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Global Poincaré and Sobolev inequalities in (Ω • , d) are meant to give a quantitative meaning to [START_REF] Adams | Pure and Applied Mathematics (Amsterdam)[END_REF]. More precisely, if 1 ≤ p, q ≤ ∞, we say that a global Poincaré inequality holds on R N , if there exists a positive constant C = C(p, q) such that for every exact h-form ω on R N , belonging to L p , there exists a (h -1)-form φ such that dφ = ω and

φ L q ≤ C ω L p .
Shortly, we shall write that Poincaré p,q (h) inequality holds, or that the L q,p -cohomology vanishes. For further comments and applications, we refer to [START_REF] Pansu | Cup-products in l q,p -cohomology: discretization and quasi-isometry invariance[END_REF]. Notice that a homogeneity argument shows that, if 1 ≤ p < N , then we can take p ≤ q ≤ pN/(N -p).

In addition, we say that a global Sobolev inequality holds on R N , if for every exact compactly supported h-form ω on R N , belonging to L p , there exists a compactly supported (h -1)-form φ such that dφ = ω and

φ L q ≤ C ω L p .
Again, we shall write that Sobolev p,q (h) holds.

We point out that if u is a scalar function on R N (i.e. u ∈ Ω 0 ), then Poincaré p,q (1) and Sobolev p,q (1) for du are nothing but the usual Poincaré and Sobolev inequalities.

Besides global inequalities, it is natural to consider local inequalities, where the Euclidean space R N is replaced (for instance) with a Euclidean ball. If 1 < p < N , a local Poincaré inequality in de Rham complex has been proved by Iwaniec & Lutoborsky [START_REF] Iwaniec | Integral estimates for null Lagrangians[END_REF], and a Sobolev inequality for bounded convex sets has been proved by Mitrea, Mitrea & Monniaux [START_REF] Mitrea | The Poisson problem for the exterior derivative operator with Dirichlet boundary condition in nonsmooth domains[END_REF].

The notions of Poincaré and Sobolev inequalities can be weakened through the notions of interior inequalities. More precisely, we say that an interior Poincaré p,q (h) inequality holds on R N if there exists a fixed λ ≥ 1 large enough such that for every r > 0 small enough there exists a constant C = C(M, p, q, r, λ) such that for every x ∈ R N and every exact h-form ω on B(x, λr), belonging to L p , there exists a (h -1)-form φ on B(x, r) such that dφ = ω on B(x, r) and φ L q (B(x,r)) ≤ C ω L p (B(x,λr)) .

(2) Analogously, by interior Sobolev inequalities, we mean that, if ω is supported in B(x, r), then there exists φ supported in B(x, λr) such that dφ = ω and φ L q (B(x,λr)) ≤ C ω L p (B(x,r)) .

(3)

Here we use the word interior to stress the fact that inequality [START_REF] Baldi | A recursive basis for primitive forms in symplectic spaces and applications to Heisenberg groups[END_REF] provides no information on the behaviour of differential forms near the boundary of their domain of definition.

It turns out that in several situations, the loss on domain is harmless. This is for instance the case of L q,p -cohomological applications, see [START_REF] Pansu | Cup-products in l q,p -cohomology: discretization and quasi-isometry invariance[END_REF].

Relying on these weaker notions, we have been able to cover also the case p = 1 (see [START_REF]L 1 -Poincaré and Sobolev inequalities for differential forms in Euclidean spaces[END_REF]). The other endpoint result p = N , q = ∞, is more delicate. Indeed, it is well known that the interior Poincaré N,∞ (1) fails to hold in R N (see e.g. [START_REF] Wheeden | Measure and integral[END_REF], p. 484), and has to be replaced by the so-called Trudinger exponential estimate (see [START_REF] Trudinger | On imbeddings into Orlicz spaces and some applications[END_REF]) or by the more precise Adams-Trudinger inequality ( [START_REF] Wheeden | Measure and integral[END_REF], Theorem 15.30).

However, rather surprisingly, in [START_REF] Bourgain | New estimates for elliptic equations and Hodge type systems[END_REF] Bourgain & Brezis proved that a global Poincaré N,∞ (h) holds for 1 < h < N -1.

