
HAL Id: hal-03157237
https://hal.science/hal-03157237v1

Submitted on 3 Mar 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Tuning Floating-Point Precision Using Dynamic
Program Information and Temporal Locality

Hugo Brunie, Costin Iancu, Khaled Z Ibrahim, Philip Brisk, Brandon Cook

To cite this version:
Hugo Brunie, Costin Iancu, Khaled Z Ibrahim, Philip Brisk, Brandon Cook. Tuning Floating-Point
Precision Using Dynamic Program Information and Temporal Locality. SC20: International Confer-
ence for High Performance Computing, Networking, Storage and Analysis, Nov 2020, Atlanta (virtual),
United States. pp.1-14, �10.1109/SC41405.2020.00054�. �hal-03157237�

https://hal.science/hal-03157237v1
https://hal.archives-ouvertes.fr


Tuning Floating-Point Precision Using Dynamic
Program Information and Temporal Locality

Hugo Brunie∗, Costin Iancu∗, Khaled Z. Ibrahim∗, Philip Brisk†, Brandon Cook∗
∗Lawrence Berkeley National Laboratory

{hbrunie,cciancu,kzibrahim,BGCook}@lbl.gov
†University of California, Riverside

philip@cs.ucr.edu

Abstract—We present a methodology for precision
tuning of full applications. These techniques must select
a search space composed of either variables or instruc-
tions and provide a scalable search strategy. In full ap-
plication settings one cannot assume compiler support
for practical reasons. Thus, an additional important
challenge is enabling code refactoring. We argue for an
instruction-based search space and we show: 1) how
to exploit dynamic program information based on call
stacks; and 2) how to exploit the iterative nature of
scientific codes, combined with temporal locality. We
applied the methodology to tune the implementation
of scientific codes written in a combination of Python,
CUDA, C++ and Fortran, tuning calls to math exp
library functions. The iterative search refinement al-
ways reduces the search complexity and the number
of steps to solution. Dynamic program information
increases search efficacy. Using this approach, we obtain
application runtime performance improvements up to
27%.

I. Introduction
Reducing the floating point precision of data in scientific

applications has been shown [2], [12], [15] to lead to perfor-
mance improvements due to reduction in data movement
or computational intensity. Colloquially, the goal is to
replace the maximum number of operations with high
precision operands (e.g. double) with a lower precision
(e.g. single) version.

Previous work in the area can be categorized as algo-
rithm specific [12] and algorithm independent (generic).
The former is based on the observation that many algo-
rithms are naturally iterative. The algorithm-specific im-
plementation starts in low precision, and then patches and
transitions to a higher precision as the algorithm proceeds.
The latter use program analysis tools to tune arbitrary
pieces of code. They select a program search space and
then search it using a principled methodology that adjusts
either program variables [28] or assembly instructions [18];
the main challenge is to reduce complexity.

Our objective is to transform arbitrary codes where
individual functions can be replaced with multiple imple-
mentations using different precision variables and oper-
ations, resulting in different performance and correctness
profiles. For example, any code that uses generic hardware-
accelerated math functions could benefit from a principled

approach to select the appropriate implementation each
time the function is called. We anticipate that this problem
will become increasingly prevalent over the next decade,
given current trends for hardware specialization in High
Performance Computing (HPC).

We argue in favor of a generic performance-driven
methodology to tune the precision of full-fledged appli-
cations. To maximize the appeal of our approach to HPC
practitioners, we assume no compiler support, while pro-
viding the ability to refactor code to accommodate mixed
precision. We also designed and implemented heuristics
to reduce the complexity and overhead of our search
procedure, which explores the transformation space using
a combination of dynamic program behavior and temporal
locality information. This contrasts with existing tech-
niques that rely primarily on static program analyses to
guide precision tuning, and thereby lack a clear path to
incorporate performance feedback into the tuning strategy.

Our system executes an application to generate a
trace of the operations of interest, annotated with time
and precision-related floating-point accumulation error. It
tracks and tunes precision on the granularity of func-
tion invocations, reasoning on “instructions”. The system
first identifies structure within the trace that is associated
with code properties and enables refactoring and devises
a scalable search strategy that uses refinement based on
“structure” determined across multiple dimensions. The
paper describes several refinement methods and evaluates
each in terms of its impact on search complexity (i.e.,
the number of trials) and efficacy (i.e., either a measured
performance improvement or an increase in the number
of calls to reduced-precision implementations of functions
chosen for tuning.).
Search Space Classification: The simplest classifica-
tion method uses static source code information, such
as the line number of a call to a function. This space
can be further refined using two criteria: 1) control flow
information; and 2) temporal locality. Refinement using
control flow information recognizes that calls to functions
during program execution are not arbitrary, but depend
on the structure of the program itself, encompassing each
function’s control flow graph and the static locations of
function call sites. Recognizing feasible and likely call
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sequences enables community formation; we define a com-
munity to be a sequence of commonly-executed dynamic
function calls whose precision can be tuned en masse. The
process of community[10], [9], [33] formation, which we
refer to as clustering, points toward a hierarchical [11]
methodology to explore the search space.

Refinement using temporal locality provides an orthogo-
nal criterion for further classification and search. Program
behavior evolves over time, thus clustering based on static
criteria or “averaging” across the whole execution may
lead to the formation of large communities. Tuning at
large granularity may lead to diminished success. Thus,
we argue for refining the tuning process using temporal
information about the program execution.

To enable temporal refinement, our system associates
each static source location with its call stack (backtrace)
at each dynamic invocation. This increases the complexity
of the search (more primitives to examine), but adjusts the
granularity of the search so that it can consider program
behavior over time. This offers the potential to improve
efficacy while leveraging backtrace information to guide
the refactoring process.
Iterative Search Refinement: In our system, a dynamic
function call is an event of interest. Our approach to
community formation yields a hierarchical representation,
in which events are clustered to form larger communities.
As mentioned earlier, precision tuning can be performed
on the granularity of communities, motivated by the ob-
servation that a community will often correspond to a
sequence of iterations of a loop or loop nest in the source
code of an HPC application; we expect this to simplify
code refactoring. Current precision tuning systems [28],
[11], [2], [16], [15] employ a binary search akin to delta
debugging [34]; the drawback of these approaches is that
there is no way to predict, a-priori, the impact of a decision
to reduce precision on overall application performance.
Our hierarchical representation allows rapid identification
of the communities that maximally impact performance,
which allows our tool to apply a faster and more efficient
greedy linear search to make precision tuning decisions.

