process

• demonstrate how HCLs can benefit hardware
development and help building higher archi-
tectural abstractions of circuits,

• show that adopting these solutions can also
be done in an agile manner by integrating
new developments in existing HDL projects,

• evaluate the quality of HCLs generated cir-
cuits in terms of latency, throughput and
resource usage against equivalent HDL im-
plementations.

Already industrially used through the RISC-V
project, we selected Chisel, a Scala-embedded
HCL for our experiments. We first introduce an
example of network application, focusing on
existing high-level development tools. We then
focus on a central function, the hash-table, de-
scribe the classic cuckoo hashing algorithm and
dig into its iterative implementation as a Chisel
hardware module. We show that the generated
hardware is on par with our current, thoroughly
optimized, SystemVerilog implementation both
in terms of performances and resource usage.
Finally we present our analyze of the advan-
tages and drawbacks in the use of Chisel.

NETWORK APPLICATIONS
In order to design a DDoS filtering applica-

tion, we need to collect statistics to decide if
a flow is legitimate. This involves passive op-
erations on the network, such as counting the
number of packets originating from a source
IP address. It may also integrate active network
operation, such as sending reply packets to
TCP connection requests, to check if the source
is real or simply flooding the network. Based
on theses statistics, a decision can be taken,
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Figure 1. Network application representation

which usually consists in dropping or delaying
packets from a suspicious flow. A single filter-
ing application combines different strategies to
cover the diversity of flows and attack patterns.
These strategies may evolve quickly, based on
new attacks or network configurations, which
requires a fast development flow.

These applications also have tight perfor-
mance constraints, and must guarantee worst-
case performances to avoid becoming DDoS
targets themselves. Throughput performances
of a network application are evaluated on both
bitrate and packet per second (pps) scales.
The packet rate target is computed for the
worst-case: smallest packets -complete Ether-
net packet of 84 bytes- at full bitrate. Con-
sidering the usual bitrate target for high-end
network interfaces of 100Gbps, an up-to-date
network-oriented FPGA board with 8 interfaces
is expected to process 1.2Gpps for 800Gbps.

In a network application, some operations
such as checksum computation are done at
bitrate, while others such as packet filtering
or state storage are done at packet rate. This
leads to a conceptually simple architecture rep-
resented in Figure 1. Network packets are split
into several chunks sequentially processed in
the application. Operations are chained as a
pipeline for operations occurring at bit level
and a sufficient number of pipelines is in-
stantiated to reach the required bitrate. These
pipelines then access shared operations exe-
cuted at packet rate.

However, when going deeper into this sim-
ple architecture, complexity increases. First, the

layered design of network protocols leads to
complex developments and integration when
new protocols need to be included. Second,
network applications are stateful. For example,
a rate limiter aims at limiting the incoming
traffic from a given IP address. This is done by
counting the flows from this address: each time
a packet arrives, the IP addresses are extracted,
the current number of packets is retrieved,
and incremented. If the resulting number of
packets is higher than a given threshold, the
packet is dropped. This is a simple algorithm,
but it requires to maintain the state (counter)
associated with an address. The required size of
state storage in the worst-case is obtained from
target packet rate and retention time: 1.2Gpps
with 1 second retention time requires storage
for 1.2G flows.

Implementing network applications for
FPGA targets with HDLs is feasible, but evolving
towards faster development and deployment
is desirable. DSLs are promising for defin-
ing an appliance at application level. Flow-
Blaze [8] is a DSL that provides a way to
represent stateful applications. Another popu-
lar language is P4 [9], which is designed to
program network pipelines. It relies on an ar-
chitecture representation which defines the ca-
pabilities of the underlying processing system,
and on an application representation based
on required fields and operations applicable
on packets. Toolchains implementing P4 offer
real improvements over baseline HDL imple-
mentation. They automate the tedious process
of protocol implementation, thus limiting the

3



usual errors in bit manipulation, and speeding
up integration of new protocols. They also
provide an implementation agnostic view of the
application, which eases discussion with non-
hardware specialists and helps focusing on the
functionality instead of implementation details.

However, while P4 increases agility and ex-
pressiveness in this context, it is not sufficient.
It relies on vendor IPs for function implemen-
tation, or on HLS when none exists. As HLS
is not really adapted for these control-oriented
applications, this leaves the implementation of
missing functions unresolved. In our applica-
tion, available state storage solutions were not
satisfactory, as they were either too small, or
not worst-case guaranteed. We heavily rely on
QDR memories to mitigate this issue, which are
not supported by the tools. The second issue
with P4 is that production-ready implementa-
tions are vendor dependent. As cloud provider,
we cannot depend on a single supplier and
currently use both Intel and Xilinx FPGAs in
our production environment. Using or devel-
oping vendor-agnostic tools could mitigate this
issue, but the tight performance constraints will
always lead to a need for custom implementa-
tions of critical functions. This means that agile
development cannot be achieved only through
the use of a network-related DSL.

