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inhibitory NNLIF neuron model with synaptic delay.
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Abstract

Among other models aimed at understanding self-sustained oscillations in neural networks, the
NNLIF model with synaptic delay was developed twenty years ago to model fast global oscillations
in networks of weakly firing inhibitory neurons. Periodic solutions were numerically observed in
this model, but despite intensive study of this model by researchers in PDEs and probability,
there was up to date no analytical result on this topic. In this article, we propose to approximate
formally these solutions by a Gaussian wave whose periodic movement is described by an associate
difference-differential equation. We prove the existence of a periodic solution for the position in
time of the centre of the Gaussian wave and we give a rigorous asymptotic result on these solutions
when the connectivity parameter b goes to −∞. Last, we provide heuristic and numerical evidence
of the validity of our approximation.
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1 Introduction

Self-sustained oscillations in neural networks are key processes in the brain and several studies proved
their ubiquity ([2], [36], [20] [6] among other reviews). These spontaneous (not elicited by external
inputs), stable and periodic collective behaviours play a pivotal role in vital processes like respiratory
rhythmogenesis ([1]). In many cases, the activity arises from intrinsically oscillating neurons, but
periodic spontaneous activity can occur in networks where individual noisy excitable neurons fire spo-
radically. This kind of collective behaviour is difficult to grasp without a self-contained mathematical
model and many PDE models were studied numerically or analytically: the time-elapsed model [30],
[31], [28], the kinetic Fitzhugh-Nagumo model [27], conductance models [32], [33]...

One of the most striking cases of spontaneous periodic activity is fast global oscillations (gamma
frequency range, see [7]) in networks of slowly firing inhibitory neurons. A milestone was reached on
this topic when Brunel and Hakim proposed in [5] an approach to simulate numerically and understand
qualitatively those fast global oscillations: the Nonlinear Noisy Leaky Integrate & Fire (NNLIF1)
neuron model.

They start from the classical Lapicque Integrate & Fire model ([25]):

Cm
dV

dt
= −gL(V − VL) + I(t), (1.1)

where Cm is the capacitance of the membrane, gL the leak conductance and VL ' −70mV the leak
potential. The synaptic current is a stochastic process of the form

I(t) = JE

CE∑
i=1

∑
j∈N

δ(t− tiEj ) + JI

CI∑
i=1

∑
j∈N

δ(t− tiIj ), (1.2)

where δ is the Dirac measure, JE and JI the strengths of excitatory and inhibitory synapses, CE and
CI the numbers of excitatory and inhibitory pre-synaptic neurons and tiEj , t

i
Ij

the random times of

the jth discharge from the ith pre-synaptic excitatory or inhibitory neuron.

When a neuron reach the discharge potential VF ' −50mV , it emits an action potential and then
returns to the reset potential VR ' −60mV . This model is hard to study in this form. Thus, many
authors assume that discharges follow a Poisson law and do a diffusive approximation for a great
number of neurons ([5], [4],...). Denoting b = CEJE −CIJI and σC

2 = (CEJE
2 +CIJI

2) and rescaling
so to have Cm = gL = 1, it yields the stochastic differential equation

dV = (−V + VL + bν)dt+ σCdBt, V < VF , (1.3)

where Bt is a standard Brownian motion, with the jump process and discharge intensity

lim sup
t→t−0

V (t) = VF =⇒ lim inf
t→t+0

V (t) = VR and ν = νext +N(t).

The quantity N(t) is the flux of neurons crossing the firing potential VF .

The so-called NNLIF model is associated to the probability density of (1.3) and it writes:

∂p

∂t
(v, t) +

∂

∂v
[(−v + bN(t− d))p(v, t)]− a∂

2p

∂v2
(v, t) = N(t)δ(v − VR), v ≤ VF , (1.4)

with firing rate

N(t) = −a∂p
∂v

(VF , t) ≥ 0, (1.5)

1In some articles, the first N stands for Network.
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and boundary conditions

p(v, 0) = p0(v) ≥ 0,

∫ VF

−∞
p0(v)dv = 1 and p(VF , t) = p(−∞, t) = 0. (1.6)

The function p(·, t) represents the probability density of the electric potential of a randomly chosen

neuron at time t. The parameter a =
σ2
C
2 > 0 is the diffusion coefficient and b is the connectivity

parameter. If b is positive, the neural network is said to be average-excitatory; if b is negative the
network is said to be average-inhibitory. Last, the parameter d ≥ 0 is the synaptic delay: the mean
time it takes for a spike to go from one neuron to another in the network.

Both problems (1.3) and (1.4) where intensively studied from a mathematical perspective ([34, 18,
17, 23, 22, 29, 16, 15] for (1.3) and variants; [8], [9],[13],[14],[35],[10],[11],[12] for (1.4) and variants)
and the recent article [26] eventually made a rigorous justification of the link between these systems
in the strong sense.

The emergence of periodic solutions in NNLIF models is a crucial question and although it was
numerically investigated there are up to our knowledge very few theoretical results on this topic.
Indeed, these complex dynamics can solely occur when the strength |b| of the nonlinearity is sufficient.
Such a strong nonlinearity is hard to tackle mathematically. Within the scope of this article, we
propose to bring new theoretical insights to this question in the case of very inhibitory networks, i.e.
b � 0. Before getting into the details of our methods and results, let us summarise what is already
known on these periodic solutions.

Several numerical simulations allowed previous studies to identify which conditions can elicit periodic
solutions in NNLIF-type models:

• in the classical NNLIF system without delay (d = 0), no periodic solution was ever observed.
Adding a refractory period ([9]) or coupling excitatory-inhibitory systems ([11, 12]) doesn’t
suffice to make them appear;

• in the high connectivity regime (b > 0 large), it is proved in [10][Theorem 5.4] that there is no
periodic solutions neither with delay (d > 0) nor without delay (d = 0);

• in the excitatory case b > 0, periodic solutions were not observed when there is a delay d > 0,
but if there is a delay and a refractory period they appear ([12, 24]). They were also observed
when a random discharge mechanism (without delay) is taken into account ([9, 16, 15]). Peri-
odic solutions for the random discharge model (without delay) were very recently constructed
analytically in [15].

• in the inhibitory case b < 0 with delay d > 0, periodic solutions are observed as soon as |b|, d
are large enough (regardless of the presence of a refractory period), [5, 12, 24].

In this article, we put ourselves in the context of a very inhibitory network: b � 0 with a positive
delay d > 0. Our strategy is based upon the following conjecture: in the limit b → −∞ the delayed
NNLIF system can be approximated by the sum of a periodic wave ϕ(v, t) = φ(v − c(t)) plus a
remainder term R(v, t):

p(v, t) = φ
(
v − c(t)

)
+R(v, t), (1.7)

with

c′(t) + c(t) = bN(t− d). (1.8)
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The remainder term R(v, t) is expected to vanish in some sense when b→ −∞. However, this problem
is still strongly coupled since the periodic movement c(t) depends upon the firing rate

N(t) = −a∂p
∂v

(VF , t) = −a∂ϕ
∂v

(VF , t)− a
∂R

∂v
(VF , t).

In order to make the problem tractable, we do a second approximation, which is more involved: we
assume that in the limit b→ −∞ we have bN(t) ' −ba∂vϕ(VF , t). Hence, we obtain an autonomous
difference-differential equation:

c′(t) + c(t) = bN (c(t− d)), (1.9)

where this new firing rate can be computed in terms of c:

N (c) =
1√
2πa

(
VF − c

)
e−

(VF−c)
2

2a . (1.10)

Implementing this strategy requires to answer two separate questions.

• The first one, which is the hardest and which we leave open, is to justify rigorously this approx-
imations in the limit b → −∞. Concerning the first approximation (1.7), we provide a partial
answer to this question by proving that if we assume N(t)→ 0, then the remainder R goes to 0
in some sense. The conjecture N(t)→ 0 in the sense that we need is observed numerically. Our
second approximation (1.9) is much more involved: since bN(t) = −ba∂vφ(VF , t)− ba∂vR(VF , t),
proving our method to be valid requires to prove that both R and b∂vR(VF , t) converge appro-
priately to 0 when b→ −∞ (i.e. R(v, t) = o(1) and ∂vR(VF , t) = o(1b )). This difficult question
is beyond the scope of our paper.

• The second one is to study theoretically the solution c(t) of the associate difference-differential
equation (1.9). We provide here a thorough study of this associate equation. On the one hand,
we prove first a general existence result of periodic solutions to this equation in the case VF

2 > a
and b < b∗, d > d∗ where |b∗|, d∗ are large enough (see Theorem 3.1). On the other hand, we
looked further into the dynamics of the solutions of (1.9) when b→ −∞; setting VF = 0, d = 1
for the sake of clearness. We construct in rescaled variables an explicit periodic asymptotic profile
P (t) towards which the solutions converge when b → −∞ (see Theorem 4.1) This profile gives
us a precise idea of the behaviour of the solutions, in accordance with numerical simulations: the
periodic solutions are projected very fast away from VF (at a distance O((−b)CM ), CM ∈ (0, 1)),
then they come back at an exponential speed over a period of time in O(log(−b)), and so on
back and forth.

Note that our explicit periodic asymptotic profile c(t)→ P (t) is in the case VF = 0 and our existence
result for a periodic solution c(t) is in the case VF > 0. Numerical simulations indicate that both these
results are valid in a larger range of parameters: periodic solutions arise when VF = 0 and d = 1 and
the asymptotic profile is satisfied when VF > 0.