1.2. Heisenberg groups and Rumin's complex. In the last few years, the authors of the present paper have attacked the study of Poincaré and Sobolev inequalities in sub-Riemannian manifolds endowed with a "suitable" complex of differential forms (we remind that the data of a smooth manifold M and of a sub-bundle H ⊂ T M equipped with a scalar product g is called a sub-Riemannian manifold). See, e.g., [START_REF] Gromov | Carnot-Carathéodory spaces seen from within[END_REF], [START_REF] Montgomery | A tour of subriemannian geometries, their geodesics and applications[END_REF].

More precisely, we have considered differential forms of the so-called Rumin complex of Heisenberg groups: see [START_REF] Baldi | Maxwell's equations in anisotropic media and Carnot groups as variational limits[END_REF], [START_REF] Baldi | Gagliardo-Nirenberg inequalities for differential forms in Heisenberg groups[END_REF], [START_REF]Poincaré and Sobolev inequalities for differential forms in Heisenberg groups and contact manifolds[END_REF], [START_REF]L 1 -Poincaré inequalities for differential forms on Euclidean spaces and Heisenberg groups[END_REF], [START_REF]Orlicz spaces and endpoint Sobolev-Poincaré inequalities for differential forms in Heisenberg groups[END_REF]. The Heisenberg group H n , n ≥ 1, is the connected, simply connected Lie group whose Lie algebra is the central extensions

(4) h = h 1 ⊕ h 2 , with h 2 = R = Z(h),
with bracket h 1 ⊗ h 1 → h 2 = R being a non-degenerate skew-symmetric 2-form. Due to its stratification (4), the Heisenberg Lie algebra admits a one parameter group of automorphisms δ t ,

δ t = t on h 1 , δ t = t 2 on h 2 ,
which are counterparts of the usual Euclidean dilations in R N . Through exponential coordinates, H n can be identified with the Euclidean space R 2n+1 , endowed with the noncommutative product induced by the Campbell-Hausdorff formula. In this system of coordinates, the identity element e ∈ H n is the zero of the vector space R 2n+1 , and p -1 = -p.

In addition, in this system of coordinates, the Haar measure of the group is the (2n + 1)dimensional Lebesgue measure L 2n+1 . Heisenberg groups are the simplest nontrivial (i.e. non-commutative) instance of the so called Carnot groups, connected, simply connected and stratified Lie groups. Heisenberg groups can be viewed as sub-Riemannian spaces, where the sub-Riemannian structure is obtained by left-translating h 1 (we remind that the Lie algebra of H n can be identified with the tangent space to H n at e). In addition, Heisenberg groups are the local models of contact manifolds, since, according to a theorem by Darboux, every 2n + 1-dimensional contact manifold is locally contactomorphic to H n .

For a general review on Heisenberg groups and their properties, we refer for instance to [START_REF] Elias | Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals[END_REF], [START_REF] Gromov | Carnot-Carathéodory spaces seen from within[END_REF], [START_REF] Bonfiglioli | Stratified Lie groups and potential theory for their sub-Laplacians[END_REF], [START_REF] Th | Analysis and geometry on groups[END_REF]. The main properties of H n that we shall need in this paper will be presented below in Section 2. Here we limit ourselves to reminding that Heisenberg groups carry natural left-invariant metrics, either Carnot-Carathéodory distances as sub-Riemannian manifolds or, equivalently, Cygan-Korányi norms ρ (see (9) below). Throughout this paper we use systematically the Cygan-Korányi distance d(p, q) := ρ(p -1 • q). The distance d is homogeneous of degree one with respect to group dilations δ t , so that, if we denote by B(p, r) the Cygan-Korányi ball of radius r > 0 centered at p ∈ H n , then L 2n+1 (B(p, r)) = cr 2n+2 . In particular, this implies that the Hausdorff dimension of H n with respect to d equals Q := 2n + 2.

As a consequence of the stratification (4), the differential forms on h split into 2 eigenspaces under δ t , therefore de Rham complex lacks scale invariance under these anisotropic dilations. A substitute for de Rham's complex, that recovers scale invariance under δ t has been defined by M. Rumin, [START_REF] Michel Rumin | Formes différentielles sur les variétés de contact[END_REF].

