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We present the theory of modulation instability induced by spectrally dependent losses (optical filters) in
passive driven nonlinear fiber ring resonators. Starting from an Ikeda map description of the propagation equation
and boundary conditions, we derive a mean-field model—a generalized Lugiato-Lefever equation—which
reproduces with great accuracy the predictions of the map. The effects on instability gain and comb generation
of the different control parameters such as dispersion, cavity detuning, filter spectral position, and bandwidth are
discussed.
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I. INTRODUCTION

Modulation instability (MI) is a ubiquitous phenomenon
occurring in various fields of nonlinear physics consisting
of the exponential amplification of spectral sidebands, which
results in a modulation of a powerful and originally constant
amplitude wave [1]. Besides leading to the destabilization of
nonlinear waves in a vast range of contexts including fluid
dynamics [2], optics [3], plasmas [4], and Bose-Einstein con-
densates [5], MI is deeply connected to solitons dynamics and
is the initiating mechanism for pattern formation processes
too [6]. It is customary to understand MI as a synchronization
process between a powerful wave corresponding to the un-
stable homogeneous state of the system and detuned spectral
sidebands whose amplitude is very small in the initial stage.
The wave synchronization process is determined by a phase
mismatch parameter, which accounts for physical effects de-
scribing dephasing between different waves. Waves for which
mismatch is close to zero synchronize with the powerful ho-
mogeneous mode and energy transfer from the powerful wave
to the sidebands occurs, causing exponential growth of the lat-
ter. A vast range of modulation instabilities have been studied
in the literature. The most paradigmatic MI example is defi-
nitely the Benjamin-Feir instability, originally studied in fluid
dynamics [1,3,7] and later in nonlinear fiber optics [8]. It can
be understood as a nonlinear four-wave interaction enabled by
the interplay of the cubic nonlinearity and anomalous group
velocity dispersion. It can be mathematically described in the
framework of the nonlinear Schrödinger equation (NLSE).
Another celebrated MI is the Turing instability [9], which can
arise in passive driven optical Kerr resonators described by the
Lugiato-Lefever equation (LLE) [10–12] where, in addition to
dispersion and nonlinearity, the detuning between pump and
cavity resonance may enable MI in otherwise stable regimes
(in the Benjamin-Feir framework).

*a.perego1@aston.ac.uk
†matteo.conforti@univ-lille.fr

The longitudinal modulation of parameters such as group
velocity dispersion [13–18] and nonlinearity coefficients
[19–21] in NLSE and LLE may support instabilities as well,
which are analogous to the parametric (Faraday) instability
[22]. In this case, quasi-phase-matching conditions describing
synchronization between spectral sidebands and homoge-
neous mode can be obtained, allowing precise estimation of
the amplified frequencies, which determines the parametric
resonances.

A further different class of MI relies on homogeneous or
periodic action of spectrally dependent losses. The periodic
case results in a dissipative parametric (Faraday) instabil-
ity, which proves relevant for achieving high repetition rate
mode-locking in lasers [23,24]. Homogeneously distributed
frequency-dependent losses can result in counterintuitive am-
plification of damped modes themselves. This happens if
losses act in an unbalanced fashion on two sideband waves
whose frequencies are symmetrically located with respect to
a powerful input one, which in the absence of losses would be
stable [25] (a fortiori for symmetric losses [26]). This case has
been analyzed by Tanemura et al. in an optical fiber [27] and
also subsequently described by other authors using coupled
mode theory (non-Hermitian phase matching) [28,29].

Presence of spectrally dependent losses can also indirectly
induce phase matching by modifying the mismatch parameter
of the system via the phase profile naturally associated to
dissipation by Kramers-Kronig (KK) relations. Examples of
the latter are provided in studies of the resonant dispersion MI
[30–33] where the phase in the vicinity of an atomic resonance
can contribute to phase matching. Recently, an example of
dissipation-induced MI has been reported in a driven passive
ring fiber resonator with intracavity spectral filter [34]. In that
work, gain-through-filtering enabled by filter phase modifica-
tion of the cavity mismatch was suggested as a method for
optical frequency comb with tunable repetition rate generation
in the normal dispersion regime. Frequency combs in the nor-
mal dispersion regime can also be generated by exploiting the
avoided mode crossing effect in microresonators [35,36]. Also
in this case, the underlying physical principle is a modification
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of the mismatch parameter through the engineering of the
dispersion.