Additionally, we advocate for an iterative refinement
approach to prune the search space: our tool starts by
tuning clusters of events classified by their source code
location; it then tunes individual events, reclassifies them,
and forms communities based on backtrace information;
lastly, it tunes precision over sets of backtraces. Intuitively,
this approach is designed to make as much progress as
possible using the coarsest representation available before
moving to use more precise information.
Validation and Impact: We validate our approach on
representative HPC applications that make heavy use of
transcendental functions such as exp: the nanoBragg spots
simulation [22], which is part of a larger Computational
Crystallography Toolbox (CCTBX) [5], and PeleC [27],
[6], an adaptive-mesh compressible hydrodynamics code
for reacting flows. These codes employ a combination of

Python, C++, Fortran, and CUDA. Between the two,
CCTBX has a simpler software engineering structure,
and static classification with clustering suffices to discover
most of the tuning potential. We lower 100% of the
total calls for the CUDA kernel, resulting in performance
improvement of 27%. For PeleC (PMF 2D), which has a
more complicated code structure, static selection uncovers
seven call sites, and a total of 151 calling contexts in C++
and Fortran. Here static classification lowers 70.7% of the
calls, while a hybrid static+backtrace search improves it
to 79.9%.

The work indicates the need for incorporating dynamic
program information (call stack and temporal locality) in
the tuning of floating point precision for full applications.
The methodology is directly applicable to other codes
that call multi-versioned expensive scalar operations (e.g.
sin), and as discussed in Section IX is extensible and
composable with other formulations.

The rest of this paper is structured as follows. In
Section II we discuss the motivation behind this effort. In
Sections III,IV and V we describe the design of the search
approach: search space classification, clustering and search
algorithm respectively. In Section VI we describe the im-
plementation and Section VII our application benchmarks.
Detailed results are discussed in Sections VIII and IX.

II. Motivation
Our primary motivation to study precision tuning is to

enable HPC software developers to refactor their code to
maximally leverage the performance benefits of hardware
specialization. The basic premise is that it is relatively
easy for HPC library developers to provide multiple im-
plementations of arithmetic functions to support varying
precision, but it is much harder to know which version
of the function to use when developing an application.
In existing systems, this approach is often implemented
by the use of intrinsic operations associated with common
mathematical functions such as exp, sin etc. For example,
a call to exp() in single or double precision shows as much
as ×1.5 performance difference on an Intel Haswell CPU,
and ×2 speedup on NVIDIA Volta GPU.

With the demise of Moore’s Law, it is anticipated that
future hardware performance improvements will be ob-
tained through specialization, such as fixed function units
that manipulate narrow data types. One such example is
the NVIDIA Volta V100, which offers FP32/FP16 preci-
sion 4x4 matrix multiply units. NVIDIA GPUs featuring
Tensor Cores will be deployed on all large scale US Depart-
ment of Energy (DOE) installations under procurement in
the 2020-2022 time frame. This announcement has already
motivated work in algorithm-specific refactoring [12] for
mixed precision DGEMM, which reduces full computation
in double-precision to a half-precision product coupled
with single-precision accumulation. Along similar lines,
we expect there to be growing interest in refactoring
applications to utilize reduced-precision data types and



operations for hardware acceleration, as many vendor
roadmaps contain specialized functional units.

10
# Function c a l l to nanoBragg i n Python

12 SIM = nanoBragg ( . . . )

14 # f l u x i s always i n photons / s
SIM . f l u x =1e12

16 . . .
#o u t e r l o o p i n Python

18 f o r x i n range ( l e n ( f l u x ) ) :
SIM . add nanoBragg spots cuda ( )

20
// C++ l o o p n e s t i n a 300− l i n e CUDA k e r n e l

22 // t h a t computes CCTBX nanoBraggSpots
f o r ( s p i x e l =0; s p i x e l <s p i x e l s ;++ s p i x e l ) {

24 f o r ( f p i x e l =0; f p i x e l <f p i x e l s ;++ f p i x e l ) {
. . .

26 i f ( xtal shape == GAUSS)
// f u d g e the r a d i u s so t h a t

28 // volume and FWHM a r e s i m i l a r
// to s q u a r e x t a l s p o t s

30 F latt = Na∗Nb∗Nc∗
exp (−( hrad sqr / 0 . 6 3 ∗ f u d g e ) ) ;

32 }
}

Fig. 1: The nanoBragg computation kernel, depicting one call site
of the exp() function. We successfully tuned the precision of this
function using the methodology outlined in this paper.

Figure 1 depicts the nanoBragg spots computation ker-
nel, which is part of CCTBX. An outer-loop, written in
Python interacts with a 300-LoC CUDA kernel, which
includes a loop nest written in C++, which includes a
call to exp(double). By tuning the precision of this call
we mean replacing it with a call to the expf(float),
which provides lower precision but better performance.
The decision has to be valid across all inputs and execution
paths within the application, meaning that it cannot
produce outputs unacceptable to users. This particular
snippet also illustrates the practical challenges when con-
sidering full applications, which are often composed of
multiple programming languages.

III. Search Space Selection

Existing tools that tune precision either search over
program variables [28], [29], [11] or instructions [18], [17].
These approaches are generally limited to tuning scalar
variables precision and have not (yet) demonstrated scal-
ability beyond small programs. Additionally, they require
compiler tool-chain support. Our approach, in contrast,
targets manual code transformation and aims to scale to
large code bases that use many variables, including large
arrays.