A method was proposed in [21] for proving the existence of periodic solutions of difference-differential
equations: it consists of studying the correspondent eigenvalues and applying Browder’s fixed-point
theorem on an ad hoc functional. We use a similar method in order to prove analytically that there are
periodic solutions to equation (1.9). Note that, as Brunel and Hakim guessed in their original article
[5], the apparition of fast global oscillations in an inhibitory network is likely to be a Hopf bifurcation.
However, [5] suggests a bifurcation in b and our result indicates a bifurcation in d when b is negative
and large enough. From a mathematical point of view: two opposite complex eigenvalues cross the
imaginary axis. Note that the periodic solutions of the random discharge NNLIF model constructed
in [15] appear through a Hopf bifurcation in b (and not in d).
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In order to carry out our study of the asymptotic profile P when the connectivity b goes to −∞, we
make a handy rescaling and we decompose the evolution of such solutions in different phases (growth
phase, decay phase, etc). Then, we use b−dependent estimates to prove convergence towards an explicit
profile. Our numerical simulations indicate that this asymptotic profile is a good approximation even
for not so large values of |b|.

This article is organised as follows. In Section 2 we derive (heuristically) the associate difference-
differential equation (1.9) and we justify its relevance in a heuristic and numerical way. In Section
3, we use the method of [21] to prove the existence of periodic solutions for equation (1.9). Last, in
Section 4, we prove a result on the asymptotic profile of solutions of (1.9) when the parameter b goes
to −∞.

2 An associate difference-differential equation

2.1 Formal derivation of the wave-type solution

Note first that we can rewrite (1.4) on the whole real line as follows:

∂p

∂t
+

∂

∂v

[
(−v + bN(t− d))p

]
− a∂

2p

∂v2
= δVRN(t)− δVFN(t), v ∈ R, t > 0,

p(−∞, t) = p(+∞, t) = 0, N(t) = −a∂p
∂v

(VF , t), t > 0,

p(v, 0) = p0(v) > 0, v ∈ R,
∫ +∞

−∞
p0(v)dv = 1.

If p0 ≡ 0 on [VF ,+∞) then for all t > 0, p(·, t) ≡ 0 on [VF ,+∞).

As Lemma 2.3 below and numerical simulations in the literature indicate (see e.g. [5]), when b� 0
the firing rate N tends to be low. As a consequence, the term (δVR − δVF )N(t) is of lesser importance
in the equation. Hence, we are looking for a solution composed of a periodic wave of unit mass
ϕ(v, t) = φ

(
v − c(t)

)
defined on R plus a corrective term R(v, t) needed to account for the boundary

and reset conditions:

p(v, t) = φ
(
v − c(t)

)
+R(v, t), (2.1)

and it is sound to look for the wave-type periodic solution ϕ : (v, t) 7→ φ
(
v − c(t)

)
as a solution of

equation  ∂ϕ

∂t
+

∂

∂v

[
(−v + bN(t− d))ϕ

]
− a∂

2ϕ

∂v2
= 0, v ∈ R, t > 0

ϕ(−∞, t) = ϕ(+∞, t) = 0,
∫ +∞
−∞ ϕ(v, t)dv = 1.

(2.2)

Therefore, the remainder term R : (v, t) 7→ R(v, t) must be a solution of ∂R

∂t
+

∂

∂v

[
(−v + bN(t− d))R

]
− a∂

2R

∂v2
= δVRN(t)− δVFN(t), v ∈ R, t > 0

R(−∞, t) = R(+∞, t) = 0, R(v, 0) = p0(v)− ϕ(v, 0), v ∈ R, t > 0.
(2.3)

Unfortunately, systems (2.2) and (2.3) are strongly coupled through the firing rate associated to p(v, t):

N(t) = −a∂vϕ(VF , t)− a∂vR(VF , t).

However, we have the following result about wave-type solutions of (2.2):
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Proposition 2.1 Let φ : R→ R be the function defined by

φ(v) =
1√
2πa

e−
v2

2a ,

Let c be a solution of

c′(t) + c(t) = bN(t− d)

Then the function ϕ defined by ϕ(v, t) = φ(v − c(t)) is a solution of (2.2).

Proof. Replacing ϕ(v, t) = φ(v − c(t)) in (2.2), we get for all v ∈ R,

−φ(v − c(t))−
(
v + c(t) + c′(t)− bN(t− d)

)
φ′(v − c(t))− aφ′′(v − c(t)) = 0,

By change of variables, it yields

−φ(v)−
(
v + c′(t) + c(t)− bN(t− d)

)
φ′(v)− aφ′′(v) = 0.

Assume that the function c satisfies c′(t) + c(t) = bN(t− d). Then, −φ(v)− vφ′(v)− aφ′′(v) = 0, that
is to say −(vφ(v))′ = aφ′′(v). We integrate and apply boundary conditions:

φ′(v) = −v
a
φ(v).

The positive solutions of this equation are of the form φ(v) = Cge
− v

2

2a , where Cg > 0 is any given
positive constant. Since ∫ +∞

−∞
Cge

− v
2

2a dv =

∫ +∞

−∞
ϕ(v, t)dv = 1,

we have Cg = (2πa)−
1
2 . �

In order to make the problem autonomous and thus theoretically tractable, we make a last and more
involved assumption: that b∂vR(VF , t) ' 0 in an appropriate sense when b→ −∞. Hence, we write

p(v, t) ' ϕ̃(v, t) + R̃(v, t), (2.4)

and we replace N(t) by a simpler firing rate

N (t) = −a∂ϕ̃
∂v

(VF , t). (2.5)

We can now consider the simpler autonomous equation
∂ϕ̃

∂t
+

∂

∂v

[
(−v + bN (t− d))ϕ̃

]
− a∂

2ϕ̃

∂v2
= 0, v ∈ R, t > 0

N (t) = −a∂ϕ̃
∂v

(VF , t)

ϕ̃(−∞, t) = ϕ̃(+∞, t) = 0,
∫ +∞
−∞ ϕ̃(v, t)dv = 1.

(2.6)

Proceeding as in the proof of Theorem 2.1, we obtain:

Proposition 2.2 Let φ : R→ R be the function defined by

φ(v) =
1√
2πa

e−
v2

2a ,

Let c be a solution of

c′(t) + c(t) =
b√
2πa

(VF − c(t− d)) exp

(
−(VF − c(t− d))2

2a

)
Then the function ϕ̃ defined by ϕ̃(v, t) = φ(v − c(t)) is a solution of (2.6).
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Note that R̃(v, t) 6= R(v, t) and that we have absolutely no information on the behaviour of R̃.
Proving that it converges to 0 might be very difficult and it is beyond the scope of the paper.

We are now reduced to prove the existence of a periodic solution of the difference-differential equation

c′(t) + c(t) = bN (c(t− d)), (2.7)

where the function N is given by

N (c) =
1√
2πa

(VF − c) exp

(
−(VF − c)2

2a

)
.

In Section 3 we prove the following existence result for this difference-differential equation and in
Section 4 we analyse rigorously its asymptotic behaviour when b→ −∞.

2.2 Partial results on the remainder term R

We will give here some partial results on the remainder term R in the first approximation (2.1). Of
course, it tells us nothing about the remainder R̃ in the second approximation (2.4). Note first that
as the following lemma indicates, the stationary firing rate vanishes when b tends to −∞.

Lemma 2.3 For all b 6 0, denote N b
∞ the firing rate of the unique stationary state of (1.4) with

connectivity parameter b. Then, the function b 7→ N b
∞ is increasing on (−∞, 0] and

lim
b→−∞

N b
∞ = 0.

Proof. We know from [8] that when b 6 0 there exists a unique stationary state of (1.4) and that it
satisfies

1

N b
∞

=

∫ +∞

0

ε−
s2

2

s
ε
− bN

b
∞√
a
s
(
ε
s
VF√
a − εs

VR√
a

)
ds.

Let us define two functions:

I : (b,N) 7→
∫ +∞

0

ε−
s2

2

s
ε
− bN√

a
s
(
ε
s
VF√
a − εs

VR√
a

)
ds and J : (b,N) 7→ I(b,N)− 1

N
.

For all b < 0, equation J(b,N) = 0 has a unique solution ([8]). The function J is smooth on
(−∞, 0)× (0,+∞) and for all (b,N) ∈ (−∞, 0)× (0,+∞),

∂J

∂N
(b,N) = − b√

a
I(b,N) +

1

N2
> 0 and

∂J

∂b
(b,N) = − N√

a
I(b,N) < 0.

Hence, by the implicit functions theorem applied to equation J(b,N) = 0, the function b 7→ N b
∞ has

the following derivative:

b 7→ −

∂J

∂b
(b,N)

∂J

∂N
(b,N)

> 0.

Function b 7→ N b
∞ is thus increasing on (−∞, 0).

Then, note that for all N > 0, the function b 7→ I(b,N) is non-increasing and

lim
b→−∞

IN (b) = +∞.

Function b 7→ N b
∞ being continuous, bounded by 0 and increasing, it has a limit N∗∞ ≥ 0 when b goes

7



to −∞. If we assume N∗∞ > 0, then

0 = lim
b→−∞

J(b,N∗∞) = lim
b→−∞

I(b,N∗∞)− 1

N∗∞
= +∞,

and we reached a contradiction. Thus, we must have limb→−∞N
b
∞ = 0. �

We now make the following guess:

Conjecture 2.4 Let (p0, N0) be an initial condition. For all ε > 0, there exists some time T > 0 and
some connectivity parameter b < 0 such that any solution (p,N) of (1.4) with parameter b satisfies

∀t > T,

∫ t

0
es−tN(s)ds < ε.

With the previous lemma, this conjecture means that as b goes to −∞, N converges towards 0 in
some sense. If we assume this conjecture holds, then we might expect that the remainder term R is
thus asymptotically small when b goes to −∞. More precisely, this conjecture implies:

Proposition 2.5 Assume that Conjecture 2.4 holds. Then, for all ε > 0, there exists b < 0 and T > 0
such that for all t > T , ∫ t

0
es−t‖R(s)‖2L2ds < ε.

Proof. First, since the mass of p is conserved, we have∫ +∞

−∞
R(v, t)dv =

∫ +∞

−∞
p(v, t)dv −

∫ +∞

−∞
ϕ(v, t)dv = 1− 1 = 0.