Let h = 0, . . . , 2n + 1. Rumin's substitute for smooth differential forms of degree h are the smooth sections of a left-invariant vector bundle

E h 0 . If h ≤ n, E h 0 is a subbundle of Λ h H * . If h ≥ n, E h 0 is a subbundle of Λ h H ⊗(T M/H).
Rumin's substitute for de Rham's exterior differential is a linear differential operator d c from sections of E h 0 to sections of E h+1 0 such that d 2 c = 0. Further details about Rumin's complex are contained in Section 2.2 below. We refer to also to [START_REF] Michel Rumin | Formes différentielles sur les variétés de contact[END_REF], [START_REF] Baldi | Compensated compactness for differential forms in Carnot groups and applications[END_REF] [10] and [START_REF]Hypoellipticity, fundamental solution and Liouville type theorem for matrix-valued differential operators in Carnot groups[END_REF] for details of the construction.

We stress that the operator d c is a left-invariant differential operator of order 2 when acting on forms of degree n and of order 1 otherwise. This phenomenon will be a major issue in our results and will affect the proofs (think for instance of Leibniz formula) as well as the choice of the exponents p, q in our inequalities.

1.3. Poincaré and Sobolev inequalities: precise definitions. We can state now the notions of (global and interior) Poincaré and Sobolev inequalities in the setting of Rumin's complex.

Definition 1.1. If 1 ≤ h ≤ 2n + 1 and 1 ≤ p ≤ q ≤ ∞, we say that the global H-Poincaré p,q inequality holds in E h 0 if there exists a constant C such that, for every

d c - exact differential h-form ω in L p (H n ; E h 0 ) there exists a differential (h -1)-form φ in L q (H n , E h-1 0 ) such that d c φ = ω and φ L q (H n ,E h-1 0 ) ≤ C ω L p (H n ,E h 0 ) global H-Poincaré p,q (h). (5) 
Definition 1.2. Let B := B(e, 1) and B λ := B(e, λ). Given 1 ≤ h ≤ 2n + 1 and 1 ≤ p ≤ q ≤ ∞, we say that the interior H-Poincaré p,q inequality holds in E h 0 if there exist constants λ > 1 and C such that, for every

d c -exact differential h-form ω in L p (B λ ; E h 0 ) there exists a differential (h -1)-form φ in L q (B, E h-1 0 ) such that d c φ = ω and φ L q (B,E h-1 0 ) ≤ C ω L p (B λ ,E h 0 ) interior H-Poincaré p,q (h). (6) Definition 1.3. If 1 ≤ h ≤ 2n + 1, 1 ≤ p ≤ q ≤ ∞
, we say that the global H-Sobolev p,q (h) inequality holds if there exists a constant C such that for every compactly supported

d c -exact differential h-form ω in L p (H n ; E h 0 ) there exists a compactly supported differential (h -1)-form φ in L q (H n , E h-1 0 ) such that d c φ = ω and φ L q (H n ,E h-1 0 ) ≤ C ω L p (H n ,E h 0 )
global H-Sobolev p,q (h). [START_REF]Orlicz spaces and endpoint Sobolev-Poincaré inequalities for differential forms in Heisenberg groups[END_REF] Definition 1.4. Let B := B(e, 1) and B λ := B(e, λ). Given 1 ≤ h ≤ 2n, 1 ≤ p ≤ q ≤ ∞, we say that the interior H-Sobolev p,q (h) inequality holds if there exist constants λ > 1 and C such that for every compactly supported

d c -exact differential h-form ω in L p (B; E h 0 ) there exists a compactly supported differential (h-1)-form φ in L q (B λ , E h-1 0 ) such that d c φ = ω in B λ and φ L q (B λ ,E h-1 0 ) ≤ C ω L p (B,E h 0 ) interior H-Sobolev p,q (h). ( 8 
)
Here we have extended ω by 0 to all of B λ .

Remark 1.5. As in [START_REF]Poincaré and Sobolev inequalities for differential forms in Heisenberg groups and contact manifolds[END_REF], Corollary 5.21, an elementary scaling argument shows that, if h = n, 1 ≤ p < Q and q = pQ/(Q -p), or h = n, 1 ≤ p < Q/2 and q = pQ/(Q -2p) then the interior H-Sobolev p,q (h) implies the global H-Sobolev p,q (h) inequality.