In the literature, there are examples where dynamic non-
local effects could result in filtering MI gain spectrum
components. This is the case, for instance, of MI of light
in nematic liquid crystals, where an effective reduction of
high-frequency spectral components of standard MI spectrum
is observed through a competition between nonlinearity and
nonlocality [37,38]. However, in dissipation-induced MI, in-
cluding the scenario that will be presented in this paper, the
situation is radically different: We do not have an unstable
system where an additional filtering effect quenches the MI
gain as in nonlocal media; on the contrary, in the filter-induced
MI, it is the presence of a spectral filter that can induce MI in
a system where the continuous wave (CW) solution would be
stable in the absence of filtering.

The aim of this paper is to report a comprehensive the-
oretical description of filter-induced modulation instabilities
in passive cavities. We first review and expand the theory
of filter-induced instability based on the Ikeda map approach
originally described in Ref. [34]. We derive a mean-field gen-
eralized LLE and develop a linear stability analysis of this
model. The mean-field approximation is showed to permit a
simpler, yet accurate, description with respect to the Ikeda
map. Finally, we discuss the dependence of the instability
gain on various system parameters and the generation of pulse
trains and frequency combs.

II. THE IKEDA MAP

The evolution of a light pulse in a fiber ring resonator can
be modeled by the following coupled equations, referred to as
an Ikeda map [39–41] (see also Refs. [15,42,43]):

i
∂An

∂z
− β2

2

∂2An

∂t2
+ γ |An|2An = 0, 0 < z < L, (1)

An+1(z = 0, t ) = θEIN + ρeiφ0 An(z = L, t ). (2)

Here A(z, t ) represents the slowly varying envelope of the
electric field, normalized in such a way that |A|2 has the di-
mensions of a power. The coordinate t is the retarded time and
the spatial coordinate z measures the position inside a fiber
ring cavity of length L. γ is the Kerr nonlinearity coefficient,
β2 = ∂2

ωβ|ω=ωp is the group velocity dispersion coefficient at
the pump wavelength, with β the propagation constant of the
fiber mode and n an integer counting the number of cavity
round trips. All the losses (except the filter-induced ones) are
lumped in ρ, so 1 − ρ2 measures the total power loss per
round trip. φ0 = [β(ωp)L mod 2π ] is the linear phase shift
per round trip modulo 2π (the cavity detuning is δ = −φ0)
and θ is the transmission coefficient of the coupler for the
pump amplitude EIN. For simplicity, we neglect higher order
dispersion terms, as it allows us to accurately model most of
the realistic configurations, but they can be introduced in a
straightforward fashion if needed. Note that only even order
of dispersion contributes to the MI gain. The filter located at
the position z = zF acts in the following way:

An(z+
F , t ) = h(t ) � An(z−

F , t ), (3)

Ân(z+
F , ω) = H (ω) Ân(z−

F , ω), (4)

where h(t ) is the filter impulse response (causality imposes
h(t ) = 0 if t < 0), � denotes convolution and H (ω) = ĥ(ω) =∫ +∞
−∞ h(t ) exp[iωt]dt is the filter transfer function. The filter

is assumed to be placed just before the coupler (zF = L),
hence the boundary conditions and filter can be conveniently
combined in the single equation,

An+1(z = 0, t ) = θEIN + ρeiφ0 h(t ) � An(z = L, t ), (5)

which has the following equivalent in the frequency domain:

Ân+1(z = 0, ω) = θEINδ(ω) + ρeiφ0 H (ω)Ân(z = L, ω), (6)

where δ(ω) is the Dirac delta function.

A. The filter

As a consequence of physical causality, the real and imag-
inary parts of the filter transfer function H (ω) are related
by the KK relations [44]. This implies that the presence of
losses entails a corresponding phase shift. KK relations lead
to a similar connection between the magnitude and the phase,
which is known as Bode or Bayard-Bode (BB) gain-phase (or
magnitude-phase) relation [45],

ψ (ω) = H{F (ω)} = H{ln|H (ω)|}, (7)

we have defined

H (ω) = eF (ω)+iψ (ω), (8)

H{ f (x)} = 1
π

P.V.
∫ +∞
−∞

f (y)dy
x−y is the Hilbert transform

[46–48], P.V. denoting the principal value of the integral.
The advantage of Bode relation is that it is straightforward
to experimentally measure the amplitude of the response,
while it is tricky to access real or imaginary parts. While KK
is an equality, Bode’s relation is an inequality, which can
underestimate the phase response. BB coincides with KK
only if ln|H (ω)| is analytic and H (ω) �= 0 in the upper-half
complex-ω plane. Response functions having these additional
properties are called minimum-phase, and in this study
we will consider only this kind of filter for which Eq. (7)
holds [49].

