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Abstract
In this work, we consider a two-type species model with trait-dependent speciation,
extinction and transition rates under an evolutionary time scale. The scaling approach
and the diffusion approximation techniques which are widely used in mathematical
population genetics provide modeling tools and conceptual background to assist in the
study of species dynamics, and help exploring the analogy between trait-dependent
species diversification and the evolution of allele frequencies in the population genetics
setting. The analytical framework specified is then applied to models incorporating
diversity-dependence, in order to infer effective results from processes in which the
net diversification of species depends on the total number of species. In particular, the
long term fate of a rare trait may be analyzed under a partly symmetric scenario, using
a time-change transform technique.

Keywords Wright–Fisher diffusion · Two-type branching · Scaling limit process ·
Trait fixation probability · Carrying capacity model

Mathematics Subject Classification 60J70 · 92D15

1 Introduction

Models of species richness based on simple birth-death mechanisms with constant
speciation and extinction rates suffer from the classical dichotomy of supercritical
branching processes; species must either go extinct or grow in number without bound.
Such models applied to characterizing divergence of living organisms in terms of
number of species in taxas and families, consequently fail to produce what is typically
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observed. The situation is similar for diversificationmodels ofmulti-trait species based
on multi-type, linear branching process theory. To qualify as a species model, at least
one trait should have a strictly positive net growth rate, which again leads to the same
supercritical dichotomy as for a single trait. See e.g., Haccou et al. (2005) for a general
account of branching processes with emphasis on variation, growth and extinction of
populations.

In reality, species numbers derived from fossil data or estimated from analysis of
phylogenetic trees often tend to vary over long periods of time in amode of stationarity
or quasi-stationarity within a finite range of realistic values. It is, thus, rather natural
to seek to implement in the modeling set-up, some form of population size control or
diversity-dependent regulation.While logistic-type population-size dependence is suc-
cessfully implemented in branching process theory and easily interpretable in term of
population dynamics, the nature and causes of diversity-dependent diversification are
still debated, cf. Lambert (2006), Rabosky (2013). The diversity-independent models
studied in e.g., Maddison et al. (2007) and Tahir et al. (2019), assume that the per-
lineage rates of speciation, extinction, and transition of traits are trait-dependent but
constant in the sense that they do not depend on the current number of species of a par-
ticular trait, or the current total number of species.On the other hand, systems involving
diversity-dependence retard supercritical growth by regulating the increase in species
numbers through birth and death rates in various ways (Quental andMarshall 2010). In
the papers of Parsons and Quince (2007a, b), that consider population-level dynamics,
the birth rates are assumed to be decreasing functions of the total number of individuals
in the population, thus, imposing a maximal carrying capacity of the system in case
the birth rates vanish at some level. In logistic branching models, additional deaths are
imposed in proportion to the square of the number of individuals to slow down popula-
tion growth, Lambert (2005). Similarly, Parsons et al. (2008, 2010) apply population
size dependent mortality rates. Fournier and Méléard (2004) consider an ecological
system where individuals are characterized by their location, and the mortality rate
depends on the local population density. In an environment of say two competing traits,
both speciation and extinction rates could be diversity-dependent, and the rates could
be allowed to have different sensitivity to competition (Mallet 2012). Further variations
have been proposed, such as using time varying, instead of fixed, carrying capacities
(Marshall and Quental 2016), and including adaptive radiations by decoupling of the
diversity-dependent dynamics of a sub-clade (Etienne andHaegeman 2012). Also pro-
posed are models in which positive net diversification rates are followed by negative
net diversification rates to produce ‘waxing and waning’ diversity dynamics (Morlon
2014), andmodelswhere the speciation rates are decreasing functions of time, such that
the magnitude of the decline in speciation increases as time approaches the environ-
ment’s carrying capacity (Rabosky and Lovette 2008). Typical examples are discussed
in e.g., Rabosky (2013) and Etienne et al. (2012), which summarize the parametriza-
tions and properties of models involving density-dependence. In Rabosky (2013),
Darwinian diversity-dependence and asymptotic diversity-dependence are contrasted.
The former entails that a slowdown in speciation rates with diversity is in agreement
with inter-species competition and Darwin’s principle of divergence. The latter repre-
sents patterns of species saturation and long term stability of diversity trajectories, but
does not specify clear mechanisms of cause and effect. In general, the time scales rele-
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vant for diversity-dependence or diversity-independence are unspecified, thus leaving
open whether regulatory effects act on microevolutionary rates over shorter ecological
time scales, or on macroevolutionary rates averaged over much longer geological time
spans (cf. Rabosky (2013). See also, Benton and Emerson (2007)).

We present here, a framework to address diversity-independent versus diversity-
dependent dynamics for a family of species with a binary trait, for which the rates of
creation and extinction of species as well as the rates of transition of the trait between
species, are trait-dependent. Formal equivalence can be made between species level
and population level dynamics, where number of species is equivalent to number of
individuals, diversification rate is equivalent to growth rate, and transition in species
traits is equivalent tomutation (e.g. Chevin (2016), Vellend (2010)). So, useful insights
can be gained from using concepts of population genetics to species diversification
analysis. We first rigorously investigate the mechanisms in species tree models which
are analogous to those of population genetics models, such as mutation, selection, and
genetic drift in allelic frequency models, and later, we apply the population genetics
concepts to study diversity-dependent processes. The fraction of species in the family
which carries one of the traits evolves in a manner directly comparable with the
evolution of allele frequencies in the population genetics framework. The transition
of a species of one trait to a species of the other trait resembles mutational change
from one allelic type to another. Similarly, the trait-dependence present in creation
rates, extinction rates, and the associated turnover rates, cause selection effects as
well as frequency dependent genetic drift coefficients. Furthermore, various forms of
population size dependence may be cast as density-dependent selection mechanisms.
Despite, this formal equivalence, there are relevant biological differences between
species level and population level models. For instance, whereas mutation is often
much lower than selection in population genetics, there is no a priori reason to assume
that rates of trait transition are of different magnitude than speciation and extinction
rates. This makes species traits less “heritable” than individual traits. Besides, the
number of species relevant to the species diversification dynamics is likely far less
than the effective size of a species (100, 1000 for the former versus usually much
more than 104 for the latter). This makes diversification dynamics more sensitive to
stochastic effects (see below).

The central technique in our approach is a diffusion approximation of a species
tree Markov chain, which runs on a suitable time scale of evolutionary time units. In
particular, our scaling method incorporates the point of view that “macroevolutionary
speciation rates can involve processes associated with both the splitting and extinction
of populations over ecological and demographic timescales”, as discussed in Rabosky
(2013). From the complementary viewpoint of diffusion processeswhere the dynamics
is provided by solutions of a PDE, our contribution relates closely to the pioneering
work byGillespie (1974).Using these linkswe study the effective population size in the
model, and shed some light on an apparent paradoxical conclusion reported inGillespie
(1974). Several simplified, partly symmetric, parameter settings are identified in the
stochastic model leading up to a reference case, or neutral case, which corresponds to
fully neutral evolution in population genetics modeling.

Research has previously been carried out on similar topics, in which diffusion
approximation methods were used to study density-dependent processes. Lambert
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(2006) provides a branching process approach to studying probability of fixation for
two-allele population models, including density-dependence mechanisms. Parsons
and Quince (2007a) extended a logistic growth model to a supercritical model of two
competing types, and using diffusion approximation methods, estimated the proba-
bility of fixation for both types. They proposed a so called ‘non neutral’ model, in
which the ratios of birth to death rates were assumed to be different for the two types,
and showed that the type with higher birth to death rate ratio eventually takes over
the entire population. In a subsequent analysis by Parsons and Quince (2007b), the
fixation probability was again approximated using diffusion processes, but for ‘quasi
neutral’ populations in which both types had equal birth to death ratios. In this case,
the type with the higher birth rate shows an increase in numbers during the growth
phase at densities below the carrying capacity, whereas near the carrying capacity, the
type with lower birth rate is favored, due to smaller fluctuations in population density
– a phenomenon termed as ‘r vs K selection’ (see e.g., Pianka (1970)). Abu Awad
and Coron (2018) use a scaling approach similar to ours to study effective population
mass, absorption and extinction times, etc., for a population controlled by a carrying
capacity. Chevin (2016) utilized diffusion approximation methods to analyze the evo-
lution of binary discrete and continuous traits, and interpreted diversification models
in terms of population genetics concepts of species selection and random drift. In our
current work, we develop a further direction by providing a thorough mathematical
basis and an analytical framework for the analogy between binary trait species diversi-
fication and population genetics models. For completeness and clarity, we re-derived
some of these previous results using our proposed analytical framework.