We know that R is solution of

∂tR+ ∂v((−v + bN(t− d))R)− a∂vvR = δv=VRN(t)− δv=VFN(t). (2.8)

Define

U(t, v) =

∫ v

−∞
R(t, w)dw.

We have U(t,±∞) = 0 and the equation satisfied by U is given by

∂tU + (−v + bN(t− d))∂vU − a∂vvU = 1(VR,VF )N(t).

Multiplying the above equation by U and integrating, we find that

d

dt
‖U‖2L2 ≤ −‖U‖2L2 − 2a‖R‖2L2 + 2N(t) ‖U‖L1(VR,VF )

.

We have

‖U‖L1(VR,VF )
=

∫ VF

VR

∣∣∣∣∫ v

−∞
R(w, t)dw

∣∣∣∣ dv 6 ∫ VF

VR

∫ v

−∞
|R(w, t)| dwdv

6
∫ VF

VR

∫ +∞

−∞

(
p(w, t) + φ(w, t)

)
dwdv 6 2(VF − VR). (2.9)

This implies that

d

dt
‖U‖2L2 ≤ −‖U‖2L2 − 2a‖R‖2L2 + 4(VF − VR)N(t).
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Hence, we obtain that

2ae−t
∫ t

0
es‖R(s)‖2L2ds ≤ ‖U(0)‖2L2e

−t + 4(VF − VR)e−t
∫ t

0
esN(s)ds− ‖U(t)‖2L2 .

If we choose T large enough and |b| large enough so to have for all t > T , applying 2.4 yields

‖U(0)‖2L2e
−t 6 aε et 4(VF − VR)e−t

∫ t

0
esN(s)ds 6 aε,

and thus, ∫ t

0
es−t‖R(s)‖2L2ds < ε.

�

2.3 Numerical evidence

We performed numerical simulations in order to compare the periodic Gaussian wave obtained as a
solution of (2.6) and the solution of the original PDE (1.4). Complex and very effective numerical
methods were designed to handle this equation ([8, 12, 24]) in the excitatory case. In the inhibitory
delayed setting where blow-up cannot happen, a finite difference scheme provides a robust approxi-
mation. The diffusion part is treated implicitly and the drift part via a finite volume method.

First, we confirm previous numerical observations of periodic solutions ([12], [24]). These periodic
solutions seem globally asymptotically stable: after a transitory period, any solution converges towards
them. Moreover, they exhibit the expected Gaussian shape (Figure 1) as long as the centre of the
Gaussian wave is not too close from VR or VF . As |b| increases the wave remains farther from VF .

(a) Shape of the periodic solution. When the solution
is far from −2 it has a Gaussian shape. As we chose
VF = 0, it gets closer and looses it’s Gaussian shape
until it moves back again.

(b) Moment of the solution in function of time.
It provides an approximation for the movement
of the center of the Gaussian wave.

Figure 1: Simulation with parameters VF = 0, a = 0.2, b = −50, d = 1, VR = −2 and grid dv =
0.015, dt = 0.0005.

In order to compare our approximate equation to the complete problem (1.4), we plotted the first
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moment of the solution of the full problem and the solution of the difference-differential equation (2.7)
on the same graph (Figure 2). As we can see, the period of the oscillations and the overall shape are
the same; the height of these curves are different though.

10 20 30 40 50

-8

-6

-4

-2

Figure 2: In blue: moment of the solution of (1.4) with same parameters as previous graph. In red:
corresponding solution of (2.7). Same parameters as Figure 1

Last, we compared the numerical solution of the difference-differential equation (2.7) with the asymp-
totic profile obtained in Theorem 4.1 (Figure 3). For a reasonable value of b (b = −50) the two curves
match well.
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Figure 3: Comparison between the numerical solution of equation (2.7) (blue curve) and the profile
obtained in theorem 4.1 (orange curve) for VF = 0 and b = −50, that is to say β = 0.2556

3 Periodic solutions of the difference-differential equation

Here we prove the existence of a periodic solution of

c′(t) + c(t) = bN (c(t− d)), (3.1)

where the function N (c) is given by

N (c) = (VF − c) exp

(
−(VF − c)2

2a

)
,

and b < 0, d ≥ 0, VF ≥ 0, a > 0 are parameters.
We removed in this section the constant Cg = (2πa)−

1
2 without loss of generality since the rescaling
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b̄ = b(2πa)−
1
2 allows us to come back to the general case.

Theorem 3.1 Let c∗ < 0 be a stationary solution of (3.1). If VF
2 ≥ a, then there exist b∗ < 0 and

d∗ > 0 such that (3.1) has a periodic solution c(t) for any b < b∗ and d > d∗. Moreover, there is a
negative constant c0 independent of d > d∗ such that for all t > 0, c0 ≤ c(t) < 0.

Note that the form of this result is indicative of a Hopf-type bifurcation as suggested by Brunel
and Hakim in their seminal article [5]: if we assume that |b| is large enough, that is to say larger
than |b∗|, then when d crosses d∗ two conjugate complex eigenvalues cross the imaginary axis and the
stable stationary state is destabilised; a stable periodic cycle then appears which is a periodic solution.
However, the Hopf bifurcation proposed by Brunel and Hakim was in term of the parameter b. A
more complex dynamic of Hopf-Hopf type could happen when b and d evolve simultaneously, but this
is beyond the scope of our paper. Note also that the Hopf bifurcation studied in [15] in the excitatory
random discharge NNLIF model was along the parameter b.

We shall build upon the method of Hadeler and Tomiuk for a similar difference-differential equation
([21]). The main idea is to find the periodic solution as a non-ejective fixed-point of a functional F on
an appropriate function space and to prove that uninteresting fixed-point are ejective. More precisely,
we recall the following definition and result.

Definition 3.2 (Ejective fixed-point, [3]) Let E a Banach space and D a closed subset of E. Let
F : D → D a continuous map. A fixed-point x̄ of F is said to be ejective if there exists a neighbourhood
U ⊂ D of x̄ such that

∀x ∈ U \ {x̄}, ∃n ∈ N, Fn(x) /∈ U.

Theorem 3.3 (Browder’s fixed-point theorem, [3]) Let D be a closed, bounded and convex sub-
set of an infinite dimensional Banach space and let F : D → D a continuous and compact map. Then
F admits at least one fixed-point which is not ejective.

Let us describe the strategy of the proof of Theorem 3.1. Be careful that we go through three
different forms of the problem: original equation (3.1), equivalent equation (3.4) and the slightly
modified equation (3.10).

• First we study the stationary solutions c∗ of (3.1).

• We change variables and recast (3.1) into (3.4). Then we study the correspondent characteristic
equation (whose solutions are called eigenvalues):

λ+ d = bdN ′(c∗)e−λ.
We find that bN ′(c∗) < −1 is a necessary condition to have unstable eigenvalues.

• We define a functional F whose solutions are either stationary or periodic solutions of problem
(3.10) which is very close to our renormalised problem (3.4).

• We prove that stationary solutions of (3.10) are ejective; hence, applying Browder’s fixed-point
theorem, F possess another fixed-point which happens to be a periodic solution of (3.10). Last,
we prove that this solution yields a non-trivial periodic solution of (3.4) and equivalently of
(3.1).
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3.1 Stationary problem

Let us first state the existence of a stationary solution. In the following we consider two cases

VF > 0 (Case 1) and VF = 0, b < −1 (Case 2).

Since (3.1) describes the solution from the PDE system (1.4) on (−∞, VF ], the solution of (3.1) must
be contained in (−∞, VF ). Thus, we are only looking for solutions c(t) < VF .

Theorem 3.4 There is a unique stationary solution c∗ < 0 of (3.1) in c < VF in Cases 1 and 2. On
the other hand, there is no stationary solution of (3.1) in c < 0 in the case of VF = 0 and −1 ≤ b < 0.

Proof. Define F (c, b) = c−bN (c), which is a smooth function of (c, b) in c < VF and b < 0. It is easy
to see limc→−∞ F (c, b) = −∞. Moreover, we have F (0, b) = −bN (0) > 0 in Case 1 while F (0, b) = 0
and (∂F/∂c)(0, b) = 1+b < 0 in Case 2. Hence there exists a zero of F (c, b), equivalently, a stationary
solution, denoted by c = c∗ < 0. On the other hand, let us consider the case VF = 0 and −1 ≤ b ≤ 0
and assume that there is a stationary solution c < 0 of (3.1). Then we have a contradiction because

1 = −b exp

(
− c

2

2a

)
< −b ≤ 1.

Next, uniqueness of stationary solutions c∗ of (3.1) follows from the following computation:

∂F

∂c
(c∗, b) = 1− bN ′(c∗) =

aVF − c∗(VF − c∗)2

a(VF − c∗)
> 0, (3.2)

where we calculate N ′(c∗) as

N ′(c∗) =
(VF − c∗)2 − a

a
exp

(
−(VF − c∗)2

2a

)
=
c∗
b

(
VF − c∗

a
− 1

VF − c∗

)
. (3.3)

�

The stationary solution c∗ depends on the parameter b so that we may represent c∗ = c∗(b). Accord-
ing to the implicit function theorem and due to (3.2), the proof above implies that c∗(b) is a smooth
function. Note that c∗(b) can be defined for b < 0 in Case 1, and b < −1 in Case 2, respectively. Next,
we study some properties of c∗(b).

Lemma 3.5 The function c∗(b) satisfies c′∗(b) > 0, limb→−∞ c∗(b) = −∞, and limb→−∞ c∗(b)/b = 0.
Moreover, there exists b∗ < 0 such that bN ′(c∗(b)) < −1 for any b < b∗.