CUCKOO HASH-TABLE ALGORITHM
As above-mentioned most network applica-

tions need to store per flow state. Given the
range of potential source IP addresses (up to
2128 for IPv6), the total number of flows is
far too large to use standard memory. This
problem further increases when the flow is de-
fined with additional parameters, such as traffic
category, internal profile, or both source/target
addresses. In practice not all slots are required,
and dictionaries can be used.

While specialized Content-Addressable
Memories (CAMs) or Ternary CAM (TCAMs)
are perfectly suited for dictionary hardware
implementation, these highly specialized
circuits are ill-suited to FPGAs. Efficient
dictionary implementation is usually obtained
through the use of hash-tables, which can be
based on external memories, decoupling logic
and storage functions.

We here focus on one particular hash-table
implementation, based on the cuckoo hashing
algorithm [10]. This dictionary implementation
provides worst-case constant lookup time while
focusing on efficient memory space utilization.
The present cuckoo hashing algorithm is based
on N independent memory banks, respectively
associated with N corresponding hashing func-
tions. Cuckoo hashing is well suited to hard-
ware implementation, as memory banks can be
accessed in parallel.

Given a (key,value) pair, the N hash func-
tions are applied to the key. Each resulting
hash is the address of a slot in the associated
memory bank. Any (key,value) pair can hence
be stored in N different slots.

Given a key, the lookup operation is quite
straightforward:

1) N hashes of the key are computed,
2) slots pointed by each hash are retrieved,
3) if the key is found in one of the retrieved

slots, the associated value is returned.

The lookup operation execution time does not
depend on where or when the data was stored,
ensuring worst-case constant lookup time.

The insert operation is a bit more complex.
Given a (key,value) pair to be inserted, the last
step is replaced by:

3) Lookup for free slots:

a) If at least one slot is free, randomly
pick one of them for insertion,

b) Otherwise swap the content of
one randomly chosen slot with the
(key,value) pair and go back to
step 1).

The re-insert operations of overwritten
(key,value) pairs are called moves. Having
moves create a possibly infinite loop in the
design, if no free slots are found for each
successive move. This is avoided by limiting
the number of reinsertions, dropping the last
(key,value) pair when the limit is reached.

This hash-table was already implemented
and used in our anti-DDoS solution, with many
improvements and variations to fit our use-
cases. As part of an ongoing migration of our
applications from SystemVerilog to Chisel, we
decided to re-implement it, starting with a very
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Figure 2. Global Cuckoo Hash-table Architecture

basic one, and iteratively adding the required
features.

We target the following performance re-
quirements:

• one operation per clock cycle,
• a latency within hundreds of cycles, which is

quite transparent at network scale.

The first design iteration is a core cuckoo
hash-table module depicted Figure 2. Moves are
blocking, with incoming requests stalled until
the move is successful or the limit is reached.

The implementation process for this mod-
ule is the same with Chisel or with SystemVer-
ilog. The hardware description closely follows
the linear pipeline architecture. Expressing this
simple assembly of modules from a coarse-
grained point of view is straightforward in both
languages. This is expected from SystemVerilog,
but it validates the fact that Chisel provides the
necessary constructs to be used as a standard
hardware description language. It also enables

the inclusion of existing SystemVerilog modules
as black-boxes, a mechanism used in this initial
implementation to integrate our existing cus-
tom hash functions. While there is no signifi-
cant gain in using Chisel at this point, there is
also no loss in hardware expressiveness.

READ-MODIFY-WRITE ITERATION
As the second design iteration, we extend

the initial implementation with the ability to
process user-defined read-modify-write opera-
tions. This allows for example to increment a
counter within a single request. A read-modify-
write operation consists of 3 successive steps:

1) lookup a (key,value) pair,
2) compute updated value given user-

defined algorithm,
3) write result back to original memory slot.

The complexity of this iteration lies in the
user-defined aspect of the modification. Adding
an atomic read-modify-write is simply a matter
of locking the table and inserting the user-
defined function between the decision stage
and the actual write to memory. But being
able to externally provide the operation is not
as simple. Our SystemVerilog implementation
uses an external module for this operation,
and carefully designed hardware ports, but this
approach comes with many pitfalls. First, in-
creasing the number of ports increases the
complexity, reducing overall expressiveness of
the source code. Modifying the function means
ensuring that the connection is done correctly.
It also implies a complex validation of the mod-
ifier, mocking the expected in-place integration.
Secondly, providing a default modifier can only
be done with a wrapper module or with gener-
ate statements, which limits code reuse. Lastly,
the resulting hierarchy seen during verification
and synthesis analysis presents the modifier
outside of the main hash-table pipeline, result-
ing in harder debug and resources enumera-
tion. In our anti-DDoS application, we use sev-
eral different hash-tables, with different mod-
ifier functions. Limitations encountered using
SystemVerilog for this simple read-modify-write
upgrade are symptomatic of design patterns
that prevent code reusability with HDLs. As
upgrades come at high maintainability and ver-
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ification costs, full rewrite are often preferred in
practice.