2 The species branchingmodel

We consider the dynamics of the size of a species family which carries a binary trait,
marked 0 or 1, and undergoes trait-dependent splitting, extinction, and transition. We
apply a two-type, continuous time Markov process X = (Xu)u≥0 with components
X = (K , L), such that Xu = (Ku, Lu) and Ku and Lu represent the number of species
with trait 0 and trait 1, respectively, at time u. The two-type branching events are

target state branching rate

(k, �) �→

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(k + 1, �) λ0k
(k, � + 1) λ1�

(k − 1, �) μ0k
(k, � − 1) μ1�

(k − 1, � + 1) δ01 k
(k + 1, � − 1) δ10 �

(1)

in terms of splitting ratesλ0,λ1, extinction ratesμ0,μ1, and transition rates δ01 and δ10.
For the analysis in this work, however, it will be convenient to use the equivalent set
of parameters consisting of net diversification rates di and turnover rates τi , i = 0, 1,
given by
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d0 = λ0 − μ0, d1 = λ1 − μ1, τ0 = λ0 + μ0, τ1 = λ1 + μ1,

in addition to the transition rates δ01 and δ10. Important aspects of the stochastic
behavior of Xu are determined by the eigenvalues, γ− and γ+, γ− ≤ γ+, of the 2 × 2
mean matrix

A =
[
d0 − δ01 δ10

δ01 d1 − δ10

]

.

For the case γ+ ≤ 0 of subcritical (<) and critical (=) branching, the species family
will go extinct at a random time η0, the extinction time, which is finite with probability
one and such that Xu = (0, 0) for all u ≥ η0. Under the supercritical assumption
γ+ > 1, with a positive probability strictly less than one the process goes extinct,
otherwise the species family survives and grows in size without bound. The species
model is a two-type branching process X = (Xu)u≥0 with linear jump rates, such that
the dynamics of X = (K , L)′ (here viewed as column vector) satisfy

Xu = X0 +
∫ u

0
AXs ds + Mu, u ≥ 0, (2)

where X0 is the initial state of the model (e.g., X0 = (1, 0)′) and (Mu)u≥0 is a
stochastic (martingale) term with mean E(Mu) = 0. A general class of two-type
branching processes, including population size dependent models, is characterized in
Kaj and Tahir (2019) as unique solutions of such stochastic equations.

We are particularly interested in the representation (P, R) of X , given by

Pu = Ku

Ku + Lu
, Ru = Ku + Lu, u ≥ 0

so that P is the fraction of trait 0 among the species, and R is the total number of
species, regardless of trait. Here, Ru = 0, u ≥ η0, and we note that Pu is well-defined
for all u, with either Pu = 0 or Pu = 1 for u ≥ η0. Conversely, given (P, R), we
obtain (K , L) from

Ku = Pu Ru, Lu = (1 − Pu)Ru, u ≥ 0.

By using Eq. (2) and Itô’s formula for pure jump processes, one obtains a stochastic
equation for (P, R), see Section 4 in Kaj and Tahir (2019).

As a simple illustration, Fig. 1 shows a simulation of the two-type process X =
(K , L) and the corresponding representation (P, R). The choice of parameters is
supercritical, such that the net growth rate is strictly positive for trait 0, γ+ = 6, and
strictly negative for trait 1, γ− = −5. Thus, trait 1 on its own would go extinct. Here,
however, the number of trait-1 species counted by L is sustained and growing by
transitions from trait 0.
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(a) (b)

(c) (d)

Fig. 1 Upper panels: simulation of the two-type branching process X ; L versus K in a) and (Ku , Lu) versus
time u in b). Lower panels: simulation of P versus time in c) and R versus time in d). Parameter values
used for the simulations are d0 = 7, d1 = 4, τ0 = 17, τ1 = 16, δ01 = 4 and δ10 = 6

2.1 Law of large numbers

To understand the average behavior of (K , L) and of (P, R), it is useful to consider a
system which starts at time u = 0 with m species, which is equivalent to summing m
i.i.d. copies of the original model starting with one initial species each. Write X (m) =
(K (m), L(m))′ for such a system, with e.g. X (m)

0 = (m, 0)′, and let X̂m = 1
m X (m) be

the resulting average. The (strong) law of large numbers applies, so for each u ≥ 0,

X̂m
u → x̂u = (ku, �u)

′ a.s., m → ∞,

where the limit is the expected value x̂u = E(Xu), which solves the linear ODE

d

du
x̂u = Ax̂u, x̂0 = (1, 0)′.

It follows from the law of large numbers for X̂m = (K̂ m, L̂m), that the process
(Pm, Rm), defined by

Pm
u = K̂ m

u

K̂m
u + L̂m

u

, Rm
u = K̂ m

u + L̂m
u , u ≥ 0,
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converges, asm → ∞, to the solution (p, r), where pu = ku/(ku +�u), ru = ku +�u ,
of the deterministic limiting ODE

d

du
pu = (d0 − d1)pu(1 − pu) − δ01 pu + δ10(1 − pu), p0 = 1

d

du
ru = ru

(
d0 pu + d1(1 − pu)

)
, r0 = 1.

The limit equation for the fraction p, is a first indication of a connection to population
genetics modeling, as it resembles the deterministic part of allele frequency dynamics
(withmutation intensities δ01, δ10 and selection intensity d0−d1). In this model the net
transition rate of trait 0, given by the term−δ01 pu +δ10(1− pu), arises from so called
anagenetic transitions between the two types. Anagenetic transitions occur along the
branches of the species tree separate from speciation events. In contrast, a cladogenetic
transition is a change in trait combined with the survival of the original type, hence
associated with two-type speciation. To account for cladogenetic transitions occurring
with probabilities a0 and a1 respectively for the two types, we modify the speciation
and transition rates in (1) as

(k, �) �→

⎧
⎪⎪⎨

⎪⎪⎩

(k + 1, �) λ0k + a1δ10�
(k, � + 1) λ1� + a0δ01k

(k − 1, � + 1) (1 − a0)δ01 k
(k + 1, � − 1) (1 − a1)δ10 � ,

while the extinction rates remain the same (Tahir et al. 2019). Then the stated ODE
for (p, r) holds with d0 and d1 replaced by d̃0 = d0 + a0δ01 and d̃1 = d1 + a1δ10.
Hence the relative impact of cladogenetic transitions as measured by a0 and a1 affects
the “selection intensity” d̃0 − d̃1. This type of transition is analogous to a ‘reduction
in species level heritability of the trait’ (Chevin 2016).

3 Evolutionary time scaling

In addition to the short time scale of “species generations”, we introduce an evolu-
tionary time scale and apply diffusion approximation methods to help understand the
dynamics of the species model over the long time scale. Indeed, some of the most
powerful tools of mathematical population genetics rely on approximation with dif-
fusion processes, which allow for efficient computation of quantities such as fixation
probabilities, expected times to fixation, and expected frequency spectra. The starting
point for this approach is to relate the Markov chain X , with the population genetics
pre-limit process, such as the Wright–Fisher model or Moran model, using the time
scale of generations.

3.1 ScaledWright–Fisher andMoranmodels

To see the relevance of time scales, we recall the haploid version of the standard bi-
allelic Wright–Fisher model in discrete time k ≥ 0, with fixed population size N ,
selection coefficient s representing reproductive weights 1 + s for trait 0 and 1 for
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trait 1, and probabilities p01 and p10 for mutations from allele 0 to 1 and 1 to 0, respec-
tively. Letting Z0 be the initial number of trait-0 alleles and Zk , k ≥ 1, the number of
0-alleles after selective sampling of k new generations allowing for mutational change
of traits in each step, this is the Markov chain Z = (Zk)k≥0. The standard diffusion
approximation of the Wright–Fisher model involves a re-scaling of both time and
population size with N , as well as a scaling of the model parameters. For this aim, let
γ , ρ01, and ρ10 be the scaling parameters which control the rate at which the strength
of selection and mutation tends to 0 with increasing N , as

sN = γ /N , p(N )
01 = ρ01/N , p(N )

10 = ρ10/N .

More generally, these relations can be understood as limit relations, for example sN ∼
γ /N , i.e., limN→∞ NsN = γ .Wewrite Z (N ), for the associated scaledWright–Fisher
model, and consider the frequency process ξ N = (ξ N

t )t≥0 on the evolutionary time
scale of Nt generations, defined as

ξ N
t = 1

N
Z (N )

[Nt], t ≥ 0.