Suppose 1 < h < 2n. If h = n, p = Q take q = ∞, and, h = n, p = Q/2 take q = ∞. We shall see later that (unlike in the case h = 1 or h = 2n), interior H-Sobolev Q,∞ (h) hold. Then, again the corresponding global inequalities hold, thanks to the same scaling argument.

In the sequel, we shall refer to the exponents q = pQ/(Q -p) or q = pQ/(Q -2p) according to the degree of the forms as to the sharp Sobolev exponent.

1.4. State of the art. In [START_REF]Poincaré and Sobolev inequalities for differential forms in Heisenberg groups and contact manifolds[END_REF] and [START_REF]L 1 -Poincaré inequalities for differential forms on Euclidean spaces and Heisenberg groups[END_REF] the following Poincaré and Sobolev inequalities have been proven. More precisely, [START_REF]Poincaré and Sobolev inequalities for differential forms in Heisenberg groups and contact manifolds[END_REF] deals with the case p > 1, whereas [START_REF]L 1 -Poincaré inequalities for differential forms on Euclidean spaces and Heisenberg groups[END_REF] covers the case p = 1.

Theorem 1.6 (Poincaré inequality). If 1 ≤ h ≤ 2n + 1, we have: i) if h = n + 1, 2n + 1 and 1 ≤ p < Q, then the interior H-Poincaré p,pQ/(Q-p) (h) holds; ii) if h = n + 1 and 1 ≤ p < Q/2, then the interior H-Poincaré p,pQ/(Q-2p) (n + 1) holds; iii) if h = 2n + 1 and 1 < p < Q, then the interior H-Poincaré p,pQ/(Q-p) (h) holds.
Analogous statements hold for global Poincaré inequalities on H n . Theorem 1.7 (Sobolev inequality). If 1 ≤ h ≤ 2n + 1, we have:

i) if h = n + 1, 2n + 1 and 1 ≤ p < Q, then the interior H-Sobolev p,pQ/(Q-p) (h) holds; ii) if h = n + 1 and 1 ≤ p < Q/2, then the interior H-Sobolev p,pQ/(Q-2p) (n + 1) holds; iii) if h = 2n + 1 and 1 < p < Q, then the interior H-Sobolev p,pQ/(Q-p) (h) holds.
Analogous statements hold for global Sobolev inequalities on H n . 1.5. Main results and sketch of the proofs. The aim of the present paper is to complete the results gathered in Section 1.4, by covering (when possible) the endpoints p = Q or p = Q/2 according to the degree of the forms.

Thus, the core of the present paper consists of the following theorems:

Theorem 1.8. If 2 ≤ h ≤ 2n + 1, we have:

i) if h = n + 1, then the interior H-Poincaré Q,∞ (h) holds; ii) if h = n + 1, then the interior H-Poincaré Q/2,∞ (n) holds.
Analogous statements hold for global Poincaré inequalities on H n .

Theorem 1.9. If 2 ≤ h ≤ 2n + 1, we have:

i) if h = n + 1, then the interior H-Sobolev Q,∞ (h) holds; ii) if h = n + 1, then the interior H-Sobolev Q/2,∞ (n) holds.
Analogous statements hold for global Sobolev inequalities on H n .

Remark 1.10. In Euclidean space R N it is well known that the interior Poincaré N,∞ (1) fails to hold (see e.g. [START_REF] Wheeden | Measure and integral[END_REF], p. 484), and has to be replaced with Trudinger's exponential estimate (see [START_REF] Trudinger | On imbeddings into Orlicz spaces and some applications[END_REF]) or the more precise Adams-Trudinger inequality ( [START_REF] Wheeden | Measure and integral[END_REF], Theorem 15.30).

Analogous estimates in Heisenberg groups can be found e.g. in [START_REF] Zoltán | Fundamental solution for the Q-Laplacian and sharp Moser-Trudinger inequality in Carnot groups[END_REF], [START_REF] Cohn | Best constants for Moser-Trudinger inequalities on the Heisenberg group[END_REF] (see also [START_REF]Orlicz spaces and endpoint Sobolev-Poincaré inequalities for differential forms in Heisenberg groups[END_REF]).