Proof. In the proof we only consider Case 1 because we can prove the statement for Case 2 by
the same argument. It is obvious that limb→0 c∗(b) = 0. Assume that then there is a subsequence bi
(i = 1, 2, . . .) and c∞ ≤ 0 such that bi → −∞ and c∗(bi) → c∞ as i → ∞. We have N (c∞) = 0, and
then c∞ = VF > 0, which is a contradiction. Hence we see limb→−∞ c∗(b) = −∞. This fact and (3.3)
imply c∗(b)/b = N (c∗(b))→ 0 and bN ′(c∗(b))→ −∞ as b→ −∞.

Let F be the same function as in the previous proof. Since (∂F/∂b)(c, b) = −N (c) < 0 in
c < VF and b < 0, we differentiate both sides of F (c∗(b), b) = 0 with respect to b and obtain
c′∗(b) = −(∂F/∂b)(c∗(b), b)/(∂F/∂c)(c∗(b), b) > 0 because of (3.2). �

Set c(t) = c∗ + x( td) and change t
d into t. Then we derive a difference-differential equation for x

from (3.1) which writes

x′(t) + dx(t) = bd(N (c∗ + x(t− 1))−N (c∗)). (3.4)

12



3.2 Study of the characteristic equation

It is well-known that the linearised problem of (3.4) around x = 0 has the characteristic equation

λ+ d = bdN ′(c∗)e−λ. (3.5)

We refer to a solution λ ∈ C of (3.5) as an eigenvalue. Particularly, the solution λ is called an unstable
eigenvalue if Reλ > 0. Note that if λ is an eigenvalue, then so is λ, where λ is the complex conjugate
of λ. Hence we can assume Imλ > 0 without loss of generality. We investigate the conditions for
parameters such that (3.5) has an unstable eigenvalue, and finally show the existence of an unstable
eigenvalue λ with π/2 < Imλ < π, where “Re” and “Im” represent real and imaginary parts of a
complex value.

We first show that there is no real unstable eigenvalue in (3.5).

Lemma 3.6 (3.5) has no real non-negative solutions.

Proof. We have 1− bN ′(c∗) > 0 by (3.2), then it is easy to complete the proof of the lemma. �

Next we study complex eigenvalues in (3.5).

Lemma 3.7 Suppose that there exists an eigenvalue λ in (3.5) with Imλ 6= 0. Let r be the remainder
of the division of Imλ by 2π. If Reλ ≥ 0, then it must hold true that bN ′(c∗) ≤ −1 and r ∈ (π/2, π).
Similarly, if λ is an unstable eigenvalue, then one has bN ′(c∗) < −1.

Proof. We follow the argument in the proof of Lemma 3 in [21]. Set λ = µ+ iγ and assume µ, γ ≥ 0.
It follows from (3.5) that

µ+ d = bdN ′(c∗)e−µ cos γ, γ = −bdN ′(c∗)e−µ sin γ. (3.6)

Then we have

(bdN ′(c∗)e−µ)2 = (µ+ d)2 + γ2 ≥ d2.
Since µ is non-negative, we see (bN ′(c∗))2 ≥ e2µ ≥ 1. From (3.2), we have bN ′(c∗) ≤ −1. This also
implies r ∈ (π/2, π) because both the right-hand sides of (3.6) must be positive. The remainder of
the lemma can be shown similarly. �

Combining Lemmas 3.6 and 3.7, we know that the stationary solution c∗ may be destabilised only
in the case of bN ′(c∗) < −1. We focus on this case hereafter and prove that there is an unstable
eigenvalue in (3.5) if d > 0 is sufficiently large. We follow the argument in the proof of Lemma 3 in
[21] and state the existence of an unstable eigenvalue in (3.5).

We first show these non-degeneracy conditions for eigenvalues of (3.5) with respect to d in the
following two lemmas.

Lemma 3.8 Assume that there are d0 > 0 and an eigenvalue λ0 of (3.5) for d = d0 with Imλ0 6= 0.
Then there exists a smooth function λ(d) defined on d > 0 satisfying the following properties;

(i) λ(d) is an eigenvalue of (3.5) for d > 0 with Imλ(d) 6= 0.

(ii) λ(d0) = λ0.

(iii) If Reλ(d0) = 0, then Reλ′(d0) > 0
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(iv) If Reλ(d0) > 0, then there exists d̃0 ∈ (0, d0) such that Reλ(d̃0) = 0.

Lemma 3.9 Let λ1(d) and λ2(d) be eigenvalues of (3.5) with Imλi(d) 6= 0 for i = 1, 2. If there is
d∗ > 0 such that λ1(d

∗) 6= λ2(d
∗), then it holds true that λ1(d) 6= λ2(d) in all d > 0.

Proof of Lemmas 3.8 and 3.9. We define F (λ, d) = λ+ d− bdN ′(c∗)e−λ. From the assumption,
F (λ0, d0) = 0. Moreover it is easy to see

∂F

∂λ
(λ0, d0) = 1 + bd0N ′(c∗)e−λ0 = 1 + λ0 + d0 6= 0,

∂F

∂d
(λ0, d0) = 1− bN ′(c∗)e−λ0 = −λ0

d0
.

From the implicit function theorem, we can construct a smooth function λ(d) in a neighborhood of
d0 such as F (λ(d), d) = 0. Denote λ(d) = µ(d) + iγ(d) for real (µ, γ) = (µ(d), γ(d)). Differentiating
F (λ(d), d) = 0 by d, we have

λ′(d) = −
∂F
∂d
∂F
∂λ

=
1

d

λ

1 + λ+ d
, µ′(d) =

1

d

µ(1 + µ+ d) + γ2

(1 + µ+ d)2 + γ2
, γ′(d) =

1

d

γ(1 + d)

(1 + µ+ d)2 + γ2
. (3.7)

From Lemma 3.7, |γ| must be larger than π/2. Hence µ(d) and γ(d) can be defined in 0 < d <∞ by
solving the differential equations (3.7). This conclusion also implies (i)–(iii) of Lemma 3.8 and Lemma
3.9.

Suppose that µ(d0) > 0 and 0 ≤ µ(d) in d ∈ (0, d0). We can make an additional assumption on γ(d)
such as π/2 + 2πk < γ(d) < π + 2πk for some integer k ≥ 0 without loss of generality by Lemma 3.7.
We have µ(d) < µ(d0) because of µ′(d) > 0. On the other hand, it follows from (3.7) that

µ(d0) = µ(d) +

∫ d0

d

1

s

µ(s)(1 + µ(s) + s) + γ(s)2

(1 + µ(s) + s)2 + γ(s)2
ds

≥ 1

(1 + µ(d0) + d0)2 + (2k + 1)2π2

(
2k +

1

2

)2

π2(log d0 − log d)→∞

when d→ 0, which constitutes a contradiction. �

Lemma 3.8 implies that any unstable eigenvalue of (3.5) must be connected to an eigenvalue on the
imaginary axis. Then we study the conditions for parameters that (3.5) has a solution λ with Reλ = 0
and Imλ > 0. Putting µ = 0 in the first equation of (3.6), we have

1 = bN ′(c∗) cos γ. (3.8)

(3.8) has denumerably infinite many solutions γ because of bN ′(c∗) < −1. We denote the minimal
positive solution of (3.8) by γ1, where γ1 can be estimated as π/2 < γ1 < π. Moreover we readily see
that γk = γ1 + 2π(k − 1) (k = 2, 3, . . .) are also solutions of (3.8). Then we define dk by

dk ≡ −
γk

bN ′(c∗) sin γk
.

We can show the following lemma by the same argument as in [21].

Lemma 3.10 Suppose that bN ′(c∗) < −1. Let k ≥ 1 be an integer. If dk < d < dk+1, then there are
exactly 2k unstable eigenvalues λi and λi (i = 1, . . . , k) of (3.5). On the other hand, if d = dk, (3.5)
has exactly 2k − 2 unstable eigenvalues λi and λi (i = 1, . . . , k − 1) and eigenvalues λk and λk with
Reλk = 0. Moreover, λi satisfies π/2 < Imλi − 2π(i− 1) < π.
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Proof. Suppose that there is an eigenvalue λ in (3.5) with Reλ ≥ 0 and Imλ 6= 0 for d∗ ∈ (0, d1).
Then it follows from Lemma 3.8 that there are λ(d) defined in d ∈ (0,∞) and d̃∗ ≤ d∗ such that
λ(d∗) = λ and Reλ(d̃∗) = 0. However, d̃∗ must be equal to dk for some k ∈ N, which is a contradiction
because d1 ≤ d̃∗ ≤ d∗ < d1.

As seen above, (3.5) has an eigenvalue λ = iγ1 for d = d1. Thanks to Lemma 3.8, there exists
λ1(d) = µ1(d) + iγ1(d) of an eigenvalue in (3.5) for d such that γ1(d1) = γ1 and µ1(d) > 0 in d > d1.
Moreover, we see π/2 < γ1(d) < π in d > d1 because γ1(d) is continuous and (3.6) holds true. By the
same argument as in the proof of Lemma 3.9, it can be shown that there is no eigenvalue in (3.5) in
d ∈ [d1, d2) except for λ1(d) and λ1(d).

By the induction, we can complete the proof of Lemma 3.10. �

From Lemma 3.10, we have the following corollary.

Corollary 3.11 If bN ′(c∗) < −1, then (3.5) has an unstable eigenvalue λ with π/2 < Imλ < π. if
and only if d1 < d.

3.3 Properties of the non-linear term

Here we summarise the properties of the nonlinear term f0(x) ≡ −b(N (c∗+x)−N (c∗)), which appears
in the right-hand side of (3.4). It is easy to see that the following lemma holds true so that we omit
the details of the proof.

Lemma 3.12 Suppose that bN ′(c∗) ≤ −1. Then the smooth function f0(x) satisfies the following
properties;

(i) f0(0) = 0.

(ii) limx→−∞ f0(x) = bN (c∗) = c∗ < 0.