The Wright–Fisher diffusion, ξ = (ξt )t≥0, is the limit process of ξ N as N → ∞, and
is known to be the unique, strong solution of the stochastic differential equation

dξt = γ ξt (1 − ξt ) dt − ρ01ξt dt + ρ10(1 − ξt ) dt + √
ξt (1 − ξt ) dBt , ξ0 = x,

(3)

with B a Brownian motion. Written in the form dξt = b(ξt ) dt + σ(ξt ) dBt , with

b(y) = γ y(1 − y) − ρ01y + ρ10(1 − y), σ 2(y) = y(1 − y),

we may refer to b as the infinitesimal mean or the diffusion drift function and to σ 2

as the infinitesimal variance, the diffusion variance, or, the genetic drift function. The
Moran model applies a birth-death mechanism for reproduction of alleles, rather than
the characteristic binomial sampling of the Wright–Fisher model. Since birth events,
where alleles copy and spread, are always compensated for by deaths of randomly
sampled individuals, the population size is still maintained at a constant level N . The
corresponding rescaling and diffusion approximation as N → ∞, yield the same limit
process except for a factor 2 in the variance function, σ 2(y) = 2y(1− y). The further
parameterized case, σ 2 = y(1 − y)/Neff , can be associated with the Wright–Fisher
approximation of a system modulated by an effective population size, Neff . For the
general theory we refer to Etheridge (2011).

3.2 Gillespie approach

The infinitesimal generator of the Wright–Fisher diffusion process is the differential
operator G, defined for a class of sufficiently regular functions f on the unit interval
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by

G f (y) = 1

2
y(1 − y) f ′′(y) + γ y(1 − y) f ′(y), 0 ≤ y ≤ 1,

for which the function u(t, x) = Ex [ f (ξt )] solves Kolmogorov’s backward equation

∂

∂t
ut (x) = Gut (x), t > 0. u0(x) = f (x), 0 < x < 1.

The population genetics model of Gillespie (1974) allows the population size to vary
following an offspring distribution with mean 1+ μi and variance σ 2

i , for two alleles
Ai , i = 1, 2. Writing p for the frequency of allele A1 and r for the total population
size, this approach suggests the two-dimensional Markov generator

G f (p, r) =
(

μ1 − μ2 + 1

r
(σ 2

2 − σ 2
1 )

)
∂ f

∂ p
+ p(1 − p)

r
(pσ 2

2 + (1 − p)σ 2
1 )

1

2

∂2 f

∂ p2

+ r(pμ1 + (1 − p)μ2)
∂ f

∂r
+ r(pσ 2

1 + (1 − p)σ 2
2 )

1

2

∂2 f

∂r2

+ p(1 − p)(σ 2
1 − σ 2

2 )
∂2 f

∂ p∂r
. (4)

Here, we are using r for population size as opposed to the more classical population
genetics notation n as in Gillespie (1974), to avoid mix-up with our general scaling
parametern used below.The associatedKolmogorov’s backward equation is dual to the
corresponding forward equation given as Equation 3 in Gillespie (1974). In particular,
we read out that r/(pσ 2

2 + (1− p)σ 2
1 ) acts as a varying effective population size. It is

perhaps worth stressing that this measure of effective population size varies not only
with the size r but also, in general, with the frequency p, due to possibly different
variance parameters σ 2

1 , σ 2
2 . Earlier references on random effective population size

and stochastic population size models can be found in Kaj and Krone (2003), Sjödin
et al. (2005), together with developments on coalescent models for such situations. An
additional result in Gillespie (1974), in particular Equations 6,7, refers to the special
case μ1 = μ2 saying that the probability of fixation of allele A1, given an initial
frequency p, equals

u(p) = σ 2
2 p

σ 2
1 (1 − p) + σ 2

2 p
(5)

The diffusion approximationmodel of species richnesswe develop nextwill be closely
related to the model described by Eq. (4). We will recover and discuss further the role
of both the random effective population size r/(pσ 2

2 + (1 − p)σ 2
1 ) and the fixation

probability u(p).
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3.3 Scaled species model

Our investigation takes the view that, given non-extinction of the continuous time
branching process X , the component K = (Ku)u≥0 in the species model relates
naturally to the discrete timeMarkov chain (Zk)k≥0, of the population genetics model.
Of course these quantities are not immediately comparable since the total number of
species R varies randomly, while the population size N is fixed from one generation to
the next. For this reason, we introduce a species family process X (n) = (K (n), L(n))′
marked by a separate scaling variable n. The two-type branching process is driven by
an initial number of species of magnitude n, and has scaled parameters d(n)

0 , d(n)
1 , τ (n)

0 ,

τ
(n)
1 , δ(n)

01 and δ
(n)
10 , which control the rates of diversification, turnover, and transition on

the population timescale. For fixed t , the fraction n−1X (n)
[nt], is the typical configuration

of trait frequencies in the species family seen over the span of t time units that elapse
upon completing [nt] generations. The precise behavior of the rates as functions of n
is not crucial as long as they scale for large n with the following macroevolutionary
rates which act on the new time scale,

d(n)
i ∼ βi

n
, τ

(n)
i ∼ τi , i = 0, 1 δ

(n)
01 ∼ ρ01

n
, δ

(n)
10 ∼ ρ10

n
. (6)

Here, τi measures variance in the production of daughter species and is the reference
turnover parameter for extinction and/or speciation events of trait i ,βi is themacroevo-
lutionary net diversification rate of trait i , seen as the long-time average net effect of
speciation and extinction, and ρ01 and ρ10 are the resulting macroevolutionary rates
of exchange of traits. For later reference we also adopt from Gillespie (1977) the new
evolutionary principle that trait success (fitness in population genetics terminology)
not only increases with offspring mean but also may decrease with offspring variance
inversely proportional to population size. Using macroevolution terminology, τ refers
to the species turn-over rate, a quantity which has received increasing attention in the
empirical literature aiming at interpreting patterns of species diversity (Gamisch and
Comes 2019; Han et al. 2020; Nakov et al. 2019). In the current situation of devel-
opmental stochastic dynamics, as opposed to environmental stochastic influences, βi
(or rather 1+βi ) represent offspring mean and τi offspring variance. Then, following
Gillespie (1974, 1977) the fitness is properly measured by fi (r), where

fi (r) = βi − τi

r
, i = 0, 1. (7)

Conditionally on the set of paths of X which do not go extinct, let

Pn
t = K (n)

nt

K (n)
nt + L(n)

nt

, Rn
t = 1

n
(K (n)

nt + L(n)
nt ), t ≥ 0.

The ratio Pn will play the role of the frequency process ξ N , even though the scaled
Wright Fisher process ξ N is derived from a population of fixed size N whereas Pn is
a frequency with respect to the stochastically varying species richness process Rn .
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The final step towards a generic species trait richness model is finding the limit
processes in the scaling regime asn → ∞, expecting the remainingmacroevolutionary
rates to be τ0, τ1 as rates of change for the speciation/extinction process, β0, β1
diversification rates for net growth (if positive) or net decline (if negative), and ρ01,
ρ10 controlling trait interchange. We expect in the limit to obtain a bi-variate, coupled
diffusion process, X = (Xt )t≥0, with representations (K,L)′ and (P,R) say. To
assist in identifying the limit model we will exploit the existing theory of measure-
branching processes, briefly laid out in Sect. 5 below. In fact, it is straightforward to
re-interpret X (n) as a measure-valued branching process on trait space E = {0, 1}
with scaled parameters. In this view our macroevolutionary scaling is consistent with
a super-process approximation, for which the spatial motion is the on-off process on
E with jump rates ρ01, ρ10. As a consequence, (n−1X (n)

[nt])t≥0, has a weak limit which
is a super-on/off process with binary branching.