In contrast functional parameterization and
object inheritance in Chisel provides the ability
to split roles. Users can instantiate the hash-
table with any modifier function, provided that
it fulfills the software interfaces documented
below (for simplicity, we use a UInt as data
type).

trait CuckooModifier {

def build(valid: Bool, input: UInt)
: (UInt, Bool)

}

The build function is the main function
called in the hash-table to generate modifier
hardware. The concrete modifier implementa-
tion is then for example defined as the Incre-
ment modifier below:

object Increment extends CuckooModifier {

def build(valid: Bool, input: UInt)
: (UInt, Bool) = {

(input + 1.U, valid)

}

}

Finally the HashTable module takes a Cuck-
ooModifier as parameter, and uses it in its
implementation.

class HashTable(
val modifier : Option[CuckooModifier]

= None
// ...

) extends Module {

//...

modData, modValid = modifier match {

case Some(mod) => mod.build(

lookupValid, lookupData)

case None =>
(lookupValid, lookupData)

}

//..

}

Possible flavors of this parameterization are
endless. For example, we could have used the
build function as a parameter, but using a trait
allows for more complex modifiers. We could
also use a list of modifiers, along with a modi-
fier selector mechanism, to implement different
modifications in a single hash-table. With this
approach, hardware interfaces are not growing

out of control, hierarchy is preserved and a
default child module generator can be provided
to the module constructor, hence increasing
reusability. Changes in code are quite limited
and confidently integrated into the code base
thanks to associated unit-tests. The flexibility
offered by this parameterization hardly suffers
from any limitation and greatly helps with in-
tegrating the Chisel implementation within our
complex code base.

EXPERIMENTING WITH HASH
FUNCTIONS

The hash function choice is a balance be-
tween resource usage and latency on one hand,
and collision avoidance on the other hand.
While redesigning our hash-table, we wanted to
experiment with other hash functions, which is
the subject of this third iteration.

In SystemVerilog, new hashes can be inte-
grated in several ways: using hardware ports
as above-mentioned; manually selecting the
desired hash function within hash-table code;
or with a generic parameter, coupled to an enu-
meration of known hash functions using gen-
erate statements. However, none of these so-
lutions avoid modification of original code for
each new hash function -or at the cost of com-
plex and constrained interfaces. In Chisel, as
described through the second iteration, func-
tional parameterization allows fast integration
of user-defined code without internal changes,
thus easing design exploration and increasing
reuse.

An interesting hash function candidate is
the SipHash algorithm [11] which was deemed
one of the most performant hash [12]. Origi-
nally designed for software, it is highly sequen-
tial with multiple iterations of a computation
–the sipround– over the input message. To
integrate SipHash in our fully-pipelined archi-
tecture we need to unroll the sequential loops
while duplicating the siprounds and chaining
them through register stages. The number of
siprounds is configurable and impacts the hash
function properties. Within SystemVerilog, the
usual way to deal with such variable length
pipelines is to define an array of register stages.
These stages are then connected using their
respective indexes which results in low read-
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ability and highly error-prone code. Resorting
to a function to factorize sipround computa-
tions between registers stages is appealing. Un-
fortunately, SystemVerilog functions can hardly
integrate registers, which prevents exploration
of different registers configuration inside the
stages.

In contrast Chisel supports recursive gener-
ating functions which are able to describe both
the functionality and the pipeline details by in-
ferring either registers or wires between stages.
Hardware stages are defined during elaboration
(i.e. the execution of these generating func-
tions), leading to a very comprehensive match
between the algorithm steps and the generated
hardware stages.

This third iteration shows two other aspects
of the usefulness of Chisel: the extended use
of functions for both code generation and ad-
vanced software configuration. First, the possi-
bility to instantiate hardware inside a function
allows more natural expression of algorithms.
Secondly, configuration functions can be de-
fined as software within the hardware descrip-
tion, whereas for our SystemVerilog hash func-
tions, a configuration file is generated using
a Python script prior to hardware elaboration.
This limits the number of errors, and interest-
ingly speeds up simulation and synthesis, as
the hardware is generated in a static form, as
opposed to the SystemVerilog version where
configuration file is read dynamically by the
tools.