(iii) f ′0(x) > 0 in x ≤ 0 while there are exactly two zeros of f ′0(x) = 0 in x > 0, denoted by x1 < x2.
In particular, f ′0(0) = −bN ′(c∗) ≥ 1.

(iv) f0(x) is a Lipschitz function on R, that is, there is L0 > 0 such that |f0(x)− f0(y)| ≤ L0|x− y|
in any x, y ∈ R.

We can give x1 explicitly such as x1 = VF − c∗ −
√
a by a direct calculation and see x1 > 0 because

of (3.3) and the assumption. Lemma 3.12 implies that the function f0(x) is monotonically increasing
and bounded in (−∞, x1]. Thus we define a function f(x) by

f(x) =

{
f0(x), x ≤ x1,
f0(x1), x > x1.

Under the assumption bN ′(c∗) ≤ −1, f ∈ C1(R) satisfies the following properties;

(f1) f(x)x > 0 in x 6= 0.

(f2) f(x) ≥ c∗ in x ∈ R.

(f3) f ′(0) = −bN ′(c∗) ≥ 1.

(f4) There is L > 0 such that |f(x)− f(y)| ≤ L|x− y| in any x, y ∈ R.
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From the condition (f3), it is easy to show that there exist α > 0 and δ > 0 such that

|f(x)| ≥ α|x| (3.9)

in |x| < δ, where δ is supposed to be less than −c∗ without loss of generality.

3.4 The Browder fixed-point method

We replace f0 in the right-hand side of (3.4) into f and consider

x′(t) + dx(t) = −df(x(t− 1)). (3.10)

From the conditions (f1)–(f4), we can prove the existence of a periodic solution in (3.4) if d is sufficiently
large. Actually, our difference-differential equation is slightly different from that in the previous work
[21], and a parameter d appears not only in the coefficient of x(t) of the left-hand side of (3.4) but
also in that of f(x(t− 1)). Here, we adapt the argument in [21], and prove that (3.10) has a periodic
solution.

The functional space C[−1, 0] denotes the set of all continuous functions on [−1, 0] equipped with
the usual sup norm ‖ · ‖. We define K by the set of all functions ϕ ∈ C[−1, 0] such that ϕ(−1) = 0,
and edtϕ(t) is monotonically increasing on 0 ≤ t ≤ 1. Moreover, we set K0 = K \ {0} and BM = {ϕ ∈
K | ‖ϕ‖ ≤ M} for a constant M > 0. The initial function in (3.10) is assumed to be in C[−1, 0].
Then x(t;ϕ) denotes the solution of (3.10) with an initial function ϕ ∈ C[−1, 0]. We first show the
global existence of a solution in (3.10).

Lemma 3.13 Set ϕ ∈ C[−1, 0] arbitrarily. Then there exists a solution x(t;ϕ) of (3.10) globally in
time. The solution x(t;ϕ) is Lipschitz continuous with respect to ϕ ∈ C[−1, 0], that is, for any T > 0,
there are Lx > 0 depending on only T such that

sup
t∈[0,T ]

|x(t;ϕ1)− x(t;ϕ2)| ≤ Lx‖ϕ1 − ϕ2‖. (3.11)

Proof. We rewrite (3.10) into an integral form

x(t;ϕ) = e−d(t−t0)x(t0;ϕ)−
∫ t

t0

e−d(t−s)df(x(s− 1;ϕ))ds (3.12)

for any 0 ≤ t0 ≤ t. Let t0 = 0 and t ∈ [0, 1]. It is easy to see that the solution of (3.10) can be defined
by the equation above because of x(0;ϕ) = ϕ(0) and x(t− 1;ϕ) = ϕ(t− 1). In addition, we have

|x(t;ϕ1)−x(t;ϕ2)| ≤ |ϕ1(0)−ϕ2(0)|+d

∫ t

0
e−d(t−s)|f(ϕ1(s−1))−f(ϕ2(s−1))|ds ≤ (1+L)‖ϕ1−ϕ2‖,

which implies that if T ∈ [0, 1], (3.11) holds true.
By an induction argument, we complete the proof of the lemma. �

Lemma 3.13 implies that for T > 0, the solution x(t;ϕ) is estimated such as

|x(t;ϕ)| ≤ Lx‖ϕ‖ (3.13)

on t ∈ [0, T ], which can be shown directly from (3.11) because x(t; 0) ≡ 0.
Next we prove that x(t;ϕ) has a zero at some t.

Lemma 3.14 Assume (1 + α)/α ≤ ed. For M > δ given arbitrarily, let ϕ ∈ K0 with ‖ϕ‖ ≤ M .
Then there exists a zero of x(t;ϕ), denoted by t = z1, such that z1 > 0 and x′(z1;ϕ) < 0. Moreover,
edtx(t;ϕ) is monotonically decreasing on [z1, z1 + 1].
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Proof. Denote x(t) = x(t;ϕ) for simplicity. Since ϕ ∈ K0, we see ϕ(t) ≥ 0 on −1 ≤ t ≤ 0 and
x(0) = ϕ(0) > 0. Let z1 = inf{t ≥ 0 | x(t) ≤ 0}. If z1 ≤ 1 and x′(z1) = 0, it follows from (3.10) that
f(ϕ(z1−1)) = 0 so that ϕ(t) = 0 in −1 ≤ t ≤ z1−1. Then we substitute t0 = 0 and t = z1 into (3.12)
and then have x(0) = 0, which is a contradiction. Hence we obtain x′(z1) < 0 if z1 ≤ 1.

Next we assume z1 > 1. Then x(t) decreases monotonically because x′(t) = −dx(t)−df(x(t−1)) ≤ 0
on t ∈ [0, z1], from which we have x(t) ≤ x(0) ≤ M on t ∈ [0, z1]. Define t1 = inf{t ≥ 1 | x(t) ≤ δ}.
We prove that t1 is finite. If x(1) > δ, it follows from (f1) that

x′(t) = −dx(t)− df(x(t− 1)) ≤ −δd
on t ∈ [1, t1]. Integrating the both sides above on [1, t1], we obtain t1 ≤ 1 +M/(δd). Then we assume
that z1 > t1 + 1. Setting t0 = t1 + 1 and t ∈ [t1 + 1, t1 + 2] in (3.12), we have

x(t) = e−d(t−(t1+1))x(t1 + 1)−
∫ t

t1+1
e−d(t−s)df(x(s− 1))ds ≤ ((1 + α)e−d(t−(t1+1)) − α)x(t1 + 1).

The assumption implies x(t1 + 2) ≤ 0, from which we have

z1 ≤ t1 + 2 ≤ 3 +
M

δd
. (3.14)

In addition, we see x′(z1) = −df(x(z1 − 1)) < 0.

Finally we see that (edtx(t))′ = −edtdf(x(t − 1)) ≤ 0 on t ∈ [z1, z1 + 1], which completes the proof
of the lemma. �

For ϕ ∈ K0, there is another zero of x(t;ϕ).

Lemma 3.15 Assume the same conditions as in Lemma 3.14. Then there exists a zero of x(t;ϕ),
denoted by t = z2, such that z2 > z1 + 1 and x′(z2;ϕ) > 0. Moreover, edtx(t;ϕ) is monotonically
increasing and 0 ≤ x(t;ϕ) ≤ −c∗ on t ∈ [z2, z2 + 1].

Proof. Denote x(t) = x(t;ϕ) for simplicity. Define z2 = inf{t > z1 | x(t) > 0}. Substituting t0 = z1
in (3.12), we see x(t) < 0 in t ∈ (z1, z1 + 1] and

x(z1 + 1) = −
∫ z1+1

z1

e−d(z1+1−s)df(x(s− 1))ds ≥ −LM. (3.15)

Hence we have z1 + 1 < z2. Then x(t) increases monotonically on t ∈ [z1 + 1, z2] because

x′(t) = −dx(t)− df(x(t− 1)) > 0.

Define t2 = inf{t ≥ z1 + 1 | x(t) > −δ}. In the case of x(z1 + 1) ≥ −δ, we set t2 = z1 + 1. We assume
t2 > z1 + 1 and show that t2 is finite. It follows from (f1) that

x′(t) = −dx(t)− df(x(t− 1)) ≥ δd
on z1 + 1 ≤ t ≤ t2. Integrating the inequality above over (z1 + 1, t2) and owing to (3.14), we have

t2 ≤ z1 + 1 +
LM

δd
≤ 4 +

M

δd
(1 + L),

which implies that t2 is finite.

Suppose that z2 > t2 + 1. Setting t0 = t2 + 1 and t ∈ [t2 + 1, t2 + 2] in (3.12), we see that

x(t) = e−d(t−(t2+1))x(t2 + 1)−
∫ t

t2+1
e−d(t−s)df(x(s− 1))ds ≥ ((1 + α)e−d(t−(t2+1)) − α)x(t2 + 1).

Therefore it follows from the assumption that x(t2 + 2) is nonnegative, which implies z2 ≤ t2 + 2.
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Finally we see that (edtx(t))′ = −edtdf(x(t − 1)) ≥ 0 from (3.10) on z2 ≤ t ≤ z2 + 1. By setting
t0 = z2 and t ∈ [z2, z2 + 1], it follows from (f2) that

0 ≤ x(t) = −
∫ t

z2

e−d(t−s)df(x(s− 1))ds ≤ −c∗,

which completes the proof of the lemma. �

We may emphasise the ϕ-dependency of z2 and denote z2 = z2(ϕ). Fix M > 0 arbitrarily. Lem-
mas 3.13–3.15 imply that z2(ϕ) is well-defined, continuous and uniformly bounded in BM ∩ K0. In
particular, we readily see that z2(ϕ) > z1 + 1 and

z2(ϕ) ≤ t2 + 2 ≤ 6 +
M

δd
(1 + L). (3.16)

We define the functional F : K → C[−1, 0] by [Fϕ](t) = x(z2(ϕ) + 1 + t;ϕ) in t ∈ [0, 1] for ϕ 6≡ 0
while [Fϕ](t) = 0 for ϕ ≡ 0. Then F satisfies the following lemma.