Proposition 1 Suppose that

n−1X (n)
0 → X0, n → ∞,

whereX0 is a nonnegative deterministic column vector. As n → ∞ the scaled branch-
ing process (n−1X (n)

nt )t≥0, converges weakly to the continuous state branching process
X = (K,L)′, which is the unique solution of the SDE

Xt = X0 +
∫ t

0

[
β0 − ρ01 ρ10

ρ01 β1 − ρ10

]

Xs ds +
(
1

0

) ∫ t

0

√
τ0Ks dB

0
s

+
(
0

1

) ∫ t

0

√
τ1Ls dB

1
s , t ≥ 0,

where B0, B1 are independent, standard Brownian motions. Furthermore, (Pn, Rn)

converges weakly to (P,R), the unique solution of

dPt = Pt (1 − Pt )( f0(Rt ) − f1(Rt )) dt − ρ01Pt dt + ρ10(1 − Pt ) dt

+
√

Pt
(
1 − Pt

)(
τ0(1 − Pt ) + τ1Pt

) 1

Rt
d B−

t , (8)

dRt = Rt
(
β0Pt + β1(1 − Pt )

)
dt +

√

Rt
(
τ0Pt + τ1(1 − Pt )

)
dB+

t , (9)

where f0(r) and f1(r) are the fitness measures in Eq. (7) and B−
t , B

+
t are standard

Brownian motions. The Brownian motions are independent when τ0 = τ1. In general,
the quadratic covariation processes of (B−, B+) and (P,R) are given by

〈〈B−, B+〉〉t =
(τ0

τ1
− 1

) ∫ t

0

√Ps(1 − Ps)
√(

τ0(1 − Ps)/τ1 + Ps
)(

τ0Ps/τ1 + 1 − Ps
) ds,
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and

〈〈P,R〉〉t = (τ0 − τ1)

∫ t

0
Ps(1 − Ps) ds. (10)

3.4 Effective population size: resolving Gillespie’s paradox

The infinitesimal mean and infinitesimal variance terms of the diffusions P and R,
except for the mutation terms involving ρ01 and ρ10, as well as the covariation in Eq.
(10), have matching terms in the generator G in Eq. (4). In Eq. (8) we recognize a
Wright–Fisher diffusion with selection andmutation, and with trait-dependent genetic
drift (or ‘species drift’) Pt (1 − Pt )/Nt in the diffusion variance of B−, such that

Nt = Rt

τ0(1 − Pt ) + τ1Pt
(11)

acts as a stochastically varying effective population size for the differential dynamics of
dPt . This observation is parallel to that in the original workGillespie (1974), where the
corresponding quantity appears in the coefficient of ∂2 f /∂ p2 in Eq. (4). The species
drift increases as the number of species decreases, analogous to genetic drift of the
allele frequency in population genetics. Similarly, the species drift increases with the
turn over rates τ0 and τ1, which represent the species offspring variance. By applying
Ito’s formula toNt = g(Pt ,Rt ), t ≥ 0,with g(p, r) = r/(τ0(1− p)+τ1 p), we obtain
directly the dynamics of (P,N ) as an alternative to that of (P,R). For simplicity, we
consider the case where the diversification rates are equal, β0 = β1 = β, and the rates
of trait exchange vanish, ρ01 = ρ10 = 0. Then

dPt = − (τ0 − τ1)Pt (1 − Pt )

τ0(1 − Pt ) + τ1Pt

1

Nt
dt +

√

Pt
(
1 − Pt

) 1

Nt
d B−

t ,

dNt = βNt dt + (τ0 − τ1)
2Pt (1 − Pt )

(τ0(1 − Pt ) + τ1Pt )2
dt

+
√

Nt
τ0Pt + τ1(1 − Pt )

τ0(1 − Pt ) + τ1Pt
d B+

t +
√

Nt
(τ0 − τ1)Pt (1 − Pt )

τ0(1 − Pt ) + τ1Pt
d B−

t

The benefit of this additional representation of P in comparison with the previous
stochastic equation (8), is that the effective population size N in the species drift of
P now appears in classical form. The disadvantage is the increased complexity of the
diffusion drift for P as well as diffusion drift and variance ofN , as compared to those
of R in (9).

The discussion inGillespie (1974) also points to a potential drawback of the appear-
ance of N in the present form in (11). If trait 1 is rare or near elimination from the
species family, so that P ≈ 1, then formallyN ≈ R/τ1 which suggests that the now-
absent trait 1 controls the effective size through the parameter τ1. Quoting Gillespie
(1974): This rather uncomfortable conclusion suggests that the concept of effective

123



Analysis of diversity-dependent species evolution using… Page 13 of 30    22 

population size loses a good deal of its value in the context of the present model. Using
the wider frame of linked diffusion processes, however, this apparent paradoxical con-
clusion may be avoided. The above relation for dNt suggests that if trait 1 would be
eliminated and hence P reach fixation at 1, then the resulting effective size (N 0

t )t≥0,
would satisfy

dN 0
t = βN 0

t dt +
√

N 0
t (τ0/τ1) dB

+
t ,

and hence depend on the relative turnover ratio τ0/τ1 and β, rather than just τ1. Of
course, for the same parameter settings, if we let P tend to 1 in (9), the resulting
richness R0

t of trait 0 satisfies

dR0
t = βR0

t dt +
√

R0
t τ0 dB

+
t , (12)

consistent with the relation N 0 = R0/τ1, which appears to have been the origin of
the “uncomfortable conclusion” discussed in Gillespie (1974). The diffusionsN 0 and
R0, are Feller processes with linear drift belonging to the larger class of continuous
state branching processes. It is a classical result in branching process theory that, if
R0

0 = r , and accordingly N 0
0 = r/τ1, then the extinction probabilities are given by

Pr ( lim
t→∞R0

t = 0) = e−2rβ/τ0

and

Pr/τ1( limt→∞N 0
t = 0) = e−2(r/τ1)·β/(τ0/τ1) = e−2rβ/τ0 .

Naturally, they no more depend on the parameter τ1. In response to a question raised
by an anonymous referee, we also mention an alternative approach to this topic. By
changing variables from (p, r) to (p, n) with n = r/(σ 2

1 (1 − p) + σ 2
2 p) one obtains

a new generator G f (p, n) parallel to G f (p, r) in (4). The coefficients in G f (p, n)

will now have matching terms to those in the SDE for (Pt ,Nt ).

3.5 Further interpretation of Eqs. (8–10)

The species ‘selection coefficient’ in Eq. (8) is the fitness difference

γt = f0(Rt ) − f1(Rt ) = β0 − β1 − τ0 − τ1

Rt
, t ≥ 0,

dependent on net diversification rates, turnover rates and species richness. If β0 > β1,
so that trait 0 has larger net diversification, then trait 0 has a “fitness” advantage over
trait 1, γt > 0 at time t , if either τ1 > τ0 or τ0 > τ1 and Rt > (τ0 − τ1)/(β0 − β1).
In other words, species-level selection is reduced in small populations and enhanced
in large. If τ1 > τ0, the opposite holds. Hence, traits with higher diversification rates
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and slower turnover rates are favored by species selection. The time average of γ up
to time t is

1

t

∫ t

0
γs ds = (β0 − β1)(1 − Ft ),

where

Ft = τ0 − τ1

β0 − β1

1

t

∫ t

0

1

Rs
ds

can be seen as the relative contribution of τ0 − τ1 to species selection (Chevin 2016).
The total species richness is measured byR in Eq. (9), which is a continuous state

branching process with linear drift and trait-dependence in both the diffusion drift
and variance functions. Conditional on non-extinction, R will grow exponentially as
t → ∞. Hence, the diffusion variance term for dPt in (8), driven by B−, vanishes. The
diffusion drift function for dPt also simplifies and we expect Pt → p∞ as t → ∞,
where p∞ is the solution of the second order equation

p∞(1 − p∞)(β0 − β1) − ρ01 p∞ + ρ10(1 − p∞) = 0. (13)

The covariation ofP andR inEq. (10)measures the degree towhich these quantities
vary simultaneously, in the sense that the expected change over a small time interval
[t, t + h), conditional on the present state (Pt ,Rt ), is given by

E[(Pt+h − Pt )(Rt+h − Rt )|(Pt ,Rt )] = (τ0 − τ1)Pt (1 − Pt )h + o(h), h → 0.

We observe that, while the covariation of P and R is proportional to the difference
in turnover rates, τ0 − τ1, the analogous covariation of the two underlying Brownian
motions, B− drivingP and B+ drivingR, is a function only of the turnover-ratio τ0/τ1.
In both cases, the dependence is positive in case τ0 > τ1 and negative otherwise. We
conclude that the species richness co-varies positively with the trait with the highest
turnover. The turnover ratio τ0/τ1 determines the strength of the covariation which
is intrinsic at the level of Brownian noise, whereas both of τ0 and τ1 are required in
order to find the covariation of the state variables P and R.