In the following, we will consider a higher order
Lorentzian filter for which the Hilbert transform can be cal-
culated analytically [47]

F (ω) = b
a4

(ω − ω f )4 + a4
, (9)

ψ (ω) = ba
(ω − ω f )[(ω − ω f )2 + a2]√

2[(ω − ω f )4 + a4]
, (10)

where a is related to filter bandwidth (in rad/s) and
b < 0 is a nondimensional number which controls the fil-
ter strength, i.e., the maximum attenuation of the filter. The
half-width of the filter at half-attenuation can be easily com-
puted as ωHWHM = a 4

√
b/ ln[(1 + eb)/2] − 1 ≈ a(1 − b/8)

for small b. In addition to providing a simple and elegant
analytical description of a causal filter, Eqs. (9) and (10)
also provide a good approximation of the transfer function
of apodized fiber Bragg gratings (FBGs), as the one used in
Ref. [34]. It is worth noting that FBGs used in transmission
are always minimum phase [50,51], which makes our analysis
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FIG. 1. (a) Amplitude and phase of the filter described by
Eqs. (9) and (10). (b) Instability gain gMAP(ω) calculated from
Eq. (21) revealing the effect of magnitude and phase of the filter
transfer function. The following parameters have been used: β2 =
0.5 ps2/km, γ = 2.5 W−1km−1, L = 100 m, ρ = √

0.9, θ = √
0.1,

φ0 = −ψ (0) (zero global cavity detuning), ωf = 200 · 2π rad/ns,
b = −1, a = 400 rad/ns, intracavity power P = 1.18 W, input power
PIN = 1 W. The vertical dashed line indicates the phase-matching
frequency calculated from Eq. (32).

rather general. For other kinds of filters with arbitrary dissipa-
tion profile, for which no analytical expression is known, the
corresponding phase can be calculated numerically [44,47].
An example of the transfer function of the filter described by
Eqs. (9) and (10) is shown in Fig. 1(a).

B. Steady states

We search for the stationary, CW field inside the fiber as

An(z, t ) = Aeiγ Pz, P = |A|2.
The relation between the field circulating into the cavity and
the pump is (for complex field and power)

A = θ

1 − ρeiφH (0)
EIN, (11)

P = θ2

1 + ρ2|H (0)|2 − 2ρ|H (0)| cos(φ + ψ (0))
PIN, (12)

where the total phase shift imposed by the cavity is φ = φ0 +
γ PL while EIN and PIN denote the amplitude and the power of
the pump field, respectively. From Eq. (12), it appears that the
magnitude of the filter at the pump frequency |H (0)| acts as
an additional loss which multiplies the coupler induced losses,
whereas the phase ψ (0) gives an additional phase shift.

C. Linear stability analysis

To study the stability of the steady state defined by Eq. (11),
we consider the following perturbation:

An(z, t ) = [
√

P + ηn(z, t )]eiγ Pz, |ηn| �
√

P.

For simplicity, we have assumed the intracavity field to be
real (the steady-state phase does not affect the results of the
stability analysis). By linearization, we obtain the equation
governing the evolution of the perturbations:

i
∂ηn

∂z
− β2

2

∂2ηn

∂t2
+ γ P(ηn + η∗

n ) = 0.

We split perturbations in real and imaginary parts ηn =
an + ibn (an, bn ∈ R), to get the following system describing
the evolution of the perturbations’ spectra â = â(z, ω), b̂ =
b̂(z, ω):

∂ ân

∂z
= −β2ω

2

2
b̂n, (13)

∂ b̂n

∂z
=

(
β2ω

2

2
+ 2γ P

)
ân. (14)

The solution of the system Eqs. (13) and (14) from z = 0
to z = L gives the perturbations’ spectra after one pass in the
fiber as (dependence on frequency ω is omitted):[

ân(L)
b̂n(L)

]
= M1

[
ân(0)
b̂n(0)

]

=
[

cos(kL) − βω2

2k sin(kL)
2k

βω2 sin(kL) cos(kL)

][
ân(0)
b̂n(0)

]
,

(15)

where k(ω) =
√

β2ω
2

2 ( β2ω
2

2 + 2γ P) is the wave number of the
small harmonic perturbations which propagate on top of the
stationary field.