Lemma 3.16 Assume the same conditions as in Lemma 3.14. Then the following two conditions hold
true;

(i) F(B−c∗) ⊂ B−c∗

(ii) F is continuous and compact.

Proof. The condition (i) can be verified by Lemma 3.15. The continuity of F can be proved by
Lemma 3.13. Set M = −c∗ and give ϕn ∈ BM (n = 1, 2, . . .). We can assume that ϕn 6≡ 0 in all n
without loss of generality. Denote xn(t) ≡ x(z2(ϕn) + 1 + t;ϕn). We see 0 ≤ xn(t) ≤M and

|xn(t1)− xn(t2)| ≤
∫ t1

t2

|x′n(s)|ds ≤ dM(1 + L)(t1 − t2)

uniformly in n ≥ 1 and t, t1, t2 ∈ [−1, 0] with t2 ≤ t1 due to the assumption (f4). Since {xn(t)} is
uniformly bounded and uniformly equicontinuous, a subsequence xnk(t) (k = 1, 2, . . .) converges in
C[−1, 0] as k →∞, which implies that F is compact. �

According to the Schauder’s fixed point theorem ([19]), Lemma 3.16 implies the existence of a fixed
point ϕ∗ of F . However, since F(0) = 0, ϕ∗ may be identically equal to 0. Actually, we can exclude
this possibility by the Browder’s fixed point theorem (Theorem 1 in [3]). We first prove the next
lemma.

Lemma 3.17 Assume bN ′(c∗) < −1 and d1 < d. Then there is a positive constant A > 0 such that
supt≥z |x(t;ϕ)| ≥ A for ϕ ∈ K0 and any zero z of x(t;ϕ).

Proof. From Corollary 3.11, (3.5) has an eigenvalue λ = µ+ iγ with µ > 0 and π/2 < γ < π. Let ε
be a positive constant satisfying

ε <
µ

d
e−d

1

2
cos

γ

2
. (3.17)

Define h(x) = f ′(0)x − f(x). Since f belongs to a class of C1(R) and f(0) = 0, there is a positive
constant A such that

|h(x)| ≤
∫ |x|
0
|f ′(0)− f ′(y)|dy ≤ ε|x| (3.18)
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uniformly in |x| < A. Assume that there are ϕ ∈ K0 and a zero z of x(t) ≡ x(t;ϕ) such that
κ ≡ supt≥z |x(t;ϕ)| < A. Define y(t) = edtx(t). From Lemmas 3.14 and 3.15, we can make an
additional assumption such that there is an extremum m ∈ (z, z+1) such that |x(m)| ≥ κ/2. Moreover,
we assume that x′(z) > 0 and y′(t) > 0 in (z, z+ 1) because we can analogously consider another case
that x′(z) < 0 and y′(t) < 0 in (z, z + 1).

From (3.10), we have

x′(t) = −dx(t)− df ′(0)x(t− 1) + dh(x(t− 1)).

Set T = z + 1. Multiplying e−λt to the both sides above and integrating over (T,∞), we have∫ ∞
T

x′(t)e−λtdt = d

∫ T

T−1
x(t)e−λtdt+ λ

∫ ∞
T−1

x(t)e−λtdt+ d

∫ ∞
T

h(x(t− 1))e−λtdt.

Integrating by parts, we obtain∫ ∞
T

x′(t)e−λtdt = −x(T )e−λT + λ

∫ ∞
T

x(t)e−λtdt.

Then it follows that

−x(T )e−λT = (d+ λ)

∫ T

T−1
x(t)e−λtdt+ d

∫ ∞
T

h(x(t− 1))e−λtdt.

Multiplying eλ(T−1/2) to the both sides, we have

−
∫ T

T−1
y′(t)e−dt−λ(t−T+1/2)dt = d

∫ ∞
T

h(x(t− 1))e−λ(t−T+1/2)dt. (3.19)

It is easy to see that∣∣∣∣∫ T

T−1
y′(t)e−dt−λ(t−T+1/2)dt

∣∣∣∣ ≥ ∫ T

T−1
y′(t)e−dt−µ(t−T+1/2) cos γ

(
t− T +

1

2

)
dt

≥ y(T )e−dT−µ/2 cos
γ

2
= x(T )e−µ/2 cos

γ

2

(3.20)

owing to y′(t) > 0 in (T − 1, T ). On the other hand, we estimate the right-hand side of (3.19) as∣∣∣∣∫ ∞
T

h(x(t− 1))e−λ(t−T+1/2)dt

∣∣∣∣ ≤ εκ 1

µ
e−µ/2. (3.21)

Moreover, we put t = T and t0 = m in (3.12) and then have

x(T ) = e−d(T−m)x(m)−
∫ T

m
e−d(t−s)df(x(s− 1);ϕ)ds ≥ e−dκ

2
.

From this inequality and (3.19)–(3.21), we see

e−µ/2 cos
γ

2
e−d

κ

2
≤ dεκ 1

µ
e−µ/2,

which contradicts to (3.17). Hence we complete the proof of Lemma 3.17. �

From Lemma 3.17, there are infinitely many zeroes and extrema of x(t;ϕ) for ϕ ∈ K0, denoted by zn
and mn respectively, such that mn ∈ (zn, zn + 1) and |x(mn)| ≥ A/2. This result yields the following
lemma.

Lemma 3.18 Assume bN ′(c∗) < −1 and d1 < d. Let A be a positive constant given in Lemma 3.17.
For all ϕ ∈ K0, there are an even integer n and a positive constant A1 > 0 such that x(mn;ϕ) ≥ A1.

Proof. Denote x(t) = x(t;ϕ). Set A1 = min{A/(2L), A/2} and suppose that x(m2n) < A1 for all
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n ≥ 1. By putting t0 = z2n+1 and t = m2n+1 in (3.12), it follows from (f4) that

x(m2n+1) = −
∫ m2n+1

z2n+1

e−d(m2n+1−s)df(x(s− 1))ds > −A
2
,

which is in contrast to Lemma 3.17. �

Proof of Theorem 3.1.

From Lemma 3.18, we see that for any ϕ ∈ K0, there is a sufficiently large integer n such that
‖F (n)(ϕ)‖ ≥ A1, which implies that ϕ ≡ 0 is an ejective point (see Definition 2 in [3]). Therefore we
obtain a nonzero fixed point ϕ∗ 6≡ 0 of F . From the assumption V 2

F ≥ a in Theorem 3.1, we see that
x1 ≥ −c∗ and then c(t) ≡ c∗ + x(t/d;ϕ∗) is a periodic solution of (3.1).

In order to complete the proof of Theorem 3.1, we estimate x(t;ϕ∗). From the proof of Lemma 3.14,
x(t;ϕ∗) ≤ −c∗ on t ∈ [0, z1]. By the same argument as in the proof of Lemma 3.15, x(t;ϕ∗) attains a
local minimum at t = m ∈ (z1, z1 + 1). Putting t0 = z1 and t = m in (3.12), we have

x(m;ϕ∗) = −
∫ m

z1

e−d(m−s)df(x(s− 1;ϕ))ds ≥ Lc∗.

Then it holds that (L + 1)c∗ ≤ c(t) ≤ 0, which also implies that c(t) must be negative because
bN (c(t− d)) is negative. Since L and c∗ are independent of d, t, we have proved Theorem 3.1. �

4 Asymptotic description of the periodic solution

We now prove an asymptotic result on the shape of solutions of equation

c′(t) + c(t) = bN (c(t− d)), N (c) = (VF − c) exp

(
−(VF − c)2

2a

)
(4.1)

In order to do so, we assume for the sake of clarity that VF = 0, d = 1 and we make the change of
variables

β =
1

log(−b)
, u(s) = β log

(
1√
a
c

(
s

β

))
. (4.2)

This change of variable is meaningful only when b < −1, which reminds us of Case 2 (VF = 0, b < −1)
in the previous section. We come to the following equivalent system:

u′β(t) + 1 = exp

(
1

β
(1− uβ(t)) + f

(
uβ(t− β)

))
, 1 ≥ uβ([−β, 0]) > 0 (4.3)

with

f(x) =
1

β
x− 1

2
e

2
β
x
. (4.4)

Equation (4.3) has a unique constant positive stationary state given by

uβ =
β

2
log

(
2

β

)
, (4.5)

and we readily observe that

lim
β→0

uβ = 0.

Note that when b goes to −∞, β tends to 0. If b� 0, then 0 < β � 1.
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Theorem 4.1 Assume that uβ(−β, 0) ≡ 1 and let T > 2. Then, there exists a constant CM ∈ (0, 1]
such that

lim
β→0

uβ = P, in L1(0, T ),

where P has the following form:

• P (t) = 1− t on (0, 1);

• P (t) = CM + 1− t on (1, 1 + CM );

• P is CM periodic on (1, T ).

We summarise our approach in Figure 4.

Figure 4: Strategy of the proof : Lemma 4.3 is used to prove convergence to a straight line, Lemma 4.4
gives rapid growth to a β−independent constant C, Lemma 4.7 gives t0, t1, t2 → 1; Lemma 4.5 helps
proving periodicity of P .

Before proving this result, let us make some comment on it’s implications.

• First, we make the assumption uβ(−β, 0) ≡ 1 for practicality and clearness reasons. However, a
key mechanism being the unstable nature of the stationary state uβ, we expect that it is enough
to take an initial condition which is not uniformly uβ to get the same convergence result after
a transitory period. Aforementioned numerical simulations confirm the fact that the hypothesis
is purely technical.

