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ABSTRACT
Multi-spectral images are crucial to detect and to understand phe-
nomena in marine observation. However, in coastal areas, these
phenomena are complex and their analyze requires multi-spectral
images with both a high spatial and spectral resolution. Unfortu-
nately, no satellite is able to provide both at the same time. As a
consequence, multi-sharpening techniques—a.k.a. fusion or super-
resolution of multi-spectral and/or hyper-spectral images—were
proposed and consist of combining information from at least two
multi-spectral images with different spatial and spectral resolutions.
The fused image then combines their best characteristics. Various
methods—based on different strategies and tools—have been pro-
posed to solve this problem. This article presents a comparative re-
view of fusion methods applied to Sentinel-2 MSI (13 spectral bands
with a spatial resolution ranging from 10 to 60 m) and Sentinel-3
OLCI (21 spectral bands with a spatial resolution of 300 m) images.
Indeed, both satellites are extensively used in marine observation
and, to the best of the authors’ knowledge, the fusion of their data
was partially investigated (and not in the way we aim to do in this
paper). To that end, we provide both a quantitative analysis of the
performance of some state-of-the-art methods on simulated images,
and a qualitative analysis on real images.

Index Terms— Image fusion, Remote sensing, Sentinel-2 MSI,
Sentinel-3 OLCI, Simulations, Real data

1. INTRODUCTION

The satellite observation of our planet knew significant instrumen-
tal advances for several decades, with consequent developments in
terms of spatial resolution—e.g., in water remote sensing with high
spatial resolution (10–60 m)—and in terms of spectral resolution
(hyperspectral imagery). However, the Signal-to-Noise Ratio (SNR)
of a Multi-Spectral or Hyper-Spectral Imaging (MSI/HSI) sensor is
proportional to the ratio between the sensor area and the number of
observed spectral bands. Therefore, to maintain a constant SNR, in-
creasing the number of spectral bands in an hyper-spectral image im-
plies a decrease in spatial resolution. As a consequence, our planet is
currently observed by MSI systems having a very good spatial res-
olution but a low spectral resolution and by HSI systems having a
very good spectral resolution but a low spatial resolution.

In remote sensing applied to water color, Sentinel-2 MSI and
Sentinel-3 Ocean and Land Color Instrument (OLCI) are extensively
used. As shown in Fig. 1—which exhibits the spectral band posi-
tions and widths of both instruments—for the considered applica-
tion, they have 13—with 10, 20, or 60 m spatial resolution—and 21
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Fig. 1. Examples of Sentinel-2 and Sentinel-3 reflectance spectra.

usable spectral bands—with 300 m spatial resolution—in the vis-
ible and near-infrared range, respectively. Both instruments allow
to map several variables describing the biogeochemical dynamics of
the marine environment, e.g., Chlorophyll A, Suspended Matter, or
Organic Carbon. However, the study of specific environments—such
as coastal or estuarine areas—requires observations at a sufficiently
fine spatial scale and, at the same time, at a fine spectral resolution,
which is not possible using Sentinel-2 or Sentinel-3 alone.

Multi-sharpening [1] or multi-sensor image fusion is the pro-
cess of combining relevant information from two or more MSI/HSI
images into a single image with complementary spatial and spec-
tral resolution characteristics [1, 2]. To that end, several methods
have been proposed in the literature and are based on, e.g., com-
ponent substitution—using, e.g. Gram-Schmidt [3], the Sylvester
equation [4], or Principal Component Analysis [5]—coupled Non-
negative Matrix/Tensor Factorization (NMF/NTF)—e.g., [1, 6, 7]—
and more recently on deep learning, e.g., in [8]. However, to the
best of the authors knowledge, fusing Sentinel-2 MSI and Sentinel-3
OLCI images was not yet considered in the literature. Indeed, even
if in [9], the authors suggested a method for the fusion of data from
Sentinel-2 and Sentinel-3, they proposed in practice an approach
to combine Sentinel-2 and Moderate Resolution Imaging Spectrora-
diometer (MODIS) images. The fusion of Sentinel-2 and Sentinel-3
data is let for future work in the conclusion of [9].

Moreover, the authors of [10] considered time series of Sentinel-
2 and Sentinel-3 images to create daily Sentinel-2 data, i.e., they do
not aim to create new multi-spectral images combining the best char-
acteristics of Sentinel-2 and Sentinel-3. On the contrary, they use the
same spectral bands in Sentinel-2 and Sentinel-3 in order to generate



a better spatial resolution of Sentinel-3 images. As a consequence,
the objective of these authors slightly differs from ours.