From Eqs. (5) and (6), it follows that the combined action
of the filter and the coupler on the perturbations can be written
as follows:[

ân+1(0)
b̂n+1(0)

]
= M2

[
ân(L)
b̂n(L)

]

= ρ

[
cos φ − sin φ

sin φ cos φ

]

×
[

He(ω) −Ho(ω)
Ho(ω) He(ω)

][
ân(L)
b̂n(L)

]
,

(16)

where we have defined the even and odd parts of the transfer
function as

He(ω) = F{Re[h(t )]} = H (ω) + H∗(−ω)

2
,

Ho(ω) = F{Im[h(t )]} = H (ω) − H∗(−ω)

2i
.

Note that the coupler and filter matrices commute, as
expected intuitively: For the stability analysis, it doesn’t
matter if the filter is placed just before or just after the
coupler.

By combining Eqs. (15) and (16), we get the total effects
accumulated by the perturbations over one round trip as[

ân+1(0)
b̂n+1(0)

]
= M2M1

[
ân(0)
b̂n(0)

]
. (17)

The eigenvalues of the matrix M = M2M1 read as

λ1,2 = 

2
±

√
2

4
− W , (18)
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where

W = ρ2(He(ω)2 + Ho(ω)2), (19)

 = ρ

[
2 cos(kL)(He(ω) cos φ − Ho(ω) sin φ)

− β2ω
2 + 2γ P

k
sin(kL)(Ho(ω) cos φ + He(ω) sin φ)

]
.

(20)

Whenever |λ1,2| > 1, the CW solution Eq. (11) is unstable
and the perturbation power grows as exp[gMAP(ω)z], where
we have defined the MI gain as

gMAP(ω) = 2

L
ln max{|λ1|, |λ2|}. (21)

D. Approximations and phase-matching condition

Equations (18)–(21) give the exact parametric gain, how-
ever, they do not allow for a straightforward physical
interpretation. We hence proceed to obtain an approximated
formula, which holds valid when the MI process derives
mainly from the filter phase. Indeed, by exploring the param-
eters’ space, we have noted that the position of the unstable
bands is mainly fixed by the filter phase. Figure 1(b) shows
the relative impact of the filter amplitude, phase and both
combined on the instability gain spectrum. The dotted red
curve, accounting for only |H (ω)|, shows that the threshold of
instability is not reached. The most unstable band mimics the
shape of the filter response, as expected for gain-through-loss
mechanism [25]. The dash-dotted black curve accounts only
for the filter phase: Even if it overestimates the gain, it gives a
reasonable prediction of the frequency of the unstable bands.
To predict the position of the unstable bands, we then assume
the following form for the filter transfer function (unitary
modulus):

H (ω) = exp[iψ (ω)]. (22)

The even and odd parts of the filter transfer function read
as

He(ω) = eiψo(ω) cos[ψe(ω)], (23)

Ho(ω) = eiψo(ω) sin[ψe(ω)], (24)

where the even and odd parts of the filter phase are defined as

ψe(ω) = ψ (ω) + ψ (−ω)

2
, (25)

ψo(ω) = ψ (ω) − ψ (−ω)

2
. (26)

The assumption of unitary modulus permits us to greatly
simplify Eqs. (19) as follows:

W = ρ2ei2ψo , (27)

 = ρeiψo

[
2 cos(kL) cos(φ + ψe) − β2ω

2 + 2γ P

k

× sin(kL) sin(φ + ψe)

]
� eiψõ, (28)

which gives the following expression for the eigenvalues:

λ1,2 = eiψo

[
̃

2
±

√
̃2

4
− ρ2

]
. (29)

Apart from the exponential factor, Eq. (29) has been obtained
before for the description of a standard cavity (i.e., without
filter) [15,42]. The exponential factor does not change the
modulus of the eigenvalues, hence it does not affect the gain.
We have instability if |̃| > 1 + ρ2.

To find a phase-matching relation, we expand the disper-
sion relation for the perturbations k(ω) for |ω| 	 2

√
γ P/β2:

k =
√

β2ω2

2

(
β2ω2

2
+ 2γ P

)
≈ β2ω

2

2
+ γ P. (30)

In this way, we have

̃ ≈ 2ρ cos[kL + ψe(ω) + φ].

The potentially unstable frequencies maximise |̃|, and thus
satisfy the following equation:

k(ω)L + φ + ψe(ω) = mπ, m = 0,±1, . . . (31)

The solutions of Eq. (31) for m �= 0 correspond to para-
metric resonances (PRs) induced by the periodic forcing
represented by the injection of the pump at each round trip
[15]. We concentrate on the m = 0 band and use the expansion
(30) to get the following simple phase-matching relation:

β2ω
2

2
L + 2γ PL + φ0 + ψe(ω) = 0. (32)

Equation (32) has a straightforward physical meaning: The
phase acquired by the perturbations propagating on top of
the CW (β2ω

2L/2 + γ PL) plus the total phase shift of the
cavity (linear + nonlinear: φ = φ0 + γ PL) plus the even part
of the phase of the filter [ψe(ω)] must be zero to have
parametric amplification. Equation (32) is a generalization
Eq. (8) of Ref. [42], including the dispersion induced by the
filter.

