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Biosorption of cationic and anionic dyes using the

biomass of Aspergillus parasiticus CBS 100926T

Hadj Daoud Bouras, Ahmed RédaYeddou, Noureddine Bouras,

Abdelmalek Chergui, Lidia Favier, Abdeltif Amrane and Nadir Dizge
ABSTRACT
Aspergillus parasiticus (A. parasiticus) CBS 100926T was used as a biosorbent for the removal of

Methylene Blue (MB), Congo Red (CR), Sudan Black (SB), Malachite Green Oxalate (MGO), Basic

Fuchsin (BF) and Phenol Red (PR) from aqueous solutions. The batch biosorption studies were carried

out as a function of dye concentration and contact time. The biosorption process followed the

pseudo-first-order and the pseudo-second-order kinetic models and the Freundlich and Langmuir

isotherm models. The resulting biosorbent was characterized by Scanning Electron Microscopy

(SEM), X-Ray Diffractometer and Fourier Transformer Infrared Spectroscopy (FTIR) techniques. The

results of the present investigation suggest that A. parasiticus can be used as an environmentally

benign and low cost biomaterial for the removal of basic and acid dyes from aqueous solution.

Key words | Biosorption, Aspergillus parasiticus, dye, kinetics, isotherms modelling
HIGHLIGHTS

• Micro-fungi Aspergillus parasiticus CBS100926T was employed as a new biosorbent

for the biosorption of six dyes.

• The maximum dye capacity was found to be 131.58 mg/g.

• Adsorption processes can reach equilibrium within 120 min.

• Adsorption processes follow the pseudo-second-order rate equation.

• The results of equilibrium sorption were described through Langmuir and Freundlich

isotherms.
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GRAPHICAL ABSTRACT
INTRODUCTION
Pigments and dyes, which have complex aromatic struc-
tures, are used widely in many areas such as paper, textile,
food, cosmetic, leather, plastic and pharmaceutical indus-

tries (Bentahar et al. ). Various chemical dyes and
large amounts of water are utilized to produce different pro-
ducts in the textile industry (Huang et al. ). The high

costs involved in removing trace amounts of impurities
make the search for appropriate treatment technologies an
important priority (Arunarani et al. ). At this point,

conventional approaches include biological treatment,
coagulation, flocculation, ion exchange, membrane filtration
and advanced oxidation processes; they are applicable for

removal of synthetic dyes from industrial effluents (San
et al. ; Moussa et al. ; Arikan et al. ; Bouras
et al. ; Isik et al. ). Among all these techniques, bio-
sorption is considered as one of the popular and attractive

technologies for the removal of dyes from aqueous effluents
when compared with the above processes (Raval et al. ).
In this context, fungi and bacteria are broadly used for dye

removal, such as Aspergillus carbonarius (Bouras et al.
), Penicillium YW01 (Yang et al. ), Saccharomyces
cerevisiae (Ghaedi et al. ), Pseudomonas putida
(Ghaedi & Vafaei ) and Pseudomonas sp. SUK1
(Kalyani et al. ).

The present work aims to investigate the biosorption
capacity of Aspergillus parasiticus CBS 100926T (AP) to

remove six dyes: Methylene Blue (MB), Congo Red (CR),
://iwaponline.com/wst/article-pdf/83/3/622/854136/wst083030622.pdf
Sudan Black (SB), Malachite Green Oxalate (MGO),
Basic Fuchsin (BF), and Phenol Red (PR) from aqueous
solutions. The effects of some operating variables including

dyes’ concentration and contact time on the dyes biosorp-
tion were investigated in batch mode. Kinetic and
isotherm analysis of the biosorption processes was ana-

lyzed in terms of the pseudo-first order, pseudo-second
order models, Langmuir and Freundlich isotherm models,
respectively. The characteristics of Aspergillus parasiticus
biomass were evaluated by Scanning Electron Microscope
(SEM) and Fourier Transform Infrared (FTIR) spec-
troscopy analysis.
MATERIALS AND METHODS