3.6 Special cases

(a) Symmetric net diversification rates,ˇ0 = ˇ1

Let β0 = β1 = β. Then, from Eq. (8) and Eq. (9), we have

dPt = Pt (1 − Pt )
−(τ0 − τ1)

Rt
dt − ρ01Pt dt + ρ10(1 − Pt ) dt

+
√

Pt
(
1 − Pt

)(
τ0(1 − Pt ) + τ1Pt

) 1

Rt
d B−

t ,
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dRt = βRt dt +
√

Rt
(
τ0Pt + τ1(1 − Pt )

)
dB+

t .

By Eq. (10) the covariance structure remains the same as in the general model. Here,
R is a supercritical Feller-type diffusion process with diffusion variance function
modulated by the trait proportions P and 1 − P . The SDE for P can be viewed
as a Wright–Fisher diffusion with population size dependent infinitesimal drift and
variance functions. The selection coefficient −(τ0 − τ1)/R shows that the species
associated with the trait of the smallest of the two turnover rates, i.e. trait 0 if τ0 < τ1
and trait 1 if τ0 > τ1, are selected for instead of species with the higher turnover.
Biologically, this means that, all other things being equal, more long-lived species are
selected for, as increasing the species generation time will automatically reduce τ (Lin
et al. 2012).

(b) Symmetric turnover rates, �0 = �1

Let τ0 = τ1 = τ . Then Eq. (8) and Eq. (9) simplify as

dPt = Pt (1 − Pt )(β0 − β1) dt − ρ01Pt dt + ρ10(1 − Pt ) dt

+
√

τPt (1 − Pt )

Rt
d B−

t ,

dRt = Rt
(
β0Pt + β1(1 − Pt )

)
dt + √

τRt d B
+
t ,

with independent Brownian motions B− and B+. The equation for P is the SDE of
the Wright–Fisher diffusion process with selection coefficient β0 − β1 and mutation
rates ρ01 and ρ10 as in Eq. (3), except that now the genetic drift term is inversely
proportional toR, which acts as a randomly varying effective population size. At the
same time, the population richness process R is a Feller-type diffusion process with
diffusion drift function modulated by the trait proportions P and 1 − P .

(c) Neutral evolution: symmetric net diversification rates, ˇ0 = ˇ1 and turn over
rates, �0 = �1

Let τ0 = τ1 = τ and β0 = β1 = β be nonnegative parameters. By combining the
cases a) and b), we obtain

dPt = −ρ01Pt dt + ρ10(1 − Pt ) dt +
√

τPt (1 − Pt )

Rt
d B−

t ,

dRt = βRt dt + √
τRt d B

+
t .

Here, the first equation of P is comparable to the Wright–Fisher diffusion process
Eq. (3) with only mutation and no selection, hence the term ‘neutral evolution’. The
total size process is a supercritical Feller diffusion process, which we encountered
previously in (12) as a limiting case under trait fixation. In the present context, we
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use once more that for a given initial size R0 = r , the extinction probability that
Rt → 0 as t → ∞, equals e−2βr/τ . From this we retrieve the known result in
stochastic demography that higher turn-over rate increases the extinction risk. On the
complementary set of nonextinction, the total size process tends to infinity almost
surely, Rt → ∞ a.s.

(d) Quasi-neutral rates

Quasi-neutrality, as proposed and discussed in Parsons and Quince (2007b), Parsons
et al. (2008), is a rate symmetry condition, which in our notation would mean

τ0

β0
= τ1

β1
= κ.

According to Parsons et al. (2008), the ratio 2βi/τi is an alternative measure of relative
success or relative fitness of trait i . In this framework, therefore, quasi-neutral traits
are equally fit. Eq. (8) and Eq. (9) become

dPt = Pt (1 − Pt )
(
(β0 − β1)

(
1 − κ

Rt

))
dt − ρ01Pt dt + ρ10(1 − Pt ) dt

+
√

Pt
(
1 − Pt

)(
β0(1 − Pt ) + β1Pt

) κ

Rt
d B−

t ,

dRt = Rt
(
β0Pt + β1(1 − Pt )

)
dt +

√

κRt
(
β0Pt + β1(1 − Pt )

)
dB+

t .

4 Application of the population genetics approach to
diversity-dependent models

We discuss the effect of diversity dependence on the species richness model. The
interaction is imposed by letting the instantaneous rates of speciation and extinction
in (6) depend on the scaled total size Rn . A variety of interaction schemes can be
incorporated into the measure-branching model formalism, which we use to derive
Proposition 1. For an introduction to some of the principles of interaction in measure-
branching and superprocesses, see Etheridge (2000). The relevant approach for us
is the use of an analogue of the Girsanov theorem that allows for the introduction
of “non-linear branching”, and in the end logistic versions of the superprocess limits
obtained by an absolutely continuous change-of-drift. Our analysis is therefore similar
in many ways to the development of the spatial model in Fournier andMéléard (2004),
considering our trait space as the mark of location. As in Fournier andMéléard (2004)
we apply superprocess techniques but at this stage our interaction schemes are less
general. It is also known that logistic Feller diffusion processes arise under muchmore
general branching mechanisms than ours (Lambert 2005), indicating more general
results.

Suppose the current state of the speciesmodel at time t is (Pn
t , Rn

t ). A constant cwill
have the role of a ‘carrying capacity’. We consider in Sect. 4.1 the diversity-dependent
species models which have jump rates at t , given by
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τ
(n)
i = τi , d(n)

i = βi

n

(
1 − Rn

t

c

)
.

- In greater generality, the carrying capacity is determined by a pair of parameters, c0,
c1, and the strength in reduction of the net growth is trait-dependent. In Sect. 4.2 we
consider the corresponding model with jump rates

τ
(n)
i = τi , d(n)

i = βi

n

(
1 − Rn

t

ci

)
, i = 0, 1.

Further generalization can also be made by assuming that the two kinds of species
both affect and are affected differently by species richness:

d(n)
i = βi

n

(

1 − Rn
t

(
Pn
t

c0i
+ 1 − Pn

t

c1i

))

, i = 0, 1.

This parallels Lotka-Volterra competition models but this latter case will not be devel-
oped further here and is left for future work. We have applied classical logistic type
diversity-dependence acting on the macroevolutionary net growth rate nd(n)

i . Starting
from Rn

0 < c, the net effect of speciations and extinctions is reduced with increasing
species richness and turns into a subcritical regime above the level c, in case Rn

t > c.
To simplify notation in the rest of this section we introduce the function

ψ(p) = τ0(1 − p) + τ1 p, 0 ≤ p ≤ 1. (14)

4.1 Diversity-dependent macroevolutionary diversification rates

The limit process as n → ∞ is obtained as in Proposition 1, with β0 and β1 at time t
replaced by the species richness dependent functions β0(1−Rt/c) and β1(1−Rt/c).
The system in Eqs. (8)–(9) becomes

dPt = Pt (1 − Pt )
(
f c0 (Rt ) − f c1 (Rt )

)
dt

− ρ01Pt dt + ρ10(1 − Pt ) dt +
√

Pt (1 − Pt )ψ(Pt )
1

Rt
d B−

t , (15)

dRt = Rt

(
1 − Rt

c

)(
β0Pt + β1(1 − Pt )

)
dt + √

Rtψ(1 − Pt ) dB
+
t ,

with trait fitness now of the form

f ci (r) = βi

(
1 − r

c

)
− τi

r
.

In particular, if we impose the additional assumptions of neutral rates discussed as
special case c) in Sect. 3.6, the process R is the solution of

dRt = βRt (1 − Rt/c) dt + √
τRt d B

+
t , t ≥ 0.
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This is the logistic Feller diffusion process, which has non-negative paths and goes
extinct with probability one. The logistic Feller diffusion is known to have a quasi-
stationary distribution in the sense of a Yaglom limit, namely that the law of Rt

conditioned on {Rt > 0} converges as t → ∞ to a probability measure (Cattiaux
et al. 2009). Such a Yaglom limit, however, is not known in explicit terms and need
not even be unique. For our model, we note that Cattiaux et al. (2009) Thm 8.2, yields
uniqueness of the Yaglom limit for the case c < 1, whereas under biologically relevant
conditions we expect c > 1.

For the general, non-neutral, case, letting R̃ = R/c be the total species richness in
relation to the carrying capacity c, the SDE system for the state variables is

dPt = Pt (1 − Pt )
(
(β0 − β1)(1 − R̃t ) − τ0 − τ1

cR̃t

)
dt

− ρ01Pt dt + ρ10(1 − Pt ) dt +
√

Pt (1 − Pt )ψ(Pt )
1

cR̃t
d B−

t ,

dR̃t = R̃t (1 − R̃t )
(
β0Pt + β1(1 − Pt )

)
dt +

√
1

c
R̃tψ(1 − Pt ) dB

+
t .