The MI process described here (as every MI processes oc-
curring in Kerr media) can be described as a four-wave mixing
(FWM) interaction. In this paper, we consider the degenerate
case, where two photons from the pump wave are annihilated
and two photons are created, one at signal and one at the idler
frequency, respectively. Even if the presence of asymmetric
losses at the signal or idler frequency may initially attenuate
one wave, the FWM interaction leads to an overall positive
gain for both generated waves.

III. THE MEAN FIELD MODEL

A. Averaging the Ikeda map

In this section, we derive a mean-field model, i.e., a gener-
alized LLE, by performing a suitable averaging of the Ikeda
map Eqs. (1) and (5). Using Eq. (1), we can formally approx-
imate at first order the field envelope An at spatial position L
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after propagation from z = 0 to z = L as follows:

An(L, t ) ≈ An(0, t ) + L
∂An(z, t )

∂z

∣∣∣∣
z=0

= An(0, t ) +
[−iLβ2

2

∂2

∂t2
+ iLγ |An(0, t )|2

]
An(0, t ).

(33)

Assuming that filter and coupler are located at the same posi-
tion z = L, the Fourier transform of the field, Â(ω, 0), obeys
the boundary conditions described by Eq. (6),

Ân+1(0, ω) = θEINδ(ω) + ρeiφ0 eF (ω)+iψ (ω)Ân(L, ω), (34)

where we have explicitly written H (ω) = eF (ω)+iψ (ω).
We assume ρ ≈ 1, θ � 1, |φ0| � 1, F, |ψ | � 1, and we

expand in Taylor series at the first order all the terms in the
boundary conditions Eq. (34). We neglect all the products
corresponding to different physical effects, and after taking
the inverse Fourier transform we obtain

An+1 − An = [−α + iφ0 + � � +i��]An

+
[−iLβ2

2

∂2

∂t2
+ iLγ |An|2

]
An + θ

√
PIN,

(35)

where we used the notation An = An(t, 0). Note that � and �

are the inverse Fourier transforms of F and of ψ , respectively.
By approximating the spatial derivative with the difference

quotient (An+1 − An)/L ≈ ∂A/∂z|z=nL, we can pass the map
to the continuous limit obtaining the following equation for
the field A(z, t ):

L
∂A

∂z
= [−α + iφ0 + � � +i��]A

+
[−iLβ2

2

∂2

∂t2
+ iLγ |A|2

]
A + θ

√
PIN. (36)

Equation (36) represents a mean-field generalized LLE, which
differs from the standard LLE [10,11,52] by the presence of
filter terms.

B. Linear stability analysis

Equation (36) admits a CW homogeneous solution with
power P̄ which is determined by the characteristic bistable
response of the resonator according to the following relation:

P̄ = θ2

(−α + F (0))2 + (φ0 + ψ (0) + γ LP̄)2 PIN. (37)

We perform a linear stability analysis of the CW solution by
inserting the following ansatz:

A(z, t ) = A0 + A+(z)e−iωt + A−(z)eiωt , (38)

into Eq. (36) where A0 =
√

P̄eiξ , being ξ a phase fac-
tor, and A+, A− the amplitudes of perturbations oscillating
at frequency detuned by ∓ω with respect to the CW so-
lution. Linearizing with respect to the small perturbations

(|A0| 	 |A−|, |A+|), we obtain the following system of
coupled equations:

L
∂A+
∂z

= iLω2 β2

2
A+ + iφ0A+ + iψ (ω)A+ + F (ω)A+

+ iγ L2P̄A+ + iγ LP̄e2iξ A∗
− − αA+, (39)

L
∂A∗

−
∂z

= −iLω2 β2

2
A∗

− − iφ0A∗
− − iψ (−ω)A∗

− + F (−ω)A∗
−

− iγ L2P̄A∗
− − iγ LP̄e−2iξ A+ − αA∗

−. (40)

A phase rotation and amplitude rescaling allows us to get a
better insight on how the filter acts on the perturbations and
hence to better appreciate the contributions to MI. We hence
perform the following change of variables:

A+ = a+e[iψo(ω)+Fe(ω)]z−αz, (41)