HARDWARE EVALUATION
The primary goal of languages is to allow ef-

ficient implementation in terms of resource us-
age and performance. In resources-constrained
FPGA, a language must be chosen carefully in
this respect. As we observed the same trend
over numerous possible parameterizations, this
section focuses on the result corresponding to
the following configuration:

• 75 bits key width
• 21 bits address width
• 69 bits data width
• frequency: 200 MHz
• device: Xilinx VU9P

Table 1 summarizes the resource usage for

Base + SipHash + increment

Verilog

LUT 9162 22043 (+12881) 22215 (+172)
LRAM 0 1679 (+1679) 1679 (+0)

FF 16705 24742 (+8037) 25135 (+393)
BRAM 11.5 11.5 11.5

Chisel

LUT 9266 22371 (+13105) 22441 (+70)
LRAM 145 1960 (+1815) 1960 (+0)

FF 15393 23636 (+8243) 23806 (+170)
BRAM 11.5 11.5 11.5

Table 1. Hardware resource usage comparison through

iterations

both SystemVerilog and Chisel implementa-
tions at each iteration. We took care to im-
plement similar pipeline in terms of register
stages. This shows that even if SystemVerilog
allows to spare a few resources, both technolo-
gies display comparable usage. The difference
comes from slightly different design choices,
and from the randomization of hash functions.
Overall, using Chisel does not come at a sig-
nificant cost in resources, which is remarkable
given the maturity of the SystemVerilog imple-
mentation.

Moreover, synthesis time, omitted in this ta-
ble, is up to 5 times lower for Chisel-generated
Verilog than for SystemVerilog. This is mainly
due to the fact that no generation occurs within
Chisel-generated Verilog, which limits the re-
quired operations -and possible tool-related
errors. Ease of use is also enhanced: a single
file is generated for simulation, which can then
be included directly in the synthesis tools for
synthesis.

AGILE-FRIENDLY DESIGN
As demonstrated with this study, Chisel

parameterization process greatly improves the
flexibility and reusability of modules. While
agility is achievable with SystemVerilog, itera-
tions are limited by the low genericity of the
language thus impacting the entire flow. Low
flexibility leads to harder iterations, which in
turn lead to bigger increments, as the integra-
tion of a feature overwhelms the time required
to develop the said feature. When using Chisel,
the entire focus is on small increments.

This improved agility also applies to the de-
sign and validation flow, presented in Figure 3,
through the elaboration step. In SystemVerilog,
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each simulation or synthesis tool has its own
elaboration process, supporting its own subset
of the language. Simulation tools are usually
more feature-rich, and synthesis tools limita-
tions are found late in the flow, requiring a
full rewrite of the already validated module.
To avoid this, we usually stick to a very basic
subset of the language, further limiting code
reuse. Chisel elaboration ensures transforma-
tion of Chisel code to this basic subset. It
also provides numerous checks such as types
or combinational loop checking. As it occurs
before functional simulation, this flow brings
three major benefits. First, these checks do not
need to be asserted during functional valida-
tion anymore. Secondly, many mistakes can
be caught in a matter of seconds before any
lengthy simulation start-up, which reduces iter-
ation times and improves developer experience.
Thirdly, the generated Verilog is compatible
with all synthesis and simulation tools.

On the validation side, ScalaTest library
natively provides test-cases management and
straightforward integration of pass/failed re-
sults into continuous integration (CI) systems.

It allows testing of collections of programmat-
ically defined parameter sets. For example, it’s
possible to routinely check all existing hash
functions within a single test. Testbenches, also
written in Scala, are fed to the Chisel-tester
which provides bindings with fast open-source
hardware simulators such as treadle and veri-
lator.

In conclusion HCLs introduce more check-
ing steps, taking place earlier in the valida-
tion flow, enabling faster iterations and hence
improving the overall hardware development
agility and predictability.

CONCLUSION
As designers of hardware network applica-

tions, we seek to improve development through
agility. While the emerging DSLs such as P4
are promising for functionality description, the
need for custom hardware functions remains.
We developed a hash-table using Chisel as
construction language and evaluated the con-
tributions of the agility it provides. The high-
level constructs Chisel brings allow an actual
iterative development, permitting small incre-
ments, with improved validation at each step.
In the end, our hash-table was successfully
integrated into the OVHcloud anti-DDoS miti-
gation system, with comparable resource usage
and performance.

Designing generators instead of describing
circuits proves to be an efficient approach
which fully exhibits its agility as soon as suc-
cessive design iterations occur. HCLs integrate
powerful software engineering concepts into
hardware development, unlocking higher ab-
straction levels while still mastering generated
hardware. As a direct benefit, it becomes easier
to build highly reusable design libraries. We
now expect to reshuffle our vision of basic-
blocks integration in hardware network appli-
cations designs.
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