As Sentinel-2 has several bands with coarse to fine spatial reso-
lutions, the super-resolution of Sentinel-2 images has also been con-
sidered, e.g., in [11]. The proposed approach is based on a deep con-
volutional neural network including a residual neural network for the
fusion problem modeling. However, taking into account Sentinel-3
data was not considered by the authors of [11].

As a consequence, the goal of this paper is to provide a first
comparison of the performance of state-of-the-art multi-sharpening
techniques applied to Sentinel-2 and Sentinel-3 data. While an ob-
jective comparison of such methods on real data is challenging—
except if we aim to cross-validate their performance, as proposed in,
e.g., [12] for HSI unmixing—it remains possible on semi-realistic
simulations. We thus aim to propose (i) a first quantitative analysis
of the performance of some state-of-the-art techniques on simulated
data and (ii) a qualitative analysis of their performance on real data.

The remainder of the paper reads as follows. In Section 2, we
briefly introduce the tested methods in this paper. Section 3 (respec-
tively, Section 4) then presents the simulated dataset (respectively,
some real dataset) and the reached multi-sharpening performance.
Lastly, we conclude and discuss about future work in Section 5.

2. TESTED MULTI-SHARPENING METHODS

In this paper, we evaluate the performance of image fusion meth-
ods of hyperspectral and multispectral images. To that end, we
consider classical and modern multi-sharpening techniques, i.e., (i)
based on component substitution—and particularly Gram-Schmidt
(GS) [3] and Gram-Schmidt Adaptative (GSA) [13]—(ii) coupled
Non-negative Matrix Factorization (NMF) [6], (iii) Fast fusion based
on Sylvester equation (FUSE) [4], (iv) Generalized Laplacian pyra-
mid with hypersharpening (GLPHS) [14], (v) Smoothing filter-based
intensity modulation with hypersharpening (SFIMHS) [15], (vi) La-
nara’s work presented in ICCV’15 (ICCV’15) [16], and (vii) Maxi-
mum a Posteriori estimation with a Stochastic Mixing Model (MAP-
SMM) [17]. All these algorithms are provided in the HSMSFu-
sionToolbox1 [1]. We decided not to take into account both the
“ECCV’14” and “HySure” which were also provided in this toolbox.
Indeed, we faced some parameter tuning and execution time issues
with the former while the later could not provide any enhancement
in our experiments that we do not show because of space constraints.
All the tests presented in the remainder of the paper were performed
using MATLAB R2019a on Windows 10 x64 machines on a lap-
top equipped with an Intel i9-9880H CPU @ 2.30GHz with 32.0GB
RAM on Windows 10 x64.

The GS transformation is fast and easy to implement and gen-
erates fused images with high integration quality color and spatial
detail. GS is a commonly used method [1, 3] when a low-spatial-
resolution image is sharpened by adding spatial details obtained by
multiplying the difference between a high-spatial-resolution image
and a synthetic intensity component by a band-wise modulation co-
efficient. The improvement lies in computing the synthetic inten-
sity component by performing a linear regression between a high-
resolution image and lower-resolution bands to mitigate spectral dis-
tortion. GSA integrates this technique into the GS algorithm [13].
CNMF [6] unmixes the low-spatial-resolution HSI data and the high-
spatial-resolution MSI data alternately using the relation between

1The toolbox may be downloaded at https://
openremotesensing.net/wp-content/uploads/2017/11/
HSMSFusionToolbox.zip.