On the contrary, the statement of Theorem 1.8 states the H-Poincaré p,∞ (h) holds for h ≥ 2 with sharp exponent p = Q or p = Q/2, according to the degree of the forms.

We refer to [START_REF] Bourgain | New estimates for elliptic equations and Hodge type systems[END_REF], Theorem 5, for related statements in Euclidean spaces.

Remark 1.11. By the way, the proofs presented here can be carried out (with obvious simplifications) also in the Euclidean setting. In particular, we can obtain interior estimates that are, at least partially, the interior counterparts of the results of [START_REF] Bourgain | New estimates for elliptic equations and Hodge type systems[END_REF].

Let us give a sketch of the paper. Section 2 gathers the basic notions about Heisenberg groups. In particular, in Section 2.1 we state several properties of the convolution kernels in H n . These results are more or less known, but they have to be handled carefully because of the presence of L ∞ -spaces, precluding density arguments. Subsequently, Section 2.2 contains a minimal presentation of Rumin's complex, with the aim of making the paper as self-contained as possible. In particular, Lemma 2.11 deals with Leibniz formula when the exterior differential d c of the complex is a differential operator of order 2. A more extensive presentation of the complex is contained in the Appendix (Section 8). Finally, Section 2.3 contains some basic properties of Rumin's Laplacian in (E • 0 , d c ) and of its fundamental solution.

The core of the present paper is contained in Sections 3 -7 where the proofs of Theorems 1.8 and 1.9 are carried out.

More precisely, Section 3 produces our proof of Poincaré inequalities (Theorem 1.8) which relies both on the formulation by duality of the Poincaré inequalites H-Poincaré p,∞ (h). Therein we prove a relationship between H-Sobolev 1,p (2n+2-h) and H-Poincaré p,∞ (h) when 1 < p, p < ∞ are dual exponents, and eventually we combine this relationship with the previous duality argument for Poincaré inequalites.

Contrary to what happens when

1 ≤ p < Q (or 1 ≤ p < Q/2)
, where the proofs of Poincaré and Sobolev inequalities proceeded on parallel tracks, here the proof of Sobolev inequalities require more delicate arguments: first we prove a L ∞ -homotopy formula (see Section 4) and then we derive interior H-Poincaré ∞,∞ and H-Sobolev ∞,∞ inequalities. Then the subsequent step (Section 6) consists in proving that the L ∞,∞ cohomology of Rumin's forms vanishes on a suitable family of (Cygan-Korányi) annuli. Finally, Section 7 contains L ∞ -estimates associated with Leibniz formula and hence ends with the proof of Sobolev inequalities stated in Theorem 1.9.

HEISENBERG GROUPS: DEFINITIONS AND PRELIMINARY RESULTS

We denote by H n the n-dimensional Heisenberg group, identified with R 2n+1 through exponential coordinates. A point p ∈ H n is denoted by p = (x, y, t), with both x, y ∈ R n and t ∈ R. If p and p ∈ H n , the group operation is defined by

p • p = (x + x , y + y , t + t + 1 2 n j=1 (x j y j -y j x j )).
The unit element of H n is the origin, that will be denote by e. For any q ∈ H n , the (left) translation τ q : H n → H n is defined as

p → τ q p := q • p.
The Lebesgue measure in R 2n+1 is a Haar measure in H n . For a general review on Heisenberg groups and their properties, we refer to [START_REF] Elias | Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals[END_REF], [START_REF] Gromov | Carnot-Carathéodory spaces seen from within[END_REF] and to [START_REF] Th | Analysis and geometry on groups[END_REF]. We limit ourselves to fix some notations, following [START_REF]Regular submanifolds, graphs and area formula in Heisenberg groups[END_REF].

The Heisenberg group H n can be endowed with the homogeneous norm (Cygan-Korányi norm)

(9) (p) = |p | 4 + 16 p 2 2n+1 1/4 ,
and we define the gauge distance (a true distance, see [START_REF] Elias | Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals[END_REF], p. 638), that is left invariant i.e. d(τ q p, τ q p ) = d(p, p ) for all p, p ∈ H n ) as [START_REF] Baldi | Compensated compactness in the contact complex of Heisenberg groups[END_REF] d(p, q) := (p -1 • q).