Preparation of the fungal biosorbent

The fungus Aspergillus parasiticus CBS100926T (AP) was
provided by the Center for Microbial Biotechnology, Bio-
Centrum-DTU, Technical University of Denmark, DK-2800
Kgs. Lyngby, Denmark. A. parasiticus (AP) was grown in

the liquid Sabouraud medium (10 g sucrose, 7 g peptone in
1 L of distilled water) at pH 6.8 and 25 �C. After 19 days
of incubation (without shaking), the mycelial biomass

was separated from the culture liquid Sabouraud medium
by filtration, washed with ultrapure water and then
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oven-dried at 80± 5 �C for 24 h. Dried biomass was crushed

and sieved to 500 μm particle size using the ASTM standard
test sieves (No: 35) to obtain homogenous size of AP biosor-
bent and then stored in glass bottles prior to use.
Preparation of stock solutions

The dyes used in this study were obtained from Sigma

Aldrich with 99.99% purity. Stock solutions (100 mg/L) of
MB, CR, SB, MGO, BF and PR were prepared in double dis-
tilled water and diluted to get the desired concentration of

dyes. The characteristics of these dyes are listed in Table 1.
The pH of the solutions was adjusted by addition of either
0.1 M HCl or 0.1 M NaOH solutions respectively.
Characterization of Aspergillus parasiticus biomass

The biosorbent was characterized by X-ray diffraction

(XRD, Rigaku, Dmax-Rapid II) with an X-ray source of
Cu Kα radiation (λ¼ 1.5418 Å). The scattering angle (2θ)
was scanned from 5� to 70� at a scanning speed of 5�/
min. The X-ray tube voltage and current were fixed at

40 kV and 30 mA, respectively. The Fourier transform
infrared spectroscopy (FT-IR) analysis was done using Uni-
versal ATR Sampling Accessory with MIR detector and

SPECTRUM Version 6.3.4 software from Perkin Elmer; it
allowed investigation of the functional groups present on
the biosorbent surface of AP in the range of 400–

4,000 cm�1. The surface and textural morphology of the
biosorbent was captured using Scanning Electron
Microscopy (SEM) (Zeiss Supra 55, Germany). The

images were taken by applying an electron beam having
an acceleration voltage of 10.0 kV.
Batch biosorption experiments

The experiments were performed by interacting various con-
centrations of dye (5–75 mg/L) solutions with A. parasiticus
(0.5 g/L) in a rotary shaker (New Brunswick Scientific Com-
pany, New Jersey, USA) at 30 �C and 250 rpm for 24 h to
attain equilibrium. The samples were centrifuged at
16,000 g (12,000 rpm) for 10 min to separate the solid

phase from the liquid phase. The dye concentration in the
supernatant solution was determined at λmax of each dye
using a UV–vis spectrophotometer (JENWAY UV–vis

6705). The amount of the dye uptaken and percentage of
removal of dye by the adsorbent were calculated by applying
om http://iwaponline.com/wst/article-pdf/83/3/622/854136/wst083030622.pdf
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Equations (1) and (2), respectively:

qe ¼ (C0 � Ce)V
m

(1)

Removal% ¼ (C0 � Ce)
C0

× 100 (2)

where C0 and Ce are the initial and equilibrium concen-
trations of dye mg/L, respectively; V is the volume of
the dye solution (L), and m is the amount of biosorbent

used (g).
Biosorption kinetics and isotherm modeling

The equilibrium and the kinetics of a sorption process pro-
vide more important data when evaluating a sorption

process as a unit operation (Bouras et al. ). Therefore,
the kinetic of the dyes’ biosorption on A. parasiticus was
investigated and interpreted by applying the pseudo-first-

order (Equation (3)) and pseudo-second-order (Equation
(4)) kinetic models (Daoud et al. ).

Log(qe � qt) ¼ Logqe � k1

2:303
t (3)

t
qt

¼ 1
k2q2e

þ t
qe

(4)

where qe and qt are the biosorption capacities of biosor-
bent at equilibrium time (mg/g) and time t (min),
respectively, k1 is the first-order rate constant (min�1),

k2 is the equilibrium rate constant of pseudo-second-
order biosorption (g/mg min), qt (mg/g) is the amount of
biosorption after time t (min) and qe is the amount of bio-

sorption equilibrium (mg/g). Biosorption kinetics was
investigated with initial dye concentration of 50 mg/L
from (0–180 min) at 30 �C and 250 rpm. Before addition

of the A. parasiticus, pH was adjusted to the optimum
value for each dye.