sensor properties for the NMF initializations. CNMF alternately
unmixes these two inputs images by NMF to estimate the spectral
signatures of endmembers and the high-resolution abundance maps,
respectively. CNMF starts by unmixing the low-resolution image
using vertex component analysis (VCA) to initialize the endmem-
ber signatures. The final high-resolution HSI data is obtained as the
product of the spectral signatures and the high-resolution abundance
maps. FUSE combines a high-spatial low-spectral resolution image
and a low-spatial high-spectral resolution image [4]. FUSE utilizes
a Sylvester equation to solve the maximization problem of the likeli-
hoods obtained from the forward observation models. A closed-form
solution for the Sylvester equation improved computational perfor-
mance. In GLPHS fusion, spatial details of each low-resolution band
are obtained as the difference between a high-resolution image and
its low-pass version multiplied by a global gain factor, which can
be computed globally [14]. A Gaussian filter, matching the modula-
tion transfer function (MTF) of a lower-resolution sensor, is used for
low pass filtering. SFIMHS [15] is based upon a simplified model
for solar radiation and land surface reflection, SFIMHS sharpens the
low-resolution image by multiplying an upscaled lower resolution
image by a ratio between a higher resolution image and its low-pass
filtered image (with a smoothing filter) on a pixel-by-pixel basis [2].
Spatial details can be modulated to a co-registered lower resolution
multispectral image without altering its spectral properties and con-
trast. SFIMHS can be performed on individual HS bands. Simi-
lar to CNMF [6], Lanaras’s algorithm jointly unmixes the two in-
put images into the spectral signatures of endmembers and (pure re-
flectance spectra of the observed materials) the associated fractional
abundances (mixing coefficients). A projected gradient method was
proposed to alternately update the endmember signatures and the
high-resolution abundances by solving the two unmixing problems
of the input HS-MS images, respectively. Simplex identification via
split augmented Lagrangian (SISAL) is used to initialize the end-
members and sparse unmixing by variable splitting and augmented
Lagrangian (SUnSAL) is adopted to obtain initial abundances. The
formulation leads to a coupled matrix factorization problem, with a
number of useful constraints imposed by elementary physical prop-
erties of spectral mixing. The MAP-SMM algorithm [17] adopted
an SMM to estimate the underlying spectral scene statistics or, more
specifically, the conditional mean vector and covariance matrix of
the high-resolution HS image with respect to the MS image. The
average spectrum, covariance matrix, and abundance map of each
endmember are derived from the low-resolution HS image. A MAP
objective function is formulated to optimize the high-resolution HS
data relative to the input images based on the SMM statistics. The
MAP-SMM algorithm is performed in the principal component sub-
space of the low-resolution HS image.

It is worth mentioning that all the above state-of-the-art methods
were proposed for the fusion of two multi- or hyperspectral images
with different spatial and spectral resolutions. However, Sentinel-2
MSI data already consist of several spatial resolutions (10, 20, and
60 m). As a consequence, applying the above multi-sharpening tech-
niques to Sentinel-2 and Sentinel-3 can only be performed for one
given Sentinel-2 resolution. As a consequence, we will show below
the fusion performance for the three spatial resolutions.

3. PERFORMANCE OF THE TESTED METHODS ON
SYNTHETIC DATA

Many studies have been published during the last years focusing on
single-date, intra-sensor data fusion. As presented in [1, 2], the re-
searchers evaluate the performance of fusion algorithms mainly on



images of the following data sets: AVIRIS Indian Pines, AVIRIS
Cuprite, and ROSIS-3 University of Pavia [1, 2]. In our study, we
aim to evaluate the performance of fusion algorithms on Sentinel-2
MSI and Sentinel-3 OLCI remote sensing images. This section thus
provides a brief description of the synthetic dataset used in the exper-
iments. To validate the feasibility of Sentinel-3 and Sentinel-2 image
fusion, we propose to consider a purely linear model to generate syn-
thetic Sentinel-3 and Sentinel-2 images using AVIRIS2 endmembers
for Ocean water and Seawater from USGS spectral library3 [18]. We
then choose 5 endmembers from this library, each of them being re-
lated to an ocean or a seawater spectrum. From these endmembers,
we extract 21 spectral bands (respectively, 13) which are the closest
to Sentinel-3 (respectively, Sentinel-2) ones.

Then, for each endmember, we generate a synthetic abundance
map using the Gaussian Fields method [19]. Each of theses maps
is of dimension 3000 × 3000 and is assumed to have a 10 m spa-
tial resolution. Combining them with the above endmembers al-
lows generate three high-resolution Sentinel-3-like images, i.e., a
3000×3000×21 datacube. We then apply a Gaussian filter to down-
sample the spatial content and we derive both a 1500 × 1500 × 21
and a 500× 500× 21 datacubes that we aim to estimate from their
downsampled versions. We then generate the observed data by (i)
downsampling—by a factor 30—the 3000 × 3000 maps by using
a Gaussian filter, in order to derive the observed 100 × 100 × 21
synthetic Sentinel-3, with 300 m spatial resolution. We then de-
rive the observed synthetic Sentinel-2 datacube by applying to the
3000× 3000 abundance maps a downscale factor of two (with 20 m
spatial resolution) and six (with 60 m spatial resolution) and by con-
sidering the corresponding spectral bands used in the real Sentinel-2
imagers, i.e., four bands with 10 m, six bands with 20 m, and three
bands with 60 m spatial resolution of Sentinel-2.