Finally, the balls for the metric d are le so-called Korányi balls [START_REF]Hypoellipticity, fundamental solution and Liouville type theorem for matrix-valued differential operators in Carnot groups[END_REF] B(p, r) := {q ∈ H n ; d(p, q) < r}.

Notice that Korányi balls are star-shaped with respect to the origin and convex smooth sets.

A straightforward computation shows that there exists c 0 > 1 such that (12) c -2 0 |p| ≤ ρ(p) ≤ |p| 1/2 , provided p is close to e. In particular, for r > 0 small, if we denote by B Euc (e, r) the Euclidean ball centred at e of radius r, [START_REF] Bonfiglioli | Stratified Lie groups and potential theory for their sub-Laplacians[END_REF] B Euc (e, r 2 ) ⊂ B(e, r) ⊂ B Euc (e, c 2 0 r). We denote by h the Lie algebra of the left invariant vector fields of H n . The standard basis of h is given, for i = 1, . . . , n, by

X i := ∂ xi - 1 2 y i ∂ t , Y i := ∂ yi + 1 2 x i ∂ t , T := ∂ t .
The only non-trivial commutation relations are [X i , Y i ] = T , for i = 1, . . . , n. The horizontal subspace h 1 is the subspace of h spanned by X 1 , . . . , X n and Y 1 , . . . , Y n :

h 1 := span {X 1 , . . . , X n , Y 1 , . . . , Y n } .
Coherently, from now on, we refer to X 1 , . . . , X n , Y 1 , . . . , Y n (identified with first order differential operators) as the horizontal derivatives. Denoting by h 2 the linear span of T , the 2-step stratification of h is expressed by

h = h 1 ⊕ h 2 .
The stratification of the Lie algebra h induces a family of non-isotropic dilations δ λ : H n → H n , λ > 0 as follows: if p = (x, y, t) ∈ H n , then [START_REF] Bourgain | New estimates for elliptic equations and Hodge type systems[END_REF] δ λ (x, y, t) = (λx, λy, λ 2 t).

Notice that the gauge norm ( 9) is positively δ λ -homogenous, so that the Lebesgue measure of the ball B(x, r) is r 2n+2 up to a geometric constant (the Lebesgue measure of B(e, 1)). Thus, the homogeneous dimension of H n with respect to δ λ , λ > 0, equals

Q := 2n + 2.
It is well known that the topological dimension of H n is 2n+1, since as a smooth manifold it coincides with R 2n+1 , whereas the Hausdorff dimension of (H n , d) is Q.

The vector space h can be endowed with an inner product, indicated by •, • , making X 1 , . . . , X n , Y 1 , . . . , Y n and T orthonormal.

Throughout this paper, we write also (15)

W i := X i , W i+n := Y i and W 2n+1 := T, for i = 1, . . . , n.
As in [START_REF] Folland | Hardy spaces on homogeneous groups[END_REF], we also adopt the following multi-index notation for higher-order derivatives. If I = (i 1 , . . . , i 2n+1 ) is a multi-index, we set ( 16)

W I = W i1 1 • • • W i2n 2n T i2n+1
. By the Poincaré-Birkhoff-Witt theorem, the differential operators W I form a basis for the algebra of left invariant differential operators in H n . Furthermore, we set

|I| := i 1 + • • • + i 2n + i 2n+1
the order of the differential operator W I , and

d(I) := i 1 + • • • + i 2n + 2i 2n+1
its degree of homogeneity with respect to group dilations.

The dual space of h is denoted by 1 h. The basis of 1 h, dual to the basis {X 1 , . . . , Y n , T }, is the family of covectors {dx 1 , . . . , dx n , dy 1 , . . . , dy n , θ} where

θ := dt - 1 2 n j=1 (x j dy j -y j dx j )
is the contact form in H n . We denote by •, • the inner product in 1 h that makes (dx 1 , . . . , dy n , θ) an orthonormal basis.