The models of Langmuir and Freundlich are based on

different hypotheses. For the Langmuir model, the assump-
tions are: (i) all sites are equivalent, (ii) the adsorbing
surface possess homogeneity, (iii) monolayer coverage;
that is, each molecule can hold at most one molecule of

adsorbate, (iv) there exists dynamic equilibrium between
the adsorbed and free adsorbate molecules, (v) there are
no interactions between adsorbate molecules on neighbor-

ing sites. Freundlich adsorption isotherm is an empirical
model with the following assumptions: (i) the surface



Table 1 | Chemical structures of dyes

Dye Structure Mw (g/mol) λmax (nm)

CR (Congo Red) 696.67 500

MB (Methylene Blue) 319.85 663

MGO (Malachite Green Oxalate) 927.01 618

BF (Basic Fuchsin)

PR (Phenol Red)

337.84

354.38

543

430

SB (Sudan Black) 456.54 600
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containing the adsorbing sites is heterogeneous, (ii) possi-
bility of multi-layer adsorption, (iii) the active sites are

non-uniform. However, in many works, the authors find
that the coefficients of determinations are high and quite
close for these two models. In order to evaluate the equili-

brium data in our research, the Langmuir (Langmuir )
and Freundlich (Freundlich ) isotherm models
://iwaponline.com/wst/article-pdf/83/3/622/854136/wst083030622.pdf
(Equations (5) and (6)) were employed.

Ce

qe
¼ 1

qmaxkL
þ Ce

qmax
(5)

Logq ¼ 1
n
logCe þ logkF (6)
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In Equation (5), qmax shows the maximum monolayer

sorption capacity (mg/g), kL is the Langmuir constant
(L/mg), Ce is equilibrium dye concentration in the solution
(mg/L) and qe represents the amounts of dye sorbed onto

the biosorbent at equilibrium (mg/g). In Equation (6), kF rep-
resents the relative sorption capacity of biosorbent (L/g), n
is a constant related to sorption intensity.
RESULTS AND DISCUSSION

Characteristics of Aspergillus parasiticus biomass

The SEM image of raw A. parasiticus is illustrated in
Figure 1(a). The surface structure of the biosorbent material
was uneven, heterogeneous, and porous. These irregular

structures promote the trapping surface for uptake of dye
solution (Bouras et al. ).
Figure 1 | (a) SEM image, (b) XRD pattern, and (c) FT-IR vibrational spectrum of Aspergillus pa

om http://iwaponline.com/wst/article-pdf/83/3/622/854136/wst083030622.pdf
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The XRD pattern ofA. parasiticus is given in Figure 1(b).

It was possible to identify a wide band in the 2θ range from
10� to 30�, which indicates that A. parasiticus biosorbent
presented an amorphous structure. Similar behavior was

found for diffraction patterns of other fungal biomasses
(Drumm et al. ).

The FTIR spectrum of A. parasiticus is given in
Figure 1(c). The main bands were at 3,267.72 cm�1, which

can be attributed to the stretching of O-H or N-H groups.
The weak bands at 2,925.3 and 2,855.9 cm�1 can be
ascribed to vibrations of the alkyl (C-H) groups. The bending

vibration of hydroxyl group with asymmetric and symmetric
stretching vibration of carboxyl groups (COOH) were
acquired at 1,632.45, 1,544.1 and 1,374.2 cm�1, respectively.

The peak observed at 1,023.39 cm�1 was assigned to stretch-
ing vibration of C–O bands. Moreover, the band observed at
596.28 cm�1 for the biosorbent represented C–N–C scissor-
ing that is only found in protein structures. Through this

spectrum, it was possible to identify that the biomass of
rasiticus CBS 100926T biomass.
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the fungus A. parasiticus contains hydroxyl, amine, carboxyl

and amide groups on its surface.
Effect of pH

The pH is the most important factor for adsorption studies,

which affects not only the adsorption capacity, but also
colour and the dye chemistry in the medium. The biosorp-
tion of these dyes was highly pH dependent and optimum

values are shown in Table 2. A pH below 5 could be favour-
able for the biosorption between the CR and AP, because a
significantly high electrostatic attraction could exist between

the positively charged surface of A. parasiticus by absorbing
Hþ ions and the anionic dyes. Whereas for PR dye, as the
pH of the solution increased, the surface of the biosorbent
became negatively charged, which decreased the biosorp-

tion of the negatively charged PR anions by electrostatic
repulsive forces.