• The form of our rescaling and Theorem 4.1 indicate that the period Tb of the numerically observed
periodic solutions c of (2.7) evolves in O

(
log(−b)

)
when b→ −∞.
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• More precisely, we have in the original variable

c(t) '
√
a exp

(
log(−b)P

(
t

log(−b)

))
,

In decay phases, this approximation means that c behaves like

c(t) '
√
aeCM log(−b)−t = Sbe

−t,

which constitutes an exponential decay over a spatial area of length Sb =
√
a(−b)CM during a

time Tb = CM log(−b). Remember that CM ∈ (0, 1).

• The approximation of c(t) by the discontinuous profile hides a very fast growth phase which
makes the exponential decay appear slow in comparison. Lemma 4.4 gives an idea of this growth
phase in rescaled variables but it does not allows us to provide a precise quantitative insight in
original variables.

We are going to prove the convergence of uβ towards this periodic asymptotic profile P when β
goes to 0. To do so, we rely on the instability of the stationary state uβ. Our strategy is to study
independently different phases of the solution:

1. a decay phase with asymptotic slope −1 (Lemma 4.3);

2. a rapid growth phase up to some uniform constant C (Lemma 4.4);

3. a maximal value which presents some handy stability properties from which we will derive the
periodicity of the final profile (Lemma 4.5, Lemma 4.7).

4.1 Convergence of uβ when β → 0 to a profile P .

Let us first observe that the function (4.4) is strictly decreasing on [0,+∞) with f(0) = −1
2 and

f(+∞) = −∞. Indeed, we have

f ′(x) =
1

β
(1− e

2
β
x
) < 0 on (0,+∞).

Here, we ensure that a limit profile does exist, without describing it yet. The following lemma holds

Lemma 4.2 There exists β0 > 0 such that for all β ∈ (0, β0), the solution of (4.3) satisfies : for all
t > 0,

0 < uβ(t) < 1

and for all T > 0, ∫ T

0
|u′β(t)|dt ≤ 2T + 1.

Moreover, there exist a sequence βn which converges to 0 and a function P such that

• 0 ≤ P ≤ 1

• P ∈ BV , with BV the set of functions with bounded variations

• limn→+∞ uβn = P in L1(0, T ).
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Proof. Let us first prove that uβ > 0 for all t > 0. To this, assume that there exists a first time t0
such that u(t0) = 0, this means in particular that for all t < t0, u(t) > 0. Note that, as t0 is the first
time the function reach 0 from above, we must have by continuity of the derivative: u′β(t0) ≤ 0.

At this step, there are two possibilities :

• either uβ(t0 − β) > β, and in this case, as for all t ≥ 0, u′β(t) > −1, this implies that uβ(t0) > 0
which is incompatible with the fact that u(t0) = 0;

• either uβ(t0 − β) ≤ β, and in this case, because f is decreasing, we obtain that

u′β(t0) ≥ −1 + e
1
β
+f(β)

,

but f(β) = 1− 1
2e

2 and so, for β small enough,

u′β(t0) ≥ e
1
2β

which is in contradiction with u′β(t0) ≤ 0.

Hence, for all t > 0, we have uβ(t) > 0.

Let us now prove that for all t > 0, uβ(t) < 1. To check this, it is enough to remark that if there
exists t0 > 0 such that uβ(t0) = 1, then because f < 0, we have u′β(t0) < 0, hence there exists t1 > 0
such that for all t ∈ (t0, t1), uβ(t) < 1. Therefore, for all t > 0, uβ(t) < 1.

To prove uniform estimates on the derivative of uβ, we first integrate Equation (4.3) between 0 and
T , and obtain that

uβ(T )− uβ(0) = −T +

∫ T

0
e

1
β
(1−uβ(t))+f(uβ(t−β))dt.

Hence, ∫ T

0
e

1
β
(1−uβ(t))+f(uβ(t−β))dt ≤ T + 1

and so ∫ T

0
|u′β(t)|dt ≤ 2T + 1

Which ends the proof of Lemma 4.2. �

4.2 Description of the qualitative properties of uβ

To describe the profile P , let us come back to a more precise description of the dynamic related to
the delay equation associated to uβ.

When the solution starts at the value 1, the solution first decays down to a local minimum which is
smaller than the stationary state. The following Lemma describe the asymptotic pace of such decay
with respect to β.

Lemma 4.3 Let I be an interval of R+. Assume that for all t ∈ I,

uβ(t− β) ≥ uβ +
β

2
,

then, for all t ∈ I, the following estimate holds

− 1 ≤ u′β(t) ≤ −1 + e
1
β
(1−e)+1

. (4.6)
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Proof. Let us first remark that, because we always have u′ ≥ −1, this implies that

uβ(t) ≥ uβ(t− β)− β,
hence, this implies that

u′β(t) ≤ −1 + e
1
β
(1−uβ(t−β))+1+f(uβ(t−β)).

Now, if we consider the function g given by

g(x) =
1

β
(1− x) + 1 + f(x) =

1

β
+ 1− 1

2
e

2
β
x
,

then g′(x) < 0, hence g is strictly decreasing. We deduce that while u(t− β) ≥ uβ + β
2 , we have

u′β(t) ≤ −1 + eg(uβ+
β
2
).

But,

g(uβ +
β

2
) =

1

β
(1− e) + 1

which proves Lemma 4.3 �

Then, the solution grow rapidly. The following Lemma provides a quantitative grasp on the phe-
nomenon.

Lemma 4.4 Let ε > 0. Let I be an interval of R+. Assume that for all t ∈ I,

uβ(t− β) ≤ uβ −
β

8
and uβ(t) ≤ 1− e−

1
4 − ε,

then, for all t ∈ I, the following estimate holds

u′β(t) ≥ −1 + e−
1
8

(
2

β

) 1
2

e
ε
β .

Proof. Because

uβ(t− β) ≤ uβ −
β

8
and f decreasing, we have

u′β(t) ≥ −1 + e
1
β
(1−uβ(t))+f(uβ−β8 ).

But

f(uβ −
β

8
) =

1

2
log(

2

β
)− 1

8
− 1

β
e−

1
4 .

Hence, while uβ(t) ≤ 1− e−
1
4 − ε, we have

u′β(t) ≥ −1 + e−
1
8

(
2

β

) 1
2

e
ε
β

which proves Lemma 4.4. �

Now, we are going to prove a stability estimate on Equation (4.3). As the solution goes down below
the fading uβ, we want to show that small initial conditions give stable patterns. The goal is to prove
later than the rapid growth phase gives a stable asymptotic maximum value. More precisely, the
following result holds.
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Lemma 4.5 Let u1, u2 be two solutions of Equation (4.3) and let a time t such that there exists two
constants C and α1 > 0 independent of β and a value β0 > 0 small enough such that for all β ∈ (0, β0),

|u1(s)− u2(s)| ≤ Ce−α1β−1 ∀s ∈ (t− β, t), (4.7)

Assume that there exists k ∈ N such that for all s ∈ (t− β, t+ kβ)

|u1(s)| ≤ uβ + Cβ or |u2(s)| ≤ uβ + Cβ. (4.8)

Then, there exists α2 > 0 independent of β such that for all β ∈ (0, β0), for all s ∈ (t, t + (k + 1)β),
the following estimate holds

|u1 − u2(s)| ≤ e−α2β−1
. (4.9)

Proof. Without loss of generality, with assumption (4.8), we can assume that for all s ∈ (t− β, t)
|u1(s)| ≤ uβ + Cβ.

We have for all s ≥ t

(u1 − u2)′(s) = e
1
β
(1−u1(s))ef(u1(s−β)) − e

1
β
(1−u2(s))ef(u2(s−β))

and so

(u1 − u2)′(s) = (u′1(t) + 1)(1− e(f(u2)−f(u1))(s−β)) + (u′2(t) + 1)(e
1
β
(u2−u1)(s) − 1).

Multiplying the above equation by u1 − u2, we obtain that

1

2

(
(u1 − u2)2

)′
(s) = (u′1(s)+1)(1−e(f(u2)−f(u1))(s−β))(u1−u2)+(u′2(s)+1)(eβ

−1(u2−u1)(s)−1)(u1−u2)(s).

As

(u′2(s) + 1)(eβ
−1(u2−u1)(s) − 1)(u1 − u2)(s) ≤ 0,

we deduce that(
(u1 − u2)2

)′
(s) ≤ (u′1(s) + 1)

(∣∣∣∣1− ef(u2(s−β))−f(u1(s−β))∣∣∣∣2 + (u1 − u2)2
)
.

But, with Lemma 4.2, we know that there exists a constant C1 > 0 such that for all s ∈ (t, t+(k+1)β)

e
∫ s
t 1+u′1(w)dw ≤ C1.

By Gronwall inequality, we then obtain that for all s ∈ (t, t+ (k + 1)β), the following estimate holds

(u1 − u2)2(s) ≤ C1

(
(u1 − u2)2(t) + ‖1− ef(u2)−f(u1)‖2L∞(t−β,s−β)

)
.

and so there exists a constant C2 > 0 such that for all s ∈ (t, t+ (k + 1)β)

(u1 − u2)2(s) ≤ C2

(
e−2α1β−1

+ ‖1− ef(u2)−f(u1)‖2L∞(t−β,s−β)

)
. (4.10)

Let us deal with the term

‖1− ef(u1)−f(u2)‖L∞(t−β,s−β).

As with assumption (4.8),

|u1(s)| ≤ uβ + Cβ,

we obtain that for all s ∈ (t− β, t)

|f(u1)− f(u2)|(s) ≤ Cβ−1e−α1β−1
+

1

2
e2β
−1(uβ+Cβ)(1− e2β−1(u2−u1)).
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But

e2β
−1(uβ+Cβ) ≤ e2C 2

β
.

Hence, for all s ∈ (t− β, t), there exist constants C3, C4 > 0 such that

‖1− ef(u1)−f(u2)‖L∞(t−β,s−β) ≤ C3‖f(u1)− f(u2)‖L∞(t−β,s−β)
≤ C4

1
β2 e
−α1β−1

For β small enough we have

e−2α1β−1
= e−α1β−1

e−α1β−1
6

1

β
e−α1β−1

.