The two SDEs with respect to B− and B+ have second order moments proportional to
1/c. This can be used to show formally that the diffusion terms vanish in the subsequent
limit of large carrying capacity, c → ∞, revealing the deterministic limit equation

dPt = Pt (1 − Pt )(β0 − β1)(1 − R̃t ) dt − ρ01Pt dt + ρ10(1 − Pt ) dt,

dR̃t = R̃t (1 − R̃t )
(
β0Pt + β1(1 − Pt )

)
dt,

that is, the ODE system

p′
t = pt (1 − pt )(1 − r̃t )(β0 − β1) − ρ01 pt + ρ10(1 − pt ),

r̃ ′
t = r̃t (1 − r̃t )

(
β0 pt + β1(1 − pt )

)
.

With initial value (p0, r̃0) ∈ (0, 1)2, the equilibrium solution as t tends to infinity,
is p∞ = ρ10/(ρ10 + ρ01), r̃∞ = 1. We see that species selection, acting on the net
diversification rates β0 and β1, is effective only during the growth phase but vanishes
as the number of species approaches the carrying capacity, i.e., when r̃t approaches 1.
In ecology, this is said to be a model with only r -selected traits but no K -selected traits
(where r is the growth rate and K is the carrying capacity), that is, the diversification
of the two traits is regulated in the same way as r̃t approaches 1 (Pianka 1970).
This scenario would correspond to a trait allowing adaptive radiation with a rapid
diversification of species possessing this trait when many niches are still available,
until an almost neutral dynamics when carrying capacity is reached.
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4.2 Trait- and diversity-dependent macroevolutionary diversification rates

The density dependent mechanism is again to reduce the growth of the species family
with increasing diversity, but now the efficiency of the nonlinear influence is tuned for
each trait, with the resulting trait fitness

f cii (r) = βi (1 − r/ci ) − τi/r , i = 0, 1.

By adapting the derivation leading to Eq. (8)–(9) to this case and putting R̃ = R/c as
before, then in the limit n → ∞,

dPt = Pt (1 − Pt )
(
f c00 (cR̃t ) − f c11 (cR̃t )

)
dt − ρ01Pt dt + ρ10(1 − Pt ) dt

+
√

Pt (1 − Pt )ψ(Pt )
1

cR̃t
d B−

t ,

dR̃t = R̃t

{
β0Pt

(
1 − c

c0
R̃t

)
+ β1(1 − Pt )

(
1 − c

c1
R̃t

)}
dt

+
√

R̃t

c
ψ(1 − Pt ) dB

+
t .

A special case of interest is obtained by taking β0/c0 = β1/c1 = α/c, τ0 = τ1 = τ ,
using a new parameter α. For simplicity, let us also take ρ01 = ρ10 = 0. Then

dPt = (β0 − β1)Pt (1 − Pt ) dt +
√

Pt (1 − Pt )
τ

cR̃t
d B−

t ,

dR̃t = R̃t

{
β0Pt + β1(1 − Pt ) − αRt

}
dt +

√

τR̃t/c dB
+
t .

In this example we notice that the growth of species richness is diversity- and density-
dependent while the selection term is now density-independent.

Let us now come back to the general model studied in this section and suppose that
as c → ∞ then both of c0 and c1 also tend to infinity, such that c/ci → αi , i = 0, 1,
for some positive constants α0 and α1. Then formally

p′
t = pt (1 − pt )

(
β0(1 − α0r̃t ) − β1(1 − α1r̃t )

) − ρ01 pt + ρ10(1 − pt ),

r̃ ′
t = r̃t

(
β0 pt (1 − α0r̃t ) + β1(1 − pt )(1 − α1r̃t )

)
.

(16)

The case β0 = β1 = β > 0 gives the system of ODEs

p′
t = β(α1 − α0) pt (1 − pt )r̃t − ρ01 pt + ρ10(1 − pt ),

r̃ ′
t = βr̃t

(
1 − r̃t (α0 pt + α1(1 − pt ))

)
.

The equation for p above shows that selection, positive or negative, strengthens with
increasing species richness. In ecology, this would be equivalent to K -selection,
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whereby the trait less sensitive to competition is favored. For example, if c0 > c1
so that trait 0 is less constrained than trait 1 then the selective rate of growth of trait 0
is positive, β(α1−α0) > 0. For both “r-like” and “K-like” cases, selection is diversity-
dependent. Returning to (16) and the special case α0β0 = α1β1 = α, although total
species richness is regulated, species selection becomes diversity-independent and the
selection coefficient reduces to β0 − β1. This would correspond to a scenario where
the total diversity is regulated from mechanisms unrelated to the focal traits.

In macroevolution, several traits have been supposed to be evolutionary dead-ends,
such as asexuality (Maynard-Smith 1978) or self-fertilization (Igic and Busch 2013).
The classical view is that negative diversification is associated with such traits but
they are continuously reintroduced through asymmetrical (or even unidirectional)
shifts from traits associated with positive diversification (Goldberg et al. 2010). The
above formulation suggests a more elaborate scenario whereby the dead-end trait has
not necessarily a basal negative diversification rate but is more sensitive to diversity
dependence. Such traits could lead to initial diversification in initially species-poor
environments (i.e. much lower than the species carrying capacity) but diversification
would then decrease and eventually be negative through time, as the number of species
would increase. This is in agreement with recent empirical observations in the plant
genus Capsella that selfing species are more sensitive to competition than outcrossing
ones (Petrone Mendoza et al. 2018; Yang et al. 2018), and a plausible explanation for
the hypothesis that selfing and asexual lineages “senesce” in diversification rates (Ho
and Agrawal 2017).

4.3 Fixation and extinction of traits

To study trait fixation probabilities using a similar approach as in Parsons et al. (2008)
we let ρ01 = ρ10 = 0 in Eq. (15), which means that species are unable to change traits.
The initial composition of traits in the scaled species family at time 0 is a fraction x of
trait 0 and the remaining fraction 1− x consisting of trait 1 species, 0 < x < 1. As in
Parsons et al. (2008), we strive to analyze the fate of the trait 0 element over time as
a function of x . For this aim we must restrict further our considerations to the density
dependent case with symmetric net growth rates, β0 = β1 = β, and a single carrying
capacity c, the same for both traits. Then

dPt = −Pt (1 − Pt )(τ0 − τ1)
1

Rt
dt +

√

Pt (1 − Pt )ψ(Pt )
1

Rt
d B−

t ,

dRt = βRt

(
1 − Rt

c

)
dt + √

Rtψ(1 − Pt ) dB
+
t , (17)

which is a logistic version of the model listed as special case (a) in Sect. 3.6. The
crucial aspect of the resulting SDE for P , which is required for our method of proof
to work, is that all dependence on R is mediated through a single function g(R), in
this case g(r) = 1/r , which appears as a multiple in both the diffusion drift term and
the diffusion variance term. This is the reason why the closely related special case
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β0 = β1, c0 �= c1 is not covered by our method, nor is β0 �= β1, c0 = c1 or τ0 = τ1,
β0 �= β1.

In the present situation, however, general properties of logistic branching processes
show that the species richness R goes extinct with probability one as t → ∞. We
may then consider the sequence of stopped processes (Pt∧δn ,Rt∧δn )t≥0, where δn =
inf{t > 0 : Rt = 1/n}, and have a well-defined solution of (17) with positive
richness component on {0 ≤ t ≤ δn} for each fixed n. Yet, the mixture of traits as
captured by (Pt∧δn )t≥0 along the path to extinction of the species family, as n → ∞,
would perhaps be of limited interest, indicating that the fixation probability concept
might have limited relevance. On the other hand, the quasi-stationary behavior of R
mentioned previously means that the time to extinction can be very long. This allows
us to circumvent species extinction by modeling the species family rather using a
process R+, say, which is R conditioned on the event {Rt > 0, t > 0} of ultimate
nonextinction. In the following we study trait absorption with respect to such non-
extinct paths. Let (P+,R+) denote the solution of (17) conditioned on the event of
ultimate nonextinction. The boundaries 0 and 1 are both absorbing for P+. Let us
denote by η0 the fixation time of trait 1, that is, the random time at which P+ first hits
the lower boundary 0, if ever. Similarly, η1 is the fixation time of trait 0, the time at
which the upper boundary point 1 is first hit. If η0 is finite, then all species are trait 1
from that time and onward, meaning that the upper limit is never reached, η1 = ∞.
Similarly, if η1 < ∞ all species end up as trait 0, and η0 = ∞. The absorption time
η = min(η0, η1) is the time of extinction or fixation, whichever occurs first. Next
we recover the fixation probability (5) within our setting, and derive a result on the
“species frequency spectrum”.