2.1. Sobolev spaces, distributions and kernels in H n . Let U ⊂ H n be an open set. We shall use the following classical notations: E(U ) is the space of all smooth function on U , and D(U ) is the space of all compactly supported smooth functions on U , endowed with the standard topologies (see e.g. [START_REF] Franc | Topological vector spaces, distributions and kernels[END_REF]). The spaces E (U ) and D (U ) are their dual spaces of distributions.

Let 1 ≤ p ≤ ∞ and m ∈ N, W m,p Euc (U ) denotes the usual Sobolev space. We remind also the notion of (integer order) Folland-Stein Sobolev space (for a general presentation, see e.g. [START_REF] Folland | Subelliptic estimates and function spaces on nilpotent Lie groups[END_REF] and [START_REF] Folland | Hardy spaces on homogeneous groups[END_REF]).

Definition 2.1. If U ⊂ H n is an open set, 1 ≤ p ≤ ∞ and m ∈ N, then the space W m,p (U )
is the space of all u ∈ L p (U ) such that, with the notation of (16),

W I u ∈ L p (U ) for all multi-indices I with d(I) ≤ m, endowed with the natural norm u W k,p (U ) := d(I)≤m W I u L p (U ) .
Folland-Stein Sobolev spaces enjoy the following properties akin to those of the usual Euclidean Sobolev spaces (see [START_REF] Folland | Subelliptic estimates and function spaces on nilpotent Lie groups[END_REF], and, e.g. [START_REF] Franchi | Meyers-Serrin type theorems and relaxation of variational integrals depending on vector fields[END_REF]).

Theorem 2.2. If U ⊂ H n , 1 ≤ p ≤ ∞, and k ∈ N, then i) W k,p (U ) is a Banach space. In addition, if p < ∞, ii) W k,p (U ) ∩ C ∞ (U ) is dense in W k,p (U ); iii) if U = H n , then D(H n ) is dense in W k,p (U ); iv) if 1 < p < ∞, then W k,p (U ) is reflexive. Theorem 2.3. [see [16], Theorem 5.15] If p > Q, then W 1,p (H n ) ⊂ L ∞ (H n )
algebraically and topologically.

Definition 2.4. If U ⊂ H n is open and if 1 ≤ p < ∞, we denote by • W k,p (U ) the completion of D(U ) in W k,p (U ). Remark 2.5. If U ⊂ H n is
bounded, by (iterated) Poincaré inequality (see e.g. [START_REF] Jerison | The Poincaré inequality for vector fields satisfying Hörmander's condition[END_REF]), it follows that the norms u W k,p (U ) and

d(I)=k W I u L p (U ) are equivalent on • W k,p (U ) when 1 ≤ p < ∞.
Again as in [START_REF] Folland | Hardy spaces on homogeneous groups[END_REF] it is possible to associate with the group structure a convolution (still denoted by *

): if, for instance, f ∈ D(H n ) and g ∈ L 1 loc (H n ), we set (17) f * g(p) := f (q)g(q -1 p) dq for q ∈ H n .
We remind that, if (say) g is a smooth function and L is a left invariant differential operator, then L(f * g) = f * Lg. We remind also that the convolution is again well defined when f, g ∈ D (H n ), provided at least one of them has compact support (as customary, we denote by E (H n ) the class of compactly supported distributions in H n identified with R 2n+1 ). In this case the following identities hold [START_REF] Franchi | Meyers-Serrin type theorems and relaxation of variational integrals depending on vector fields[END_REF] f

* g|φ = g| v f * φ and f * g|φ = f |φ * v g for any test function φ (if f is a real function defined in H n , we denote by v f the function defined by v f (p) := f (p -1 ) and, if T ∈ D (H n ), then v T is the distribution defined by v T |φ := T | v φ for any test function φ). Suppose now f ∈ E (H n ) and g ∈ D (H n ). Then, if ψ ∈ D(H n ), we have (W I f ) * g|ψ = W I f |ψ * v g = (-1) |I| f |ψ * (W I v g) = (-1) |I| f * v W I v g|ψ . ( 19 
)
Proposition 2.6. We have:

( [START_REF] Franc | Topological vector spaces, distributions and kernels[END_REF], p. 288);