A∗
− = a∗

−e[iψo(ω)+Fe(ω)]z−αz, (42)

which leads to

L
∂a+
∂z

= iLω2 β2

2
a+ + iφ0a+ + iψe(ω)a+ + Fo(ω)a+

+ iγ L2P̄a+ + iγ LP̄e2iξ a∗
−, (43)

L
∂a∗

−
∂z

= −iLω2 β2

2
a∗

− − iφ0a∗
− − iψe(ω)a∗

− − Fo(ω)a∗
−

− iγ L2P̄a∗
− − iγ LP̄e−2iξ a+, (44)

where the even and odd parts of F (ω) have been defined as

Fe(ω) = F (ω) + F (−ω)

2
, (45)

Fo(ω) = F (ω) − F (−ω)

2
. (46)

We can now easily recast the system evolution in a matrix
form,

L
∂

∂z

(
a+
a∗

−

)
= M̃

(
a+
a∗

−

)
, (47)

where the evolution matrix reads

M̃ =
(

iμ + Fo(ω) iγ LP̄e2iξ

−iγ LP̄e−2iξ −iμ − Fo(ω)

)
,

with

μ = Lω2 β2

2
+ 2γ P̄L + φ0 + ψe(ω) (48)

a phase-mismatch parameter. The eigenvalues of the matrix M̃
read

λ± = ±
√

−[μ(ω) − iFo(ω)]2 + (γ LP̄)2, (49)

thus we define the MI gain as

gLLE(ω) = 2
−α + Fe(ω) + Re(λ+)

L
. (50)

It follows that the power of the perturbations |A±|2 grows
exponentially as exp[gLLE(ω)z] when gLLE(ω) > 0.

In the good cavity limit (α = 1 − ρ small), under the
mean-field approximation (γ PL, β2ω

2L also small), Eq. (50)
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FIG. 2. The positive part of the MI gain is depicted a func-
tion of PIN , calculated from (a) the map and (b) the LLE. The
dashed lines denote filter position ω f /(2π ). Parameters used are
β2 = 0.5 ps2km−1, γ = 2.5 W−1km−1, L = 0.1 km, ρ = √

0.9,
φ0 = −ψ (0), θ = √

0.1, a = 500 rad/ns, b = −3.2, ω f = 2π · 400
rad/ns.

can be obtained as a first order expansion of Eq. (21) by
following the procedure reported in Ref. [42]. For a filter of
constant amplitude Fo(ω) = 0, it can be seen from Eq. (49)
that the maximum of MI gain is obtained for μ(ω) = 0. Note
that μ(ω) = 0 is equivalent to the phase-matching condition
Eq. (32) obtained from the linear stability analysis of the Ikeda
map developed in the previous sections.

Starting from Eqs. (43) and (44), we can obtain a physical
insight into the meaning of the mismatch parameter μ defined
in Eq. (48). By neglecting the dissipative part of the filter,
Eqs. (43) and (44) can be recast in the following form:

L
∂a+
∂z

= iγ LP̄e2iξ a∗
−e−2iμz, (51)

L
∂a∗

−
∂z

= −iγ LP̄e2iξ a+e2iμz. (52)

From Eqs. (51) and (52), we can see that at phase matching,
when μ = 0, a+ and a∗

− grow exponentially in z. It is apparent
that the standard cavity mismatch can be compensated by the
presence of the filter even in normal dispersion and for zero or
positive detuning for the pump.

IV. CONTROL OF THE INSTABILITY GAIN

In this section, we analyze the effect of several control
parameters on the instability gain. We present a systematic
comparison of the results of the stability analysis from the
Ikeda map and the generalized LLE, which permits us to ap-
preciate the accuracy and the limits of the mean-field model.
Even if our results are general, in this section we restrict to the
normal dispersion β2 > 0 and monostable regime δ/α <

√
3.

In this case, the standard Turing instability cannot develop
[11] and the instability is induced only by presence of the
filter.