Theorem 1 The fixation probability q(x) = Px (η1 < ∞) of P+ rendering all species
trait 0 eventually, given initial frequency x of trait 0, equals

q(x) = τ1x

τ0(1 − x) + τ1x
.

Moreover, for bounded functions f defined on the unit interval [0, 1],

Ex

[ ∫ η+

0

f (P+
s )

R+
s

ds
]

= 2

τ0(1 − x) + τ1x

{
x

∫ 1

x

f (y)

y
dy + (1 − x)

∫ x

0

f (y)

1 − y
dy

}
.

Proof Let X = (Xt )t≥0 be a diffusion process, which solves

dXt = −Xt (1 − Xt )(τ0 − τ1) dt + √
Xt (1 − Xt )ψ(Xt ) dB

−
t . (18)

The SDE for X is the same as that of P+ under the enforced condition R+ ≡ 1. It
turns out that the fixation probabilities ofP+ and X respectively, coincide. The reason
for this is that the distribution of X can be extracted from that of P+, via a random
time change. Since R+

t > 0 for all t , the transform of R+, given by the function

Bt =
∫ t

0

1

R+
s
ds, t > 0,
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is a strictly increasing random time change with time change rate 1/R+
t , such that its

left-inverse

At = inf{s > 0 : Bs > t}, t > 0,

is continuous, and ABt = t for all t ≥ 0. Thus,

q(x) = Px (η
+
1 < ∞) = Px (Bη+ < ∞), Bη+ = inf{t > 0 : P+

At
= 1}.

The desired function q(x) is now obtained as the fixation probability of the time-
changed process (P+

At
)t≥0, which turns out to be closely connected to X . Indeed, it is

a consequence of the time change result Theorem 8.5.1 in Øksendal (2007), that, for
each t ≥ 0, P+

At
and Xt have the same distribution. Let ηX

1 denote the fixation time of
X . Since

Px (η
X
1 > t) = Px (Xt = 1) = P(P+

At
= 1) = Px (Bη+ > t),

it follows that ηX
1 and Bη+

1
have the same distribution, and so q(x) = P(ηX

1 < ∞).

Similarly, ηX and Bη+ have the same distribution.
The SDE for X in Eq. (18) is

dXt = b(Xt ) dt + σ(Xt ) dB
−
t , b(x) = (τ1 − τ0)x(1 − x), σ 2(x) = x(1 − x)ψ(x),

with ψ(x) = τ0(1− x) + τ1x introduced in Eq. (14), and where X0 = x , 0 < x < 1,
and the boundary points {0, 1} are absorbing. The scale function S(x) and speed
function m(x) associated with (Xt )t≥0, X0 = x , are defined by

S(x) =
∫ x

0
s(y) dy, m(x) = 1

σ 2(x)s(x)
, 0 < x < 1,

where

s(x) = exp
{

−
∫ x

0

2b(y)

σ 2(y)
dy

}
,

Here,

S(x) = τ0x

τ0(1 − x) + τ1x
, m(x) = τ0(1 − x) + τ1x

τ 20 x(1 − x)
.

By using Feller’s boundary classification and the theory of one-dimensional diffusion
processes (Karlin and Taylor 1981; Etheridge 2011), it follows that the boundary
points 0 and 1 are both accessible from the interior state space as exit boundaries. The
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extinction probability is determined by the scale function (using the normalization
S(0) = 0), as

q(x) = S(x)

S(1)
= τ1x

τ0(1 − x) + τ1x
.

Moreover, for bounded functions f ,

Ex

[ ∫ ηX

0
f (Xs) ds

]
= 2q(x)

∫ 1

x
(S(1) − S(y))m(y) f (y) dy

+ 2(1 − q(x))
∫ x

0
S(y)m(y) f (y) dy.

It is straightforward to check that the right hand side equals

2

τ0(1 − x) + τ1x

{
x

∫ 1

x

f (y)

y
dy + (1 − x)

∫ x

0

f (y)

1 − y
dy

}
.

To complete the proof, we first use once again that P+
At

and Xt have the same distri-
bution for each fixed t , and then make the change-of-variables s = Br , to obtain

Ex

[ ∫ ηX

0
f (Xs) ds

]
= Ex

[ ∫ ∞

0
1{0<Xs<1} f (Xs) ds

]

= Ex

[ ∫ ∞

0
1{0<P+

As
<1} f (P+

As
) ds

]

= Ex

[ ∫ Bη+

0
f (P+

As
) ds

]
= Ex

[ ∫ η+

0

f (P+
r )

R+
r

dr
]
.

��

Application of Theorem 1: fixation and extinction of a rare trait

Suppose we have a family in which all species carry a single trait, and we introduce
a species with a second trait of the same net growth rate into the population. What
are the chances of the new trait getting fixed or lost? What are the implications if the
new trait causes a shift in turnover rate? For example, all else being equal, this would
correspond to a shift in life span, lifespan being inversely proportional with respect to
turnover rate. As another example, recently, polyploidy (the doubling of the genome)
has been shown to have no effect on diversification (β0 = β1) but to increase turnover
rate (τ0 > τ1) (Zenil-Ferguson et al. 2019).

To address these questions we observe that if a small fraction x of trait-0 species
are inserted into a population otherwise consisting entirely of trait-1 species, then as
x → 0,
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q(x) = τ1x

τ0(1 − x) + τ0x
∼ τ1

τ0
x .

In addition, by an application of the second statement in Theorem 1 with f (y) = 1,
y ∈ [0, 1], the expected absorption time weighted by the inverse species richness
process, satisfies

Ex

[ ∫ η+

0

1

R+
s
ds

]
= −2x ln(x) − 2(1 − x) ln(1 − x)

τ0(1 − x) + τ1x
∼ −2x ln(x) + 2x

τ0
,

as x → 0. Keeping the turnover rate τ1 of the original trait fixed, we see that the
probability of fixation of the new trait is inversely proportional to the turnover rate τ0
of the new trait. Thus, traits which cause a burst in both speciation and extinction are
suppressed whereas traits with low turnover rates are favored, with respect to possible
fixation. Similarly, the expected weighted absorption time decreases with increasing
turnover rate τ0, consistent with shorter time to extinction.

An alternative interpretation of the result in Theorem 1 suggests a notion of trait
frequency spectrum in analogy to the allele frequency spectrum in population genetics.
For this we assume, with reference to the space and time scaling parameter n, that in
each of the n time steps forming one evolutionary time unit, trait injections occur at
rate θ > 0. When one of these events happens, a fraction 1/n of the family gets a new
trait of turnover rate τ0. The remaining fraction has turnover rate τ1. We think of the
successive injection events representing each time a new trait unrelated to previous
ones. Each new trait traces out its own path P+ but all relate to the sameR+. Most of
the new traits quickly go extinct. A few might survive for a while and even get fixed,
eventually. The scaled trait 0 fixation probability per time unit is the large n limit

nq(1/n) → τ1

τ0
.

A possible interpretation is that with larger turnover rate τ0 of an “invading” trait,
the smaller is the fixation rate τ1/τ0, and hence, the more efficient is the exist-
ing species family in purging such an intruder. For non-negative bounded functions
f on the interval [0, 1] with f (0) = 0, which satisfies the integrability condition
∫ 1
0 f (y)y−1 dy < ∞, we find

lim
n→∞ θnE1/n

[ ∫ η+

0

f (P+
r )

R+
r

dr
]

= θτ1

τ0

∫ 1

0
f (y)

2

τ1y
dy =

∫ 1

0
f (y)

2θ

τ0y
dy.

In particular,

lim
n→∞ θnE1/n

[ ∫ η+

0

P+
r

R+
r
dr

]
= 2θ

τ0
.