The optimum pH of the dyes BF and MB were 8 and 8.5,

respectively. The adsorption process was maximum at basic
pH for MB and BF, indicating that the negatively charged
AP surface was responsible for the biosorption. Lower bio-

sorption capacity of MGO observed at basic pH was a
result of competition between the excess hydroxyl ions
and the negatively charged dye ions for the biosorption
sites. For increasing pH, the number of positively charged

sites on A. parasiticus decreased and the number of nega-
tively charged sites increased, part of the SB molecule
exists as anions, and the adsorption was significantly

impeded. Similar results of the effect of chemical structure
of dyes were also reported (Sun et al. ; Dhananasekaran
et al. ; Shoukat et al. ; Koyuncu & Kul ). The

fungal mycelium did not release any adsorbed dyes. This
observation revealed that the species has a greater chemical
stability when subjected to adverse environmental con-

ditions. For this reason, the chemical stability has the
Table 2 | Optimum conditions for biosorption of different dyes onto Aspergillus parasiti-

cus CBS 100926T

Dye pH Time (min) Cdye (mol/L) q (mg/g)

CR 4.5 60 7.2 × 10�5 78.72

MB 8.5 60 1.6 × 10�4 73.07

BF 8.0 60 1.0 × 10�4 42.72

MGO 8.5 60 5.4 × 10�5 35.00

SB 8 60 1.1 × 10�4 24.29

PR 7.5 20 1.4 × 10�4 06.25

://iwaponline.com/wst/article-pdf/83/3/622/854136/wst083030622.pdf
potential to act as an excellent candidate to bioremediate

the solution dye.
Biosorption kinetic profiles

As shown in Figure 2, the biosorption capacity of the

biomass was significantly high in the initial 60 min and
thereafter gradually reached equilibrium within 120 min.
The results are due to the fact that at the initial stage of
the biosorption process, there was more availability and

abundance of active sites on the surface of the biosorbent.
After this time, these sites are occupied and the remaining
vacant active biosorption sites decrease.

The kinetic constants and the values of R2 are presented
in Table 3. As presented in Table 3, the correlation coeffi-
cient values were high, from which it could be concluded

that the pseudo-second-order model could well describe
the biosorption kinetics and their calculated qe values
agreed well with the experimental qe values.
Equilibrium modelling

The biosorption capacity for AP at different initial dye con-
centrations process is shown in Figure 3. The uptake
amounts of dye increased with increasing initial dye concen-

trations up to 50 mg/L for CR, MB, BF, MGO, SB and to
30 mg/L for PR dyes, respectively it remained unchanged
by further increase in initial dye concentrations. These

results suggest that the available sites on the biosorbent
are the limiting factor for dye biosorption.
Figure 2 | Effect of contact time on biosorption of dyes onto Aspergillus parasiticus CBS

100926T.



Table 3 | Kinetic biosorption parameters at 298 K

Model CR MB BF MGO SB PR

Kinetic

qe, exp (mg/g) 78.72 73.07 42.72 35.00 24.29 6.25

Pseudo-first-order

k1 (1/min) 0.0569 0.0613 0.0615 0.0463 0.0525 0.0207

qe1,cal (mg/g) 17.49 22.41 28.47 25.73 22.05 04.59

R2 0.908 0.978 0.970 0.891 0.901 0.980

Pseudo-second-order

k2 (g/mg.min) 0.0070 0.0050 0.0023 0.0020 0.0018 0.0153

qe2,cal (mg/g) 78.13 72.99 44.25 35.46 25.97 04.90

R2 0.999 0.998 0.987 0.967 0.942 0.973

Figure 3 | Biosorption equilibrium isotherms of dyes onto Aspergillus parasiticus CBS

100926T.