A. Dependence on power

In Fig. 2(a), we show the MI gain as a function of the
pump power calculated for the Ikeda map [see Eq. (21)]. We
can note the presence of an unstable band at a frequency
slightly higher than the central position of the filter (dashed
black line) and of its symmetric at negative frequency shift.
The gain increases monotonically with input power, while a

FIG. 3. The positive part of the MI gain is depicted for map
and LLE as a function of the filter frequency shift with respect to
the pump ω f /(2π ) [(a), (b)], of the filter width a [(c), (d)]; and
of the filter strength b [(e), (f)] . The dashed black lines denote
filter position, whereas the dotted red lines denote the filter width
at half maximum. Parameters used are β2 = 0.5 ps2km−1, PIN =
0.5 W, γ = 2.5 W−1km−1, L = 0.1 km, ρ = √

0.95, φ0 = −ψ (0),
θ = √

0.05, a = 400 rad/ns in (a), (b), (e), and (f); b = −1 in (a)–
(d); ω f = 2π · 400 rad/ns in (c)–(f).

decreasing trend of the maximally unstable frequency is ob-
served. Figure 2(b) reports the gain obtained from the analysis
of LLE [see Eq. (50)]. The mean field reproduces qualita-
tively the same picture. In particular, we note a quantitative
agreement regarding the peak spectral position and ampli-
tude of the unstable bands. For high input powers (greater
than ≈2 W), the map predicts a small additional lobe peaked
at the spectral position of the filter, which is not captured
by LLE.

B. Dependence on filter parameters

The dependency of the MI gain on the three filter param-
eters, namely, frequency shift (with respect to the pump) ω f ,
spectral width a and strength b is shown in Fig. 3. Figure 3(a)
reports the gain as a function of ω f calculated from the map.
The band is located at a slightly higher frequency than the
filter, except when the filter is very close to the pump, where
we observe a shift of the gain band toward higher frequencies.
This happens because, for this analysis, we decided to com-
pensate the filter-induced phase shift with the cavity phase
shift φ0 = −ψ (0) to stay in the monostable regime, and the
filter phase profile has a slowly decreasing tail [see Fig. 1(a)].
We also note that for positive frequency shift ω f the gain is
substantially higher. The reason for this asymmetry is that,
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unlike the amplitude F , the filter phase ψ is an odd function
(with respect to the central frequency ω f ), so it acts in a sub-
stantially different way depending if it is placed at positive or
negative frequency shift with respect to the pump. The results
obtained from the mean-field model shown in Fig. 3(b) are
practically identical. Figure 3(c) reports the gain as a function
of the filter parameter a, which mainly controls the filter
width, for a fixed filter frequency shift ω f /(2π ) = 400 GHz
calculated from the map. The unstable band is located at the
high-frequency edge of the filter, which can be calculated as
ω f + ωHWHM [see definition after Eq. (10)]. The peak gain
increases with a and reaches a maximum for a ≈ 1.2 THz.
Above this value, the peak gain decreases to eventually vanish
for values greater than ≈2 THz. This drop in gain takes place
because the filter starts to cut the pump, reducing the intra-
cavity power (input power is fixed here), which eventually
controls the parametric gain. Also in this case, the results
obtained from the mean-field model shown in Fig. 3(d) are
in perfect agreement. In Fig. 3(e), we show the gain from
the map as a function of the parameter b, which determines
the maximum attenuation of the filter but also the amplitude
of the phase response. For shallow filters −0.2 � b < 0, the
system is modulationally stable. By increasing the strength of
the filter, a band appears at a frequency greater than the filter
central frequency ω f /(2π ) and whose peak amplitude and
spectral position grows monotonically with |b|. This evolution
is ruled by the phase profile of the filter which increases with
|b| and shifts the phase-matching frequency toward higher val-
ues, as shown by Eq. (32). Quite surprisingly, the mean-field
approach still works perfectly [see Fig. 3(f)], even when the
perturbation induced by the filter at each round trip are not at
all small. This is a further confirmation that LLE holds valid
beyond the assumptions traditionally used for its derivation
[14,17,43,53].

C. Dependence on cavity phase

The study of the dependence of the MI gain on the cavity
phase shift is presented in Fig. 4. Figures 4(a) and 4(b) show
the MI gain for the map and the LLE, calculated in absence
of the filter. For the map, two branches are present: The lower
branch corresponds to the Turing instability, which is maximal
near the cavity resonance (φ0 = 0) and is also captured by the
LLE. The upper one corresponds to the parametric resonance
induced by the periodic boundary conditions, is peculiar to the
map, and develops patterns which are in an antiphase round
trip after round trip (also called period 2 or P2 MI) [11,15,42].
Figures 4(c)–4(f) demonstrate a strong modification of the
instability spectrum described above induced by the filter
presence. Each branch is split around the spectral position
of the filter. The low-frequency part is moved toward lower
(higher) phase shifts and the edges of the high-frequency
parts are bent upward (downward) when the filter central
position is ω f /(2π ) = 400 GHz (−400 GHz). Hence the gain
spectrum reveals a strong asymmetry depending on whether
the filter frequency is positively or negatively detuned with
respect to the pump. This suggests a further degree of freedom
for parametric gain engineering and control in driven optical
cavities.