To meet these objectives, our software searches the
instruction/invocation space generated during application
execution. It extracts program structure from execution
traces and relates this structure to constructs in the
program source code to enable manual refactoring. Once
again, the focus here is multiversioned functions, in which
several implementations are provided using data types of
varying precision. Based on the output of our tool, the
application developer can make an informed decision to
rewrite the program to call different implementations of

the function, and under what condition(s) each call will
be made.

An informal statement of the precision tuning problem
is the following: given the sequence of calls to a multi-
versioned function, select a maximal subset of calls to
execute at reduced precision, while maximally improving
performance and ensuring that the accumulated error does
not exceed a given threshold.

A. Search Space Characterization Using Control Flow
Figure 2 depicts a graphical representation of the se-

quence of calls to the exp function during the execution
of PeleC, one of our chosen benchmark applications. The
x-axis shows the timestamp of the call, while the y-
axis corresponds to the static source location (SLOC)
of the call, whose line number in the source code is
known. Figure 2 depicts both dimensions of our precision
tuning approach: community formation along the y-axis
represents the usage of static control flow information at
call sites, while community formation along the x-axis
represents the opportunity to leverage temporal locality
information, e.g., repeated calls to a function during the
iteration of a loop.

There are seven static call sites to exp in the PeleC
source code. In figures 3 and 4 these call sites are color
coded Blue (B), Green (G), Red (R), Purple (P), Brown
(Br), Gray (Gr) and Pink (Pi). Previously proposed ap-
proaches [28], [16] try to lower the precision of all calls
(assembly instruction) at a given static source location.
This amounts to projecting all the points on the y-axis
in the figure and searching over seven call sites, i.e. 128
combinations Search(B, G, R, P, Br, Gr, Pi).

More recent approaches [2] exploit the iterative nature
of scientific codes and pose the problem as a binary
search over the execution trace of the function invocations,
without any further distinction between invocations. Ef-
fectively, this projects all of the points on the x- axis and
searches over all ( ≈ 107) function calls, Search(1, . . . , 107).
This approach lacks the ability to correlate precision tun-
ing decisions with source code locations, complicating, or,
in the worst case, rendering infeasible, the programmer’s
ability to refactor the code.

Our proposed strategy is to exploit control flow infor-
mation to identify structure, which we then use to reduce
the tuning search space. Figure 3, for example, shows
the first 80,000 events and clearly visualizes similarities
and differences between the frequency and sequences of
calls from different sites. In this case, our strategy is to
form three communities and search them independently:
Search(G, B), Search(R, P ) and Search(Br, Gr, P i).

Our search procedure, which we will describe in Sec-
tion V, has a combinatorial (exponential) time complexity,
but can run as fast as super-linear in the best case. Given
these parameters, we believe that our search procedure
is best implemented in conjunction with a scalable and
hierarchical community formation strategy. Section IV-A
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Fig. 2: Plot of all exp calls in PeleC.
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Fig. 3: Finer grained structure of exp calls in PeleC. This
structure enables clustering. Execution trace suggests temporal
locality as an orthogonal clustering criteria.

introduces an algorithm to uncover clusters of the call sites
of a function of interest using control flow information.

B. Search Space Characterization Using Temporal Locality
Information

Thus far, we have shown how to incorporate tempo-
ral information to perform community formation on the
granularity of individual call sites. To further prune the
search space, we desire an approach to community format
that can dynamically vary the precision of repeated calls
from the same site. Figure 3 suggests that there exists
a temporal locality component to the data, which we
postulate is due to the iterative nature of PeleC, as well
as many other scientific codes.

Our approach is to integrate methods from time series
analysis to the clustering process. We propose to observe
the evolution of the program (stack) backtrace in order to
better understand its temporal behavior. Figure 4 depicts
62 backtraces associated with the original seven SLOCs.
Each backtrace is color coded with a gradients to depict
the mapping to the static source code location.

To further reduce dimensionality, community formation
can be applied to backtrace data in the control flow
dimension. Regardless, this does yield a larger search space
to explore compared to classification by SLOC, but the
fine-grained temporal decomposition offers the possibility
to obtain a better overall solution.

Design Alternative: How should the tuning proce-
dure use static (SLOC) and dynamic (backtrace)
classification?

IV. Trace Data Classification and Clustering

Community detection is often formulated using graph or
network theory [10], [9], [33]. The first step is to derive a
graph from a backtrace obtained from dynamic execution

of a program. Our objective is to capture both control flow
and temporal behavior.

Let S = {s1, s2, . . . , sm} be the set of call sites1 to one
or more functions whose precision we aim to tune, and let
T = ⟨t1, t2, . . . , tn⟩, ti ∈ S be the trace, i.e., the dynamic
sequence of calls. In a typical HPC application deployed
at scale, one can typically assume that m ≪ n. We define
a function f ∶ T → S to establish a mapping between
dynamic calls and call sites; in other words f(ti) = sj if
the ith dynamic call in the trace occurs at the jth call site.

We define Uij = {(tk, tk+1) ∈ T 2∣f(tk) = si∧f(tk+1) = sj}
to be the subset of consecutive calls at sites si and sj in
T . The set Uij captures control flow through the identifi-
cation of consecutively occurring events in T . To capture
temporal locality along with control flow, it is possible to
further filter the data using a tunable parameter ∆. We
define

U∆
ij =

∆
⋃
l=1
{(tk, tk+l) ∈ T 2∣f(tk) = si ∧ f(tk+l) = sj}. (1)

to be the subset of calls to site sj that occur after up to
∆ calls following an occurrence of a call at site si.

A backtrace graph is a weighted directed graph
G∆(S, E∆, w), where w ∶ E∆ × E∆ → N , E∆ =
{(si, sj)∣∣U∆

ij ∣ > 0}, and for edge e = (si, sj), w(e) = ∣U∆
ij ∣.

In other words, edge e exists in E∆ if at least one call
at site si is followed by a call at site sj within the next
∆ calls in the dynamic trace, and w(e) is the number of
times that this occurs.