In order to assess the performance of the tested methods, we use
some classical quantitative performance measures [1,20], i.e., (i) the
Peak Signal-to-Noise Ratio (PSNR)—which is the ratio between the
highest possible signal energy and the noise energy—(ii) the Spec-
tral Angle Mapper (SAM)—which is a pixelwise measure of the an-
gle between the reference spectrum and the fused one. SAM values
near zero indicate local high spectral quality and we use the average
SAM value with respect to pixels for the quality index of the entire
data set—(iii) the ERGAS measure—i.e., a normalized average error
of each band of processed image—and (iv) Q2n which is a general-
ization of the universal image quality index (UIQI) and an extension
of the Q4 index to HS images based on hypercomplex numbers [1].

As already explained, the tested state-of-the-art methods are de-
signed to fuse two datacubes with two distinct resolutions. However,
Sentinel-2 already has 3 different spatial resolution at different wave-
lengths. One must thus choose a target spatial resolution among the
three available, i.e., 10, 20, or 60 m. Table 1 shows the obtained
results for each of these resolutions. They show that FUSE is al-
most always outperforming the other techniques. Then—except for
60 m resolution where GLPHS outperforms FUSE—GLPHS, MAP-
SMM, and SFIMHS provide some performance slightly lower than
FUSE. Lastly, the other tested methods provide some performance
significantly lower than the former. Let us emphasize again that
these results were obtained with simulations in which the purely lin-
ear mixing model is assumed. However, such an assumption might
not be satisfied in practice.

2See https://aviris.jpl.nasa.gov/.
3This library is accessible at https://crustal.usgs.gov/

speclab/AV14.php.

Method PSNR SAM ERGAS Q2n
Perf. obtained with 60 m spatial resolution

GSA 11.3 11.8811 8.969 1
FUSE 23.5 0.26654 1.6697 1
CNMF 15.3 0.49605 4.3611 1
GLPHS 23.7 0.26208 1.6329 1
SFIMHS 22.8 0.28683 1.8134 1
ICCV15 18.8 0.39035 2.8472 1

MAP-SMM 23.2 0.28777 1.7412 1
Perf. obtained with 20 m spatial resolution

GSA 9.8 9.4837 2.9385 1
FUSE 21.6 0.34359 0.70224 1
CNMF 8.4 0.47334 3.4464 0.67949
GLPHS 21.4 0.36691 0.71696 1
SFIMHS 21.1 0.35972 0.74190 1
ICCV15 18.2 0.45740 1.0388 1

MAP-SMM 21.0 0.36554 0.75128 1
Perf. obtained with 10 m spatial resolution

GSA 17.4 0.8112 0.56697 0.99774
FUSE 19.9 0.4321 0.42869 1
CNMF 15.2 0.60021 0.74173 1
GLPHS 19.3 0.48046 0.46072 1
SFIMHS 19.6 0.44427 0.44506 1
ICCV15 17.3 0.55533 0.57638 1

MAP-SMM 19.2 0.43245 0.44757 1

Table 1. Performance of the fusion methods on simulations.

4. PERFORMANCE OF THE TESTED METHODS ON
REAL DATA

We now investigate the performance reached by the tested methods
on real Sentinel-2 and Sentinel-3 datasets4. The selected study area
is located in the islands of The Bahamas in the Atlantic Ocean. The
Tongue of the Ocean is a deep-water basin in the Bahamas that is
surrounded to the East, West, and South by a carbonate bank known
as the Great Bahama Bank. The deep blue water of the Tongue is
a stark contrast to the shallow turquoise waters of the surrounding
Bank. Generally, waters that are optically shallow (e.g., Grand Ba-
hama Bank) appear blue–green due to high bottom reflectance con-
tributions while optically deep waters appear dark blue. The centre
of the Bahamas image is located at the following coordinates: Lat:
26◦35’58.50”N, and Lon: 77◦28’29.93”W (DMS), Projection UTM,
Zone 18 N, and World Geodetic System 1984.

To assess the performance of the tested methods, as we do not
have any ground truth information, we propose to compare their
multi-sharpening outputs with those obtained using the ENVI im-
plementation of GS [3]. To do so, we use the same performance cri-
teria as in the previous section. However, these results must be care-
fully interpreted. Indeed, a good performance index—i.e., a high
PSNR, a low SAM, a low ERGAS or a high Q2n—only indicates
that the fusion result obtained with a tested method is close to the
one reached by GS. On the contrary, the fact that one performance
index is “poor” only states that the reached performance is different
from GS. At this stage, we are not able to decide whether the per-
formance is “better” or “worse” than with GS. Table 2 summarizes
the obtained results. One may see that, for each given spatial resolu-

4They are publicly available at https://scihub.copernicus.
eu/dhus/#/home.