Table 4 | Isotherm parameters for the dyes’ biosorption by the biomass Aspergillus para-

siticus CBS 100926T

Sample

Aspergillus parasiticus

Dye CR MB BF MGO SB PR

Langmuir

qm (mg/g) 131.58 63.29 58.48 50.76 33.33 10.81

KL (L/mg) 0.097 0.172 0.050 0.039 0.050 0.029

R2 0.980 0.935 0.985 0.991 0.987 0.991

Freundlich

KF (mg/g)
(mg/L)1/n

12.48 9.52 3.64 2.51 2.34 0.53

n 1.62 1.56 1.47 1.42 1.61 1.57

R2 0.909 0.926 0.963 0.974 0.971 0.943
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Table 4 shows the adsorption isotherms and the pre-
dicted isothermal parameters, respectively. The biosorption
isotherm data were characterized perfectly by the Langmuir

isotherm model. Regarding the Freundlich isotherm, the
value of the n constant, falling in the range of 1–10,
also showed a suitable biosorption process (Deniz &

Kepekci ). However, the values of correlation coeffi-
cients indicate that the data are not well correlated to the
Freundlich model compared to the Langmuir correlation
coefficients.

The considered biomass has not been previously tested
as a biosorbent and hence there is a lack of literature data
in view of comparison to the results of this study. However,

Table 5 gives a comparison of the maximum adsorption
capacity of A. parasiticus with recent studies of some
om http://iwaponline.com/wst/article-pdf/83/3/622/854136/wst083030622.pdf
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other adsorbents reported in literature. According to the

data presented in Table 5, in general the maximum biosorp-
tion capacity of dye onto A. parasiticus biomass is one of the
highest among biomasses. Meanwhile, other materials in the

literature showed high adsorption, as reported in many
studies (Arabkhani & Asfaram ; Afshariani & Roosta
; Georgin et al. ). The availability and cost effective-

ness of Aspergillus parasiticus could provide an inexpensive
source of biosorbents for sequestering toxic dyes from indus-
trial effluents.
CONCLUSION

In this study, pH, initial dye concentration and contact time

were optimized for each dye. Biosorption of dye molecules
by an adsorbent could be through electrostatic interaction,



Table 5 | Comparison of maximal adsorptive capacity (qm) of the biomass of Aspergillus

parasiticus CBS 100926T

Biosorbents pH Dye
qm (mg/
g) References

Aspergillus parasiticus
100926T

8.2 MB 63.29 Present work

Crosslinked chitosan
mushroom bio-
composite

7.0 MB 40.11 Yildirim ()

Scenedesmus sp. 9.0 MB 87.69 Afshariani &
Roosta ()

Aspergillus parasiticus
100926T

4.5 CR 131.58 Present work

Antigonon leptopus 5.0 CR 18.18 Sri Devi et al.
()

Eichhornia crassipes 9.0 CR 05.18 Roy & Mondal
()

Aspergillus parasiticus
100926T

8.0 BF 58.48 Present work

Powdered mandacaru
leaves

8.0 BF 398.9 Georgin et al.
()

Eggshell membrane 6.0 BF 48 Bessashia et al.
()

Aspergillus parasiticus
100926T

8.5 MGO 50.76 Present work

Three D MBCNF/
GOPA

7.0 MG 270.27 Arabkhani &
Asfaram
()

Lannea coromandelica 8.3 MG 50 Mate et al.
()

Aspergillus parasiticus
100926T

8.0 SB 33.33 Present work

Aspergillus parasiticus
100926T

7.5 PR 10.81 Present work
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chemical binding or by a combination of all processes. The

adsorption isotherm fitted well to the Langmuir model and
the kinetics of adsorption fitted best to the pseudo-second-
order model. The adsorption capacities of Aspergillus parasiti-
cus for dye molecules vary according to the sequence: PR<
SB<MGO<BF<MB<CR. The maximum biosorption
capacity was 131.58 mg/g. Results indicate that Aspergillus
parasiticus can provide an efficient and cost-effective technol-

ogy for eliminating dyes from aqueous solution.
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