Community detection can then be performed on the
backtrace graph. One option is to use the Girvan-Newman
algorithm [10], which runs in O((E∆)2×S) time complex-
ity. Other community detection algorithms that exhibit
tradeoffs between accuracy and computational efficiency

1For simplicity, we assume individual call sites here. In practice,
the si’s will correspond to a mixture of call sites and backtraces,
depending on application behavior.
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Fig. 5: Graph associated with the example PeleC trace. Each
node represents the call source location. Weights on edges rep-
resent the number of transitions. For community detection algo-
rithms we build a graph with as many edges as the weight shown.

also exist [9], [33]. Guo et al [11], for example, use modu-
larity maximization to perform a data flow-centric variable
clustering; however, according to one recent survey [21]
modularity maximization offers performance advantage,
while sacrificing accuracy. Regardless, our approach is not
tied to any specific algorithm for community detection.

The clustering obtained with Girvan-Newman commu-
nity detection algorithm depends on ∆. This illustrates
both the power and the challenges of using generic com-
munity detection algorithms.

A. Simplified Clustering Algorithm
The control flow graphs in our application space are

neither large nor exceptionally complicated in terms of
structure. Consequently, we can perform a simple, linear-
time community detection heuristic that eschews the in-
tricacies of more complicated schemes such as Girvan-
Newman. Our approach runs a cycle-detection algorithm
on the event graph and then sorts cycles by length. Simple
cycles are clustered (i.e., identified as communities) and
are then deleted. This process transforms at least one
composite cycle, if one exists, into a simple cycle; the pro-
cess repeats until no cycles remain. Any acyclic connected
components in the remaining graph become communities
in and of themselves. In the PeleC example, this procedure
yields communities (B, G), (R, P ), (Br, Gr, P i).
B. Using Static Information to Guide Backtrace Clustering

When considering backtrace data, one choice is to per-
form clustering on the raw trace data.

However, a backtrace is uniquely associated with the
source code location of the event. Thus, we can al-
ways identify a community based exclusively on SLOCs
for any cluster of backtraces that our algorithm identi-
fies. We exploit this observation to provide a prefilter-
ing stage for the backtrace clustering. We first identify
communities based exclusively on SLOCs of call sites
S = {s1, s2, . . . , sm}; in our example, this will yield com-
munities (B, G), (R, P ), (Br, Gr, P i). We then build the

graphs for backtrace data associated with each cluster. In
this example we will build three backtrace graphs, each
independently passed into another clustering stage.

Design Alternative: What is the best clustering
strategy? Should backtrace data be preclustered
using static information?

V. Search Algorithm
The search algorithm tunes the precision of each event

to determine which operations, variables, etc. can be
executed/represented in low precision. Informally, the in-
put is a set of events and their possible choices. e.g.
{(ef1 , ed1),{(e

f
2 , ed2)}..{(e

f
N , edN)}, where f and d represent a

choice between single and double precision. The solution of
the search is an instantiation of the event whose precision
is no greater than the original program (hopefully lower)
which satisfies one or more acceptability criteria in terms
of floating-point error. The output of the search has the
form {eq1

1 , eq2
2 , . . . eqN

N }, where qi ∈ {d, f}, 1 ≤ i ≤ N .
At each step, the program is executed using the can-

didate solution, and is checked against the user-specified
acceptance criteria. In our case, we classify events based
either on their SLOC si, their SLOC-backtrace pair pi =
(si, bti,j), or the community Ci to which si or pi belongs.
In the subsequent discussion, we use the general term
“site” to refer to either of these three options, and we use
the Ci notation, as it is the most general.

The optimal solution requires a brute force search of
all possible combinations, while most prior research effort
in precision tuning explores scalable heuristics [28], [18],
[2], [15]. The following subsections respectively introduce
a scalable search procedure along with techniques to prune
the input space.

a) Search Procedure: Our search algorithm is pre-
sented in Algorithm 1, procedure Search(..). The input
is a list of sites; the search proceeds in two stages: initial



filtering of unlikely candidates, followed by a brute force
search over the remaining candidates. At each stage the
search prioritizes the evaluation of items in the order of
their performance impact. The initial filtering tries to
lower the precision of each candidate in isolation. If the
program fails to meet correctness criteria, the candidate is
discarded for the next phase, which performs a breadth first
search over all possible tuning options for input events; the
search tends to converge quickly because the combinations
to consider are ordered based on performance impact a-
priori.

Breadth first search has scalability concerns in the
general case; however, our choice is motivated by two
mitigating factors: 1) the desire to increase the robustness
of the solution, since application developers are likely to
be reluctant to otherwise accept our proposed transforma-
tions; 2) tight control over the number of inputs using the
incremental input filtering procedure, described below. We
can trivially replace our algorithm with any other search
strategy from the literature.

Algorithm 1: Reduced Precision Heuristic.
Function Search(X)

Input: X: set of sites
Output: S: successfully lowered sites, F: failed to lower sites
F,S ← ∅ ;
/* Forward phase: compute individual sites */
foreach x ∈X do

if ReducePrecision(x) then
S.extend(x) ;

else
F.extend(x) ;

/* Backward phase: search multi-site */
Y ← Combinations(S) ;
K ← ExecutionCost(Y ) ;
L ← sort(Y,K);
S ← ∅ ;
while not L.isEmpty() do

x ← L.pop(0) ;
if ReducePrecision(x) then

S.extend(x) ;
F.extend(¬x) ;
return S,F ;

return S,F ;
Function IncrementalFilteringSearch(τl,s, ∆)

Input: τl,b: Time series for SLOC site l and backtrace site b
∆: clustering time threshold

Output: S: Reduced precision sites
S ← ∅ ;
/* Projection into SLOC dimension */
L ← {l ∶ ∣τl,∶∣ > 0};
/* Build a graph for SLOC sites */
G ← BuildGraph(L, τl,b, ∆ ) ;
/* Cluster sites to reduce search space */
C ← ClusteringAlgorithm(G) ;
/* Find sites for precision lowering */
Sc, Fc ← Search(C) ;
S.extend(Sc) ;
/* Expand failed clusters to SLOC sites */
LF ← {l ∶ l ∈ Fc};
/* Search while lowering prior discovered sites */
Sl, Fl ← Search(LF ) ;
S.extend(Sl) ;
. . .;
/* Expand failed SLOC sites based on backtrace */
B ← {b ∶ ∣τ∶,b∣ > 0 & b ∈ Fl};
G ← BuildGraph(B, τl,b, ∆ ) ;
C ← ClusteringAlgorithm(G) ;
Sb, Fb ← Search(C) ;
S.extend(Sb) ;
return S ;

b) Incremental Filtering: The procedure Search(..)
performs the first stage of filtering, which discards any
sites that cannot be individually lowered during the brute
force search over combinations of sites. More aggressively
filtering can be implemented based on the arity of the
initial search space produced by the different classification
criteria discussed in Section III. This is based on the
observation that a number of vertices in a graph is an
upper bound on the number of communities that can be
identified, and there will be fewer SLOCs than (SLOC,
backtrace) pairs.