Hence, coming back to estimate (4.10), we obtain that for all s ∈ (t, t+ β), there exists a constant C5

such that

|u1 − u2|(s) ≤ C5
1

β2
e−α1β−1

.

By induction, we then obtain that there exists a constant C6 such that for all s ∈ (t− β, t+ kβ)

|f(u1)− f(u2)|(s) ≤ C6

(
1

β

)2k+2

e−α1β−1

and so there exists a constant C7 > 0 such that for all s ∈ (t− β, t+ (k + 1)β)

|u1 − u2|(s) ≤ C7

(
1

β

)2k+2

e−α1β−1
.

The constant C7 being independent of β, we can choose β0 so to have, for all β ∈ (0, β0),

C7

(
1

β

)2k+2

≤ 1,

which conclude the proof of Lemma 4.5. �

4.3 Description of the profile P .

The following Theorem holds.

Theorem 4.6 Assume that uβ(−β, 0) ≡ 1 and let T > 2. Then, there exists a constant CM > 0 such
that the profile P has the following form

P (t) = 1− t on (0, 1)

P (t) = CM + 1− t on (1, 1 + CM )

and P is CM periodic on (1, T ).

Proof.

Step 1: proof of the shape of the profile on (0,1). To this, we are going to prove that u′(β) converges
uniformly to −1 on the interval [0, uβ(0)− ε], for all ε > 0.
First, note that uβ tends to 0 when β goes to 0. Let ε > 0. Since u′β ≥ −1, we can choose β small
enough in order to have for all t ∈ [−β, uβ(0)− ε],

uβ(t) ≥ uβ +
β

2
.
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Then, using Lemma 4.3, we deduce that for β small enough, for all t ∈ [0, 1− ε]

−1 ≤ u′β(t) ≤ −1 + e
1
β
(1−e)+1

,

which proves the result.

Step 2: Description of the discontinuity of P at t = 1 via uβ. To understand what happens at the
point 1 at the limit when β goes to 0, let us describe more precisely some qualitative properties of the
function uβ. More precisely, the following Lemma holds

Lemma 4.7 Assume that uβ(−β, 0) ≡ 1. The following properties hold

• Let t0(β) be the first time such that u′β(t0(β)) = 0. Then, uβ(t0(β)) ≤ uβ− β
4 is a local minimum.

Moreover, we have

1− uβ − 2β ≤ t0(β) ≤ 1− uβ + 2β.

• There exists a constant C > 0 independent of β and a minimal time t1(β) with t0(β) + β >
t1(β) > t0(β) such that

uβ(t1(β)) ≥ C.

• There exists t2(β) ∈ [t1, t1 + β) such that

C1(β) := uβ(t2(β)) = sup
t∈(t0,t1+β)

uβ(t). (4.11)

Moreover u′β converges uniformly to −1 on [t1 + β, t1 + β + C1(β)− ε], for all ε > 0.

Proof of Lemma 4.7. Let us prove the first property of Lemma 4.7. Let us first remark that with
estimate (4.6), if we consider the first time t such that u(t− β) = uβ + β

2 , then as

u′β(s) ≤ −1 + e
1
β
(1−e)+1

for all s ∈ (0, t], this implies in particular that if β is small enough the derivative is close enough
to −1 so to have uβ(t) ≤ uβ − β

4 and so at the first time t0(β) > t such that u′β(t0) = 0, we have

uβ(t0) < uβ − β
4 . Let us now prove that t0(β) is a local minimum. To this, let us derivate Equation

(4.3), we find that

u′′β(t0) = u′β(t0 − β)f ′(u(t0 − β))e
1
β
(1−uβ(t))+f(uβ(t−β)).

As f ′ < 0 and u′β(t0 − β) < 0, we deduce that u′′β(t0) > 0 and hence t0(β) is a local minimum. The
proof of the fact that

1− uβ − 2β ≤ t0(β) ≤ 1− uβ + 2β

is a direct consequence of Lemmas 4.3 and 4.4.

Let us now prove the second property of Lemma 4.7. To this, we remark that as uβ(t0) < uβ − β
4 , and

u′ ≥ −1, then, for all t ∈ (t0 − β
8 , t0), we have uβ(t) ≤ uβ − β

8 . this implies that on (t0 + 7β
8 , t0 + β),

we can apply Lemma 4.4. Let ε > 0 small enough. Hence, while uβ(t) ≤ 1− e−
1
4 − ε, we have

u′β(t) ≥ −1 + Ce
ε
β .

Moreover, integrating the above estimate on an interval of size β, we conclude that there exists
t1 ∈ (t0, t0 + β) such that uβ(t) ≥ 1− e−

1
4 − ε.
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To prove the third property of Lemma 4.7, we observe that as u′β ≥ −1, on (t1, t1 + β),

uβ(t) ≥ 1− e−
1
4 − β − ε.

Hence, using estimate (4.6), we deduce that while u(t − β) ≥ uβ + β
2 , uβ is strictly decreasing. We

deduce that there exists a time t2(β) ∈ [t1, t1 + β) such that

C1 := uβ(t2(β)) = sup
t∈(t0,t1+β)

uβ(t),

with uβ satisfying estimate (4.6) on [t1 + β, t1 + β + C1(β) − ε(β)] with ε(β) → 0 when β goes to 0.
We then deduce that u′β converges uniformly to −1 on [t1 + β, t1 + β +C1(β)− ε], for all ε > 0 which
ends the proof of Lemma 4.7. �

Step 3: Proof of the CM periodicity of P . With Lemma 4.7, we know that the shape of P is a function
piecewise linear with a tangent equal to −1, that the function decrease until reaching the value 0 and
that the function has a jump just after reaching the value 0. We have to prove that this jump is always
the same at each step to obtain the periodicity property.
To do this, we first observe that, on the one hand, up to a subsequence, C1(β) defined in (4.11)
converges to a value CM > 0 uniformly bounded above. To prove that CM is exactly the jump of P
at the value 1, we observe that, as u′β ≥ −1, we know that for all t ∈ (t2(β), t1(β) + β),

C1(β)− β ≤ uβ(t) ≤ C1(β).

On the other hand, combining Lemmas 4.7 and 4.3, we know that there exists a first time t ∈ [1, 2]
such that we have for all s ∈ (t, t+ β)

uβ(s) = uβ +
β

2
− s+O(e(1−e)β

−1
).

Hence, to prove that P is periodic, we have to prove that by taking an initial data such that for
s ∈ (−β, 0),

u1(s) = uβ +
β

2
− s

and another initial data such that for s ∈ (−β, 0),

u2(s) = uβ +
β

2
− s+O(e(1−e)β

−1
),

then the maximal values C1
1 (β) and C2

1 (β) defined in (4.11), associated to u1 and u2 given by the third
step of Lemma 4.7 are such that

lim
β→0

C1
1 (β) = lim

β→0
C2
1 (β).

To prove this, we first use Lemma 4.7 which implies that there exists t12(β) and t22(β) such that

u1(t
1
2(β)) = C1

1 (β) and u1(t
2
2(β)) = C2

1 (β).

Moreover, we know that there exists a constant C independent of β such that

|t12(β)|+ |t22(β)| ≤ Cβ.
We can assume without loss of generality that t22(β) ≥ t12(β). By the contraposition of Lemma 4.3, we
know that

u2(t
2
2 − β) ≤ uβ +

β

2
.
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Hence, again, because u′2 ≥ −1, this implies that for all s ∈ (t22 − 2β, t22 − β),

u2(s) ≤ uβ +
3

2
β.

Hence, we are in the setting of Lemma 4.5 as soon as t ≤ t22 − β. Moreover, using that

|t12(β)|+ |t22(β)| ≤ Cβ,
we obtain that there exists a constant α > 0 such that for all s ∈ (−β, t22)

|u1(s)− u2(s)| ≤ e−αβ
−1
,

which implies that necessarily

lim
β→0

C1
1 (β) = lim

β→0
C2
1 (β).

This ends the proof of Theorem 4.6. �

Proof of Theorem 4.1. This result is a direct consequence of Theorem 4.2 and Lemma 4.6. �

5 Conclusion

In this article, we studied the periodic solutions of the delayed NNLIF model. Previous numerical
simulations had indicated that the delayed NNLIF model can give rise to periodic solutions in the
inhibitory case (b < 0), which is of tremendous importance for the understanding of fast global
oscillations in networks of weakly firing inhibitory neurons. There wasn’t yet any analytical insight
on this topic. In the simulations, these periodic solutions exhibit a Gaussian shape.

Based upon heuristic arguments, partial results and numerics, we introduced an associate difference-
differential equation which depicts the periodic movement of the center of the Gaussian wave. We
prove rigorously that there exist periodic solutions to this associate equation.

Since our partial results indicate that the associate equation is valid asymptotically in b→ −∞, we
provide a rigorous results on the asymptotic behaviour of these approximate periodic solutions. The
asymptotic profile is fully characterised.

We didn’t address two difficult open questions. First, in order to complete our partial results on
the asymptotic convergence of the periodic solutions of the complete NNLIF system towards our
approximate Gaussian wave, it remains to prove Conjecture (2.4). This will be the subject of further
research and it will require the development of new techniques. Then, we only portrayed the inhibitory
case b < 0. The results of [15] in the excitatory random discharge model indicate that our method
could apply when b > 0, but in this case the shape of the solutions could be more complex than a
Gaussian wave and there is no possibility to proceed asymptotically.

Note also that we investigated a bifurcation of Hopf time in term of the parameter d. Previous
heuristic studies (e.g. [5]) indicate that there is also a Hopf bifurcation in term of the parameter b.
Another subject for future investigation is to properly characterise the (b, d) two-parameters bifurca-
tion of our associate difference-differential equation which we expect to be of Hopf-Hopf type.
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