Method PSNR SAM ERGAS Q2n
Perf. obtained with 60 m spatial resolution

GSA 26.7 0.2518 20.9157 0.88583
FUSE 25.8 0.2154 19.8935 0.81807
CNMF 27.5 0.2046 16.7684 0.91749
GLPHS 25.6 0.2166 21.3205 0.93843
SFIMHS 25.6 0.2197 21.7276 0.87596
ICCV15 28.5 0.1887 14.054 0.95898

MAP-SMM 25.6 0.2196 21.48 0.91038
Perf. obtained with 20 m spatial resolution

GSA 23.9 0.2427 5.2917 0.86474
FUSE 18.8 0.2500 5.6916 0.80446
CNMF 21.7 0.2570 6.9271 0.75592
GLPHS 23.2 0.2406 5.8331 0.90253
SFIMHS 23.0 0.2420 5.9424 0.86716
ICCV15 23.3 0.2278 5.6937 0.93979

MAP-SMM 23.1 0.2465 5.8853 0.85204
Perf. obtained with 10 m spatial resolution

GSA 24.3 0.2550 2.6741 0.89361
FUSE 21.4 0.2596 2.7337 0.86143
CNMF 23.9 0.2492 2.7735 0.92034
GLPHS 23.3 0.2495 2.9307 0.86243
SFIMHS 23.2 0.2521 2.9953 0.86188
ICCV15 23.9 0.2289 2.6807 0.92013

MAP-SMM 14.7 0.2008 1.3722 0.99306

Table 2. Reached performance wrt GS output on real data.

tion, all the tested methods (except MAP-SMM for 10 m of spatial
resolution) provide a quite similar performance with respect to these
indices. We thus can state that they globally provide a quite similar
performance. However, when we visually look at the fused images,
one might see some specific behaviors, as we now discuss.

Due to space constraints, we only show the performance reached
for 60 m of spatial resolution. As the tested methods generate some
datacubes which are not easy to draw in a compact way, we propose
the following procedure. For each pixel, we average the amplitudes
along the spectrum axis. We then derive an image that we draw ac-
cording to the same scale. All these images are shown in Fig. 2. In
particular, Fig. 2(a) represents the original 1830×1830×3 Sentinel-
2 image that we aim to fuse with the 366× 366× 16 Sentinel-3 one
plot in Fig. 2(b). Figures 2(c) to 2(i) show the obtained fused im-
ages with the different tested methods. One may notice that most of
them provide some artefacts. In particular, FUSE seems to provide
the worst visual performance. Indeed, one notice some visible arte-
facts providing a kind of texture. Moreover, it also provides some
negative amplitudes which have no physical meaning. Then, please
notice that the Sentinel-3 image seem to provide more spatial infor-
mation that the Sentinel-2 one. This is probably due to the fact that,
even if both images were taken the same day, they were not taken
at the same time and that the considered Sentinel-2 data only con-
tain 3 spectral samples. However, CNMF and GSA seem to provide
a higher visual quality than the other methods. Both methods can
also partially remove clouds from Sentinel-3 images. Then, both
SFIMHS and MAP-SMM provide some similar images, with a vi-
sually good spatial information. Lastly, ICCV’15 seems to stick to
Sentinel-2 spatial information. However, this is not the case when
the spatial resolution is 10 m—not shown for space consideration—
where it provides the best visual information. Unfortunately, in the

absence of ground truth, it is hard to provide more information about
these results, which is a perspective discussed in the next section.

5. CONCLUSION AND PERSPECTIVES

In this paper, we presented a first comparative study of Sentinel-2
and Sentinel-3 image fusion methods. As the ratio between high and
low spatial resolutions increases, and for higher spatial resolution
(10m), the fusion performance decreases. According to the consid-
ered experiments, CNMF and ICCV’15 seem to be the more robust
tested methods. In future work, we aim to propose a new method
able to take into account all the bands of Sentinel-2 in order to pro-
vide a new multi-spectral image with 10-m spatial resolution and
Sentinel-3 spectral bands. Moreover, we aim to compare the above
methods and our future work with in situ measurements. To that end,
atmospheric correction [21] will be applied to Sentinel-2 and 3 data.
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