Procedure IncrementalF ilteringSearch(..), described
in Algorithm 1, applies this principle. The first stage
searches over the relatively small number of clusters
formed exclusively from SLOC; any solution discovered
is applied to the program, and any SLOCs contained in
the cluster (SLOC-C) are removed from further consider-
ation during the search. The second stage searches over
the remaining SLOC sites, which are far fewer than the
number of (SLOC, backtrace) pairs; once the program
is updated, the SLOCs identified here are removed from
further consideration. The next two stages of the search
are applied to clusters formed exclusively from backtraces
(BT-C) and the remaining backtraces (BT).

The choice to search clustered sites prior to individual
sites is intuitive; the choice to first search the SLOCs,
which are statically known, prior to (SLOC, backtrace)
pairs, which are obtained using dynamic information, is
arguably an application-dependent choice.

Design Alternative: What is the best composition
of iterative filtering?

VI. Implementation and Validation Strategy

Our implementation of the search procedure uses link
time interposition for portability and generality. The set
of functions of interest are wrapped with code that enables
either profiling or their lowering based on the classifica-
tion criteria: SLOC or backtrace. We note that handling
multiple languages and compilers can be challenging and
our implementation was validated using only the GNU
compiler toolchain. The tool can be downloaded on github:
https://github.com/hbrunie/PyFloT.

In the first stage we profile the application to deter-
mine the potential for performance improvement. We then
generate the execution traces. For the astute reader, we
note that tracing affects timings and if pure temporal
based clustering is desired we make the assumption that
the tracing overhead per event is a constant. The trace
data contains both SLOC and backtrace information.
Our framework is composed of a C++ library, using
GOTCHA [26] framework to capture backtraces.

The tracing infrastructure has not been optimized for
speed and we currently observe ×100 slowdown. One easy
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way to lower tracing overhead is to add sampling. Sam-
pling can be added manually at the macro application
level by deciding which high level iterations of an algo-
rithm/method to observe. We have successfully applied
this technique in our experiments for the initial explo-
ration. Sampling can be also applied at the micro-level,
by recording individual events according to a “frequency”
(with decay).

We then analyze the traces to generate the input sets
for the search procedure. This involves counting all the
events associated with a SLOC or backtrace, building the
graphs necessary for clustering and building the clusters.
Each step of the search involves running the program
with the desired set of calls in lower precision. Again,
this is performed using link interposition and it is fully
automatic, open source, with a python code implementing
algorithm 1.

A solution is found based on user acceptability criteria.
We note that this turned out to be a challenging step,
where we reached out to the application developers and
actually ignited a debate within their community. Based
on their feedback, this interaction benefited application
development as it forced them to formalize the mathemat-
ical acceptability criteria.

We run the procedure on multiple inputs obtained from
the application developers and report the final solution as
the intersection of all solutions for each input.

By correlating the number of events lowered in the
traces with the initial unmodified application profiling we
get an estimate of the potential performance improve-
ments.

The last step of the process is the application refac-
toring, where we modify the source of the application to
perform the desired calls in lower precision.

A. Application Source Code Refactoring
Modifications for solutions that include SLOC sites are

trivial, due to our decision to lower all events associated
with a site. The decisions to lower sites associated with
particular backtraces are more complex and application
specific. Without compiler support we cannot develop an

automated procedure (i.e. precisely identify interprocedu-
ral loops and/or branches), but we provide the basic guid-
ance to determine the minimal number of code changes.
There are two guiding principles: 1) we want to minimize
the number of changes; and 2) we want to minimize the
number of branches introduced and in particular avoid fine
grained per call branches.

Consider the call graph presented in Figure 6, where the
paths ACDFG (densely dotted) and ABDEG (solid line)
lead to the leaf G and can be executed in single precision.
Whereas, when the program takes the path ABDFG (dash
pattern), G needs to be executed in double precision.
In this example the path describes the backtrace. The
minimal set of nodes to modify must contain at least
enough nodes to differentiate the different precision paths.
Here F and B make the difference between, respectively,
ABDFG from ABDEG and ABDFG from ACDFG. Thus
the minimal set is F, B.

The best starting point for refactoring is examining
the set of functions F, B. There are multiple strategies
available, depending on the identification of loop and
branch structures in the code and user software engineer-
ing and maintenance concerns. One possible strategy is
marking the path and adding control divergence checks in
dominator nodes for paths that share function calls. This
is illustrated in Figure 7, where we mark the execution of
B’ and decide to specialize F’. Another strategy is cloning
nodes across the path, as illustrated in Figure 8.

VII. Benchmark Results

A. Experimental Setup

All experiments ran on the Cori supercomputer at the
National Energy Research Scientific Computing Center
(NERSC). PeleC results were obtained on the 1.4 GHz
Intel Xeon Phi Processor 7250, code vectorized with AVX-
512, MCDRAM configured in cache mode. CCTBX results
were obtained on a 2.4GHz CPU Intel(R) Xeon(R) Gold
6148 CPU coupled with GPU Tesla V100-SXM2, 16GB,
using CUDA 9.2. The speedup is measured with
nvprof.



B. PeleC
Pele is a suite of adaptive mesh hydrodynamics simula-

tion codes for reacting flows [27]. It provides a toolkit of
methods which are used by other domain science codes.
Pele contains over 3 Million lines of Python, C++ and
Fortran code.