FIG. 4. The positive part of the MI gain is depicted as a func-
tion of the phase shift φ0 for the map without filter (a), with filter
positively detuned with respect to the pump (ω f /(2π ) = 400 GHz)
(c), and with filter negatively detuned with respect to the pump
(ω f /(2π ) = −400 GHz) (e); the corresponding LLE cases are plot-
ted in (b)–(e). The dashed lines denote filter position. Parameters
used are β2 = 0.5 ps2km−1, γ = 2.5 W−1km−1, L = 0.1 km, ρ =√

0.9, θ = √
0.1, a = 800 rad/ns, b = −3.2 and intracavity power

1 W.

V. FREQUENCY COMBS AND TEMPORAL PATTERNS

The presence of modulationally unstable frequencies in
dissipative systems can lead to the generation of periodic
trains of pulses, which correspond to frequency combs in
the spectral domain [34]. The generated pulse train may be
interpreted as a stable attractor of the infinite-dimensional
dissipative system described by Eq. (36) [11]. This behavior
contrasts the recurrence phenomenon observed in the NLSE
[54–56], which is a conservative Hamiltonian system. In
Fig. 5, we report an example of the generation of a stable
temporal pattern using a shallow filter blue-detuned with re-
spect to the pump wavelength. Figure 5(a) reports the power
evolution simulated with the Ikeda map of an initial condi-
tion consisting in the CW solution with a small sinusoidal
perturbation (see figure caption for more details). After the
initial stage of perturbation growth, a stable pattern is gen-
erated around the 300th roundtrip. The temporal drift toward
negative delay is caused by the odd part of the filter phase,
which act as an additional dispersion. The evolution simulated
from LLE is reported in Fig. 5(b) is practically identical,
showing once again the accuracy of the mean-field model.
The output pattern at round trip 400 is plotted in tempo-
ral and spectral domain in Figs. 5(c) and 5(d), where red
curves, respectively, blue dots, stand for Ikeda map and LLE,
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FIG. 5. The evolution of the field power profile over round trips
from (a) the Ikeda map and (b) the LLE. The output power pattern
and the corresponding power spectrum (normalized to its maximum)
are shown in panels (c) and (d). Solid red curves denotes results from
the Ikeda map and blue circles from the LLE. The dashed black curve
in (c) represents the initial condition, whereas in (d) it represents the
filter amplitude |H (ω)|. The parameters are β2 = 0.5 ps2km−1, γ =
2.5 W−1km−1, L = 0.1 km, ρ = √

0.95, φ0 = −ψ (0), θ = √
0.05,

a = 400 rad/ns, b = −1, ω f /(2π ) = 200 GHz, PIN = 0.0149 W for
the Ikeda map and PIN = 0.015 W for the LLE (intracavity power
of stationary solution is 0.2 W in both cases). Simulations initial
conditions were A(0, t ) = √

0.2[1 + 0.001 cos(2πνmaxt )] (νmax =
455 GHz).

respectively. The comparison of the time domain pattern and
power spectra demonstrate excellent quantitative agreement
between map and LLE nonlinear solutions for parameters
consistent with the assumptions made in the mean-field model
derivation. We have also verified that at much higher pump
power the Ikeda map exhibits a richer dynamics as can be

naturally expected due to its broader validity range in param-
eters space.

VI. CONCLUSIONS

In this paper, we have presented the theory of filter-induced
MI in passive driven Kerr cavities. Starting from an Ikeda map
model, we have derived a generalized mean field equation of
the Lugiato-Lefever type. We have performed a linear sta-
bility analysis of the homogeneous solutions of both models
and our results show the existence of a peculiar kind of MI
also developing in normal group velocity dispersion and in
Turing-stable regimes. Besides agreeing well in their theo-
retical predictions, both the mean-field model and the map
describe equally well the nonlinear stage of the filter-induced
MI, consisting of the generation of stable frequency combs.
We have specialized our analysis on a particular shape of
minimum-phase filter, which is quite general for the modeling
of FBGs. The theory can be straightforwardly generalized to
other filter responses more suited to different kinds of res-
onators such as Fabry-Perot cavities or microresonators. The
results presented in this paper will be relevant for the devel-
opment and design of sources of coherent light with tunable
features. Indeed, controlling the frequency shift between the
pump and the filter would allow tunability of the frequency
position of the generated spectral sidebands and ultimately the
possibility of tunable frequency comb generation in the non-
linear stage of the filter-induced MI as pioneered in Ref. [34].
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