The weight function 2θτ−1
0 /y which arises in the above scheme of limiting expected

values, plays a similar role as the stationary allele frequency spectrum in population
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genetics.While such a frequency weight function is not integrable over y ∈ (0, 1), and
hence does not allow a probability density interpretation, it does define an intensity
measure for a well-defined Poisson randommeasure on (0, 1). For the Poisson random
field approach in population genetics, see Sawyer and Hartl (1992) and e.g. Kaj and
Mugal (2016), Section 2.3. Intuitively, for each y ∈ (0, 1), (2θ/τ0)y−1 is in this sense
the stationary intensity that (Pt )t≥0 occupies the frequency band near y, as measured
by the size of (P+

t /R+
t )t≥0 within the time frame during which the trait remains in

the family.
The case τ0 = τ1 is the fully neutral case with fixation probability q(x) = x and

trait spectrum intensity 2θ/y. The case τ0 �= τ1 represents a form of trait selection,
which only affects the relative magnitude of trait frequencies present in the species
family, but not the shape of the trait frequency spectrum.

5 The super-process representation of the limit process

In this final section, we return to the two-type branching process X with rates (1)
running on the scale of species generations. The aim is to provide a sketch of the proof
of the limit result Proposition 1, shifting to the evolutionary time scale.

As an alternative and from a wider perspective, we may consider X as a measure-
branching process with spatial motion on the trait space E = {0, 1} and spatially
dependent binary branching. Each lineage in the branching tree changes its current
species trait according to independent copies of the space motion J = (Ju), which is
the two-state Markov jump process with jump rates δ01 and δ10 for transitions from
0 to 1 and vice versa. In addition to the on/off motion caused by J , the number of
species of each trait develop independently as linear binary branching processes with
generating functions

F(z; j) = λ j z2 + μ j

λ j + μ j
= d j + τ j

2τ j
z + τ j − d j

2τ j
, j = 0, 1.

The branching offspring distribution for daughter species of trait j has mean d j/τ j ,
and variance (τ j −d j )/τ j . Now let us put 〈Xu, f 〉 = f (0)Ku + f (1)Lu , u ≥ 0, where
f = ( f (0), f (1)) is a function (row vector) on E . We write E j for the expected value
conditional on J0 = j , that is X0 = (1, 0) when j = 0 and X0 = (0, 1) when j = 1.
Then X is the measure-branching process for which the function vu defined by

vu( j) = E j [e〈Xu , f 〉 − 1],

is the unique solution of the integral equation

vu( j) = E j [e f (Ju) − 1] + E j

∫ u

0

(
F(1 + vu−r (Jr ); Jr ) − 1 − vu−r (Jr )

)
τJr dr ,

(19)
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for j ∈ E , cf. Li (2011), Ch. 4.1. It is well-known that suitably scaled measure-valued
branching processes converge in the limit of many particles, long times, and small
masses to an associated superprocess, in this case a super-on/off process.More exactly,
the superprocess is the weak limit as n independent copies X (k,n), k = 1, . . . , n, of
X with spatial motion J (n) and branching mechanism F (n)(z, ; ) scaled according to
(6), are averaged over the time span u = nt . This, however, is the species model
under evolutionary time scaling, and hence the superprocess will be the limit X of
X (n)
t = n−1X (n)

nt , t ≥ 0, in the sense of weak convergence in path space as n → ∞.
To study the limit process we put

V (n)
t [ f ]( j) = nE j [e〈X (n)

nt , f /n〉 − 1],

so that V (1)
t [ f ]( j) = vt ( j). Then, for large n,

lnE j [e〈X (n)
t , f 〉] = n lnE j

[
exp{〈X (n)

nt , f /n〉}
]

= n ln
(
1 + nE j [e〈X (n)

nt , f /n〉 − 1]
n

)
∼ V (n)

t [ f ]( j).

By using once more the scaling assumption (6), we have

P(J (n)
n(t+h) = 1|J (n)

nt = 0) = δ
(n)
01 nh + o(nh)

n
= ρ01h + o(h),

and the analogous relation for converse transitions from 1 to 0. This means that the
limit process of J (n)

nt , t ≥ 0, is again an on/off process on E but now with jump rates
ρ01, ρ10. For simplicity we retain the notation J in the limit. Also, a calculation shows,

n2
(
F (n)(1 + v/n; j) − 1 − v/n

)
τ

(n)
j = n2

2

(
τ

(n)
j (v/n)2 + d(n)

j (2(v/n) + (v/n)2)
)

∼ β jv + τ j
v2

2
.

Aswecombine these observationswithEq. (19), it follows that the functionV (n)[ f ]( j)
satisfies

V (n)
t [ f ]( j) = E j [n(e f (Jt )/n − 1)]

+ E j

∫ t

0

(
βJr V

(n)
t−r [ f ](Jr ) + τJr V

(n)
t−r [ f ](Jr )2/2

)
dr + H (n)

t ,

where the remainder term H (n) can be controlled and shown to vanish in the limit
n → ∞, see Ch. 4.2 in Li (2011). With reference to the theory of superprocesses we
can now conclude that X (n) possesses a weak limit process X , such that Vt [ f ]( j) =
lnE j [e〈Xt , f 〉] is the unique solution of the integral equation
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Vt [ f ]( j) = E j [ f (Jt )] +
∫ t

0
E j

[
βJr Vt−r [ f ](Jr ) + τJr Vt−r [ f ](Jr )2/2

]
dr , j ∈ E,

cf. Prop. 4.5 in Li (2011). The associated stochastic equation for the superprocess is

〈Xt , f 〉 = 〈X0, f 〉 +
∫ t

0
〈Xs,G f 〉 ds +

∫ t

0
〈Xs, β f 〉 ds + Mt ( f ). (20)

Here, G f is the infinitesimal generator of J , defined by

G f (0) = ( f (1) − f (0))ρ01, G f (1) = ( f (0) − f (1))ρ10,

and M( f ) is a continuous martingale with representation

Mt ( f ) = f0

∫ t

0

√
τ0Ks dB

0
s + f1

∫ t

0

√
τ1Ls dB

1
s ,

using a 2-dimensional standard Brownian motion (B0, B1) with independent compo-
nents. Hence the quadratic variation of M( f ) is

〈〈M( f ), M( f )〉〉t =
∫ t

0
〈Xs, τ f 2〉 ds.

By observing that 〈X , f 〉t is the scalar product f ·Xt of the vectors f andXt and that

〈Xs,G f 〉 + 〈Xs, β f 〉 = f · AXs,

it follows that the equation for X in Proposition 1 is an alternative representation of
Eq. (20), cf. Li (2011), Ch. 7.5.

Conditional on ultimate survival, the results for (P,R) now follow from Ito’s
formula with

B+
t =

∫ t

0

√
τ0Ps

τ0Ps + τ1(1 − Ps)
dB0

s +
∫ t

0

√
τ1(1 − Ps)

τ0Ps + τ1(1 − Ps)
dB1

s ,

and

B−
t =

∫ t

0

√
τ0(1 − Ps)

τ0(1 − Ps) + τ1Ps
dB0

s −
∫ t

0

√
τ1Ps

τ0(1 − Ps) + τ1Ps
dB1

s .

6 Conclusions

In this work, we presented a stochastic modeling framework for a binary trait-
dependent species family. The model provides insights on the joint evolution of trait
frequencies and species diversity. Guided by the long-term successful use of stochastic
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techniques in population genetics, we applied various probabilistic methods to study
the effects of diversity-dependence and related properties in the species family, hence
developing a phylogenetic methodology. At the core of the study is the interpretation
that phylogenetic trait frequency and population genetics allele frequency are closely
related from the view point of stochastic models.We showed that evolutionary time re-
scaling is a powerful tool to reveal relevant analogies and distinctions, and to provide
a bridge between two seemingly distant application areas.

We applied methods, which rely on the analysis of trajectories of solutions, to
stochastic differential equations ofWright–Fisher type with diversity dependent selec-
tion and genetic drift coefficients. Our main structural result, Proposition 1, derived
from an embedding argument into an abstract two-type superprocess, provides the
precise dynamics of trait frequency jointly with species richness. In parallel, we also
discussed the corresponding Markov generator dynamics, referred to as the Gillespie
approach. In doing so, we were able to resolve a paradoxical conclusion in Gillespie
(1974), dealing with the effective population size. To put these abstract results into
context, we discussed a number of special cases with partly symmetric parameter
settings leading up to a fully symmetric, or neutral, case. To help clarify the role of
parameters, we identified trait success (or trait fitness) functions, which are further
utilized for the application of the model to diversity-dependent interaction in terms of
carrying capacity. A particular logistic version of the diversification-dependent model
was the subject of an in-depth study of fixation and extinction of traits. Themain result,
Theorem 1, provides the fixation probability as function of the initial frequency of a
newly injected trait, as well as a type of trait frequency spectrum, which is analogous
to allele frequency spectrum in population genetics.
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