For our study we consider the Pele Combustion Suite
(PeleC), which allows the user to select different equation
of state (eos) as the constitutive equation and close the
compressible Navier-Stokes system of equations. PeleC
solves the reacting compressible Navier-Stokes on a struc-
tured grid, optionally with embedded boundary geometry
treatment and non-ideal gas equations of state. It per-
forms time-dependent, adaptive mesh refinement (AMR)
for large ranges of spatial and temporal scales in turbulent
reacting flow.

a) Benchmarks: PeleC allows multidimensional for-
mulations of the simulation of interest. For this study we
have selected the Premixed Flame tests, in their 1D and
2D formulations. These are referred to as PMF 1D and
PMF 2D.

b) Acceptability and Inputs: The acceptability criteria
for PMF is the speed of the premixed flame, with the ex-
pectation it reaches an asymptotic value when simulating
for a large number of time steps. Figure 9 shows the flame
speed for PMF 1D against timesteps from 0 to 60,000.
For our purposes, we were interested in determining a
relative error threshold for this final value, which spurred a
long debate within the PeleC developer community. Their
initially recommended bound for the absolute error was set
to 1E − 6, to account for the of the number of significant
digits (4-6) in the input data extracted from real life
experiments. Our experiments ran with this value, but we
note that since they relaxed their recommendation to 10%
relative error.

Our results have been validated over 10 inputs each for
PMF 1D and PMF 2D. For each input we adjust the
“pressure” parameter with random values between 1Pa
and 10Pa.

c) Application Profile: PMF 1D spends 16% of its
execution time in exp, while PMF 2D spends only 5%,
but it is the second greatest hotspot, the first one taking
8%. These amount to 164K and 75M calls respectively.
In both applications exp is called from the same seven
static source locations. Two of these are in Fortran code
egz module.f90, the rest of five are in the LiDryer.cpp
generated C++ code. In PMF 1D, there are 62 different
backtraces associated with the seven static source loca-
tions, while in PMF 2D we observe 151 backtraces.

For reference, there are total 6 exp call sites inside
egz module.f90 and 254 in LiDryer.cpp, a chemistry
model generated automatically by PelePhysics Python
code.

d) Summary of Performance Results: For brevity, we
summarize the performance results for PMF 1D, while
we provide a more detailed description for PMF 2D in

Section VIII. In PMF 1D we are able to lower all the calls
associated with six source locations, which amounts to
lowering 99% of the total number of calls during execution.
This translates into 8% execution time improvement. For
PMF 2D we are able to lower calls associated with the
same static locations, which amounts to lowering 78%
of the calls during execution. This amounts to roughly
3% performance improvement. Figure 10 shows that our
transformations still produce output within the accuracy
constraints communicated by the PeleC developers.

e) Source Code Refactoring: For any static source lo-
cation identified by the analysis we replace exp with expf
in the C++ code and exp(x) with exp(real(x,kind=4))
in the Fortran code.

PeleC provides a very good illustration of the practical
challenges encountered when attempting full application
precision tuning. For the Fortran call sites developers are
willing to consider the changes. For reference, the Fortran
calls amount to 75% of the total calls in PMF 1D and for
30% in PMF 2D. They are reluctant to tune and accept
changes in the automatically generated C++ code. Thus
for acceptability in those cases, we shall need to consider
the refactoring of the PelePhysics code generators. Fur-
thermore, the code associated with the dynamic backtrace
is C++, complicating adoption and refactorization.

C. CCTBX: nanoBragg spots

The Computational Crystallography Toolbox
(CCTBX) [5] is being developed as the open source
component of the PHENIX [20] system. Its simtbx
module is a Simulation Toolbox for simulating X-ray
diffraction images ab initio. The cctbx module contains
libraries for general crystallographic applications,
useful for both small-molecule and macro-molecular
crystallography. CCTBX contains roughly 600K lines of
Python, C++ and CUDA code.

a) Benchmarks: For this study we have selected the
nanoBraggspots computation kernel [22] from the cctbx
module, called from simtbx. The code from the CCTBX
test suite performs the simulation of a crystal specified by
input parameters.

b) Acceptability and Inputs: The output of the simu-
lation is a 3, 000×3, 000 pixel image, as shown in Figure 11.
While they could not give an exact criteria derived from
experimental data or first principles as in the PeleC case,
the CCTBX developers stated they will accept differences
in few image pixel. In our tuning we aim for at most one
pixel difference from the 9,000,000 image pixels, which has
been accepted by the CCTBX developers. The magnitude
of the difference was not mandated, but this may change as
CCTBX is evolving at a rapid rate. The input data is a set
of parameters characterizing the crystal structure and the
CCTBX regression test suite includes generators for uni-
formly random parameters. Application developers stated
that a correct result on ≈ 10 inputs would convince of the
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stability of the computation. Our results are validated on
20 different generated inputs.

c) Application Profile: nanoBragg spot simulation
spends 14% of the execution time in exp calls and we
observe four static call sites in the CUDA code.

d) Summary of Application Results: nanoBragg ex-
hibits a simple dynamic behavior with 100% executions
of exp coming from a single call site. The analysis is
able to lower this site, resulting in kernel execution time
improvement of 27%. Looking into the superlinear speedup
we made two observations: (i) The NVPROF PC samples
do not count the latency of each instruction, thus it is
not accurate (ii) replacing exp with expf, more values
are truncated to 0. We suspect truncation simplify some
computation inside GPU floating point arithmetic units
as we observe a high ratio of reduced PC sampled on
unchanged lines of code: e.g. 2000% reduction in a line
executing a condition branching, and 1200% in the line
computing the final pixel intensity.

e) Source Code Refactoring: We replace the original
calls to exp with the CUDA expf call. The change is
in discussion to be adopted in the official CCTBX source
code.

VIII. Analysis of the Search Evolution

We judge the efficacy of the search algorithm along
several criteria: 1) number of trials required to attain an
acceptable solution; 2) quality of the solution defined as
the ratio of events lowered during an execution, which is
correlated to speedup; and 3) the size of the input space
at the beginning of tuning stage/process.

a) Tuning Based on Static Program Data (SLOC):
When considering tuning based on SLOC, we are interested
to understand the impact of the incremental filtering dur-
ing the search. The choices are search based on individual
SLOC, search based on SLOC clusters obtained through a
clustering algorithm and search using incremental filter-
ing using clustering followed by individual events. These
choices are referred to as SLOC, SLOC-C and SLOC-C → SLOC

respectively in Figures 12 and 13. The data indicates
that SLOC-C ramps up faster than SLOC. SLOC-C succeeds
in lowering 84.31% of the calls in PMF 1D, while SLOC
succeeds in lowering 69.08% calls in the same number of
steps. When composing SLOC-C with SLOC, the number of
inputs to the SLOC stage is 5, compared to 7 when running
SLOC by itself. As SLOC-C with SLOC takes 2 steps to finish,
using SLOC-C with SLOC does not reduce the final number of
steps to get to the best solution (steps 7 to 8 on figure 12).
Nevertheless, it goes faster to a better solution, steps 0 to
1 on figure 12. Similar trends are observed for PMF 2D,
figure 13.

Thus the first observation is that when searching based
on SLOC data, the incremental filtering alternative SLOC-C
→ SLOC is preferred.

b) Tuning Based on Backtrace (Dynamic) Data (BT):
Figures 15 and 16 show the evolution of the search using
classification based on backtrace (BT) data. When compar-
ing against SLOC for PMF 1D, BT strategies reach the same
quality of the solution although in larger number of steps
due to the larger search space. For PMF 2D, BT improves
the quality of the solution to 78% from 70% with SLOC.
Overall the data indicates that BT increases the number of
calls lowered and should therefore be incorporated into the
search. The data also indicates that incremental filtering
is beneficial and BT-C → BT is the preferred choice.

c) Impact of Clustering Strategies: In Section IV
we discuss two clustering methods: a generic community
detection which can return multiple results based on its ar-
guments and a deterministic procedure returning a single
result. We note that community detection will eventually
return the result of the deterministic algorithm depending
on selecting its input parameter. When considering clus-
tering of backtrace data (BT) we argue for an initial step
of preclustering using static data based on SLOC.

Intuitively there’s a trade-off between the granularity of
the cluster and chance of success for the search. Larger
clusters will lead to fewer search steps, but will also
increase the chance of failure when tuning.
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Fig. 12: SLOC strategies on PMF 1D.
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Fig. 13: SLOC strategies on PMF 2D.
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Fig. 16: Comparison of Backtrace strategies on PMF 2D.

In Figure 14 we present the evolution of the SLOC-C
algorithm for PMF 1D on two inputs: SLOC-C is us-
ing community detection, SLOC-Csimplified is using our
procedure. In the terms used in Section IV we com-
pare the search over {(B, G), (R, P, Br, Gr, P i)} with
{(B, G), (R, P ), (Br, Gr, P i)}. The data illustrates the
trade-off between granularity and succes of the search,
with SLOC-Csimplified leading to a better solution.

The impact of preclustering backtrace data using SLOC
clustering is illustrated in Figures 15 and 16. BT-C refers
to clustering of data with no initial filtering, while BT-Cf
refers to the procedure described in Section IV-B. For
PMF 1D, BT-C reaches a better solution faster than BT-Cf.
On the other hand, for PMF 2D BT-C fails to find any
solution, while BT-Cf finds a decent solution. This is
explained by above mentioned trade-off. The preclustering
step introduced on SLOC criteria reduces the granularity
of the backtrace clusters. The algorithm may take more
steps but it is likelier to succeed. This is also substan-
tiated when examining the data for the composition of
incremental filtering using SLOC-C → SLOC → BT with the
SLOC-C→SLOC→BT-C→BT. Both lower a similar number of
calls (78%), with the former reaching the solution slightly
faster.

The data indicates that using static information for
preclustering of backtrace/dynamic information data is
beneficial.

d) Composing a Search Algorithm: When examining
the choice of a clustering algorithm, we prefer our de-
terministic procedure, but note that generic community
detection is a perfectly valid choice due to its tunability.
When considering clustering of dynamic data, precluster-
ing using static information is desired, e.g.BT-Cf.

When examining the structure of the search algorithm
we note incremental filtering is definitely beneficial and
should be used. The first stage is best performed using
static information as SLOC-C → SLOC. Considering dynamic
behavior is also useful, and it should employed after the
first step. Thus a complete algorithm can perform SLOC-C
→ SLOC → BT or SLOC-C → SLOC → BT-Cf → BT. In our ex-
periments they both reach the same solution, with the
former using slighlty fewer steps. The proper composition
is application dependent, so for generality we recommend
the default SLOC-C → SLOC → BT-Cf → BT.

IX. Discussion

This work showcases both the value and the challenges
of performing floating point performance tuning in whole
application settings. The benchmarks we examined are
part of large scale DOE code modernization efforts: PeleC
is part of the DOE Exascale Computing Project [7], while
CCTBX is one of the NERSC [25] application readiness
benchmarks. Both are required to exploit the potential of
specialized reduced precision functional units in existing



and upcoming generations of GPUs. We report speedup
and suggested changes for the original application source
code; it is also easy to see the extensibility to any other
function than exp. Thus our findings are of interest to
any other application developer participating in same or
similar programs.

a) To the needs of the many: We expect our approach
to provide performance benefits for any other code or situ-
ations where the performance difference between multiple
implementations of a function is not offset by the cost
of converting data between formats at the call boundary.
This is trivially satisfied when replacing high arithmetic
intensity operations such as exp or dgemm on sufficiently
large matrices. For codes with more stringent characteris-
tics, techniques to amortize the conversion overhead may
be required, leading to a need for different search strategy.

b) Pedal to the metal: Our approach tunes precision
based on a classification that tries to preserve and uncover
structure already present in iterative solvers, thus we try
to manipulate large granularity “objects”. To assess the
overall quality of the solution, we performed an experiment
where, after applying our method, we attempt to lower the
remainder of the calls considering them on an individual
basis. For PMF2D, this amounts to 15,000,000 events
accounting for 20% of the trace. Running generic greedy
search algorithms (binary search, incremental sweep) as
introduced in [28], [2] failed due to the sheer volume of the
search space and a non-obvious structure of the solution.
After careful examination of the source code, we were able
to devise a strategy able to lower 18% of the remaining
20% of the calls. For reference, the strategy aligns blocks
of 21 events in the trace, and keeps in double only one
element in a fixed position within all blocks. This was de-
duced after source code inspection and we could not devise
a proper refactoring to improve performance. Besides the
obvious scalability challenge, we consider refactoring as a
likely concern for other codes when considering events at
this very fine granularity. Nevertheless, the results indicate
that our approach is not necessarily optimal.

c) Precision error propagation can be unpredictable:
Program behavior can change during precision tuning. In
PMF2D, when modifying the precision of calls associated
with some backtraces (comp Kc in LiDryer.cpp), we
observe control flow divergence and callstacks for exp not
encountered during the profiling phase. We conservatively
execute newly encountered exp invocations in double pre-
cision.

d) End Application Correctness Criteria Is Hard:
One of the challenges of this work was obtaining the
acceptability criteria from the application developers. This
spurred a long conversation and iterative dialogue where
they tried to develop criteria from first principles or em-
pirically. The outcome of this exercise was an appreciation
for tools that enable “easy” experimentation with different
precisions, as this is a prerequisite for code refactoring
for hardware specialization. A corollary is that compiler

or toolchain specific tools are likely considered insufficient
to address the needs of full multi-language, multi-library,
multi-solver applications.

e) Teach Them How to Fish: We present a discussion
on how to classify, filter program data and guide searches
along multiple orthogonal criteria (SLOC, backtrace),
(cluster,individual events) or (CFG, temporal). While we
can provide a decent default structure for the search algo-
rithm using incremental filtering based on these criteria,
the optimal structure seems to be application dependent.
Indeed, clustering increases search item granularity and
leads to faster searches (fewer inputs). On the other hand,
higher granularity increases the chance of failure, leading
to an increased number of trials downstream. Thus, when
targeting full applications, tuning tools are better off pro-
viding composable building blocks with guidelines, rather
than a prescribed monolithic algorithm.

f) There’s Room for Everybody: We can view our
tool as a meta-search that does not displace any of the
existing solutions. For example, the process of tuning an
application to new hardware always starts with identifying
a few kernels. These kernels are small and can be probably
tuned by specializing our approach, but they are probably
best transformed with an automated compiler approach.
After producing multiple kernel versions with different
precision behavior, our approach can be used for tuning
the whole application to select the appropriate kernel. In
this case the compiler based tool may face challenges.

X. Related Work
The prior sections of this paper have discussed mul-

tiple precision tuning tools [28], [18], [17], [15], [2] in
order to compare and contrast them with the methods
we propose here. These techniques vary in terms of how
they characterize the search space, hierarchically represent
event, and employ different search strategies; as such, they
vary in terms of optimality, scalability and robustness to
perturbations in the initial order of events.

a) Pruning Based on Floating-point Error Analysis:
Another strategy, which we have not yet discussed, is
to prune searches based on the error of the events that
we are trying to tune. Adapt [23] employs algorithmic
differentiation [24], which has scalability challenges due
to its computational intensity. GPUMixer [15] employs a
heuristic that sorts the list of data type configurations
according to their accumulated relative error profiling;
while this approach seems promising, tools such as Her-
bgrind [30] have demonstrated that high local relative
error does not necessarily imply the existence of a high
impact on the accuracy of a tuned program. To improve
the quality of the solution GPUMixer employs an offline
analysis step that combines information from multiple
traces to suggest better candidates for precision tuning.
The search proceeds then in a manner similar to ours.

Herbgrind [30] is one among a larger set of tools that
aim to reason about sources of error in floating-point



applications. While the vast majority of these tools have
not been applied to precision tuning, there is no principle
reason to believe that they could not be used. While
the paragraphs above focused on search space pruning,
floating-point error analysis could also be incorporated
into preprocessing steps, such as cluster formation.

FLIT [31], for example, allows the user to better un-
derstand the impact of compiler optimization flags (e.g.
INTEL -fp-model fast=1). Shaman [3] is a C++11 li-
brary that applies operator overloading to evaluate the
numerical accuracy of an application. Verrou [8] and
Verificarlo [4], [1], [2] analyze floating-point error using
Monte Carlo Arithmetic (MCA), while CESTAC [32] and
CADNA [13] use interval arithmetic analysis to track
floating point error. Lam et al. develop a binary instrumen-
tation based tool to detect floating-point cancellation [19],
while its counterpart, FPChecker detects floating-Point
exceptions in GPU applications [14]. As mentioned above,
future work could benefit from incorporating the results
of these tools into precision tuning.

b) Precision Tuning Granularity and Hierarchy: A
second category of papers tune precision by first selecting
the elements to tune, followed by a tuning method, which
may either be top-down or bottom-up, and can vary its
granularity at each level of the search.

Our approach exclusively tunes transcendental math
function calls, coarse-grained static call sites, and fine-
grained dynamic calls. Our coarse-grained elements are
a subset of what several prior techniques tune [28], [29],
[11], but our work is unique in the use of the dynamic
temporal component as a mechanism to incorporate fine-
grained analysis into our approach.

XI. Conclusion

We present a methodology for tuning the precision of
full fledged scientific applications written using multiple
programming languages: Python, C++, CUDA and For-
tran. We discuss the basic building blocks involved in
building a precision tuner and their trade-offs. The novelty
of our approach comes from a multi criteria classification
of the application behavior using a combination of static
and dynamic program information. Adding dynamic pro-
gram information (backtrace classification) increases the
opportunity for optimization by slicing in the temporal
direction of the program’s behavior. The multi-criteria
classification enables building scalable search algorithms
using an incremental refinement approach.
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