1) if φ ∈ D(H n ) and T ∈ D (H n ), then φ * T ∈ E(H n ) (see [35], Theorem 7.23); (2) the convolution maps E(H n ) × E (H n ) into E(H n ) (see
(3) the map (S, T ) → S * T defined by

S * T |φ D ,D =: S|φ * v T E ,E is a separately continuous bilinear map from E (H n ) × D (H n ) to D (H n ); (4) if T ∈ E (H n )
, and P is a differential operator, then P T ∈ E (H n ) and supp P T ⊂ supp T (see [START_REF] Franc | Topological vector spaces, distributions and kernels[END_REF], 24.3);

(5) let U, U ⊂ H n be open sets, U ⊂ U . If T ∈ D (U ), we define its restriction T U ∈ D (U )
in the sense of [START_REF] Franc | Topological vector spaces, distributions and kernels[END_REF], Example II pag. 245, i.e. for all φ ∈ D(U ) ⊂ D(U ) we set

T U |φ := T |φ . (6) let U, U ⊂ H n be open sets, U U . Let β, β ∈ E (H n ) be such that β U = β U . If k ∈ L 1 (H n ) and supp k ⊂ B(e, R) with R > 0 small enough, then β * k U = β * k U .
Proof. Let us prove [START_REF]L 1 -Poincaré inequalities for differential forms on Euclidean spaces and Heisenberg groups[END_REF]. Take φ ∈ D(U ) and assume R < dist (U, ∂U ). Then

β * k|φ = β|φ * v k = β|φ * v k (since supp φ * v k is contained in a R-neighborhood of U ) = β * k|φ .
Theorem 2.7. We have:

i) Hausdorff-Young's inequality holds, i.e., if f ∈ L p (H n ), g ∈ L q (H n ), 1 ≤ p, q, r ≤ ∞ and 1 p + 1 q -1 = 1 r , then f * g ∈ L r (H n ) (see [17], Proposition 1.18) . ii) If K is a kernel of type 0, 1 < p < ∞, s ≥ 0, then the mapping T : u → u * K defined for u ∈ D(H n ) extends to a bounded operator on W s,p (H n ) (see [16], Theorem 4.9). iii) Suppose 0 < µ < Q, 1 < p < Q/µ and 1 q = 1 p -µ Q . Let K be a kernel of type µ. If u ∈ L p (H n
) the convolutions u * K and K * u exists a.e. and are in L q (H n ) and there is a constant C p > 0 such that

u * K q ≤ C p u p and K * u q ≤ C p u p (see [16], Proposition 1.11). iv) Suppose s ≥ 1, 1 < p < Q, and let U be a bounded open set. If K is a kernel of type 1 and u ∈ W s-1,p (H n ) with supp u ⊂ U , then u * K W s,p (H n ) ≤ C U u W s-1,p (H n ).
Proof. The proof of iv) can be carried out relying on Theorems 4.10, 4.9 and Proposition 1.11 of [START_REF] Folland | Subelliptic estimates and function spaces on nilpotent Lie groups[END_REF], keeping into account that L pQ/(Q-p) (U ) ⊂ L p and ii) above. Indeed

u * K W s,p (H n ) ≤ C u * K L p (H n ) + m =1 u * W K W s-1,p (H n ) ≤ C u * K L p (H n ) + u W s-1,p (H n ) ≤ C u L pQ/(Q-p (H n ) + u W s-1,p (H n ) ≤ C U u W s-1,p (H n ).
We state now a few properties related to the convolution in L ∞ that will be used in the sequel and -as far as we know -are not explicitly stated in the literature.

We stress that we have to proceed carefully and we cannot use the corresponding results in [START_REF]Poincaré and Sobolev inequalities for differential forms in Heisenberg groups and contact manifolds[END_REF], [START_REF]L 1 -Poincaré inequalities for differential forms on Euclidean spaces and Heisenberg groups[END_REF] because of the presence of the L ∞ -space. The proofs follow verbatim those of analogous statements in the Euclidean setting, keeping in mind that the group convolution is not commutative.

We remind first that, if

a ∈ L ∞ (H n ) ⊂ L 1 loc , then the map φ → a(x)φ(x) dx defines a distribution in D (U ) for all open sets U ⊂ H n . Lemma 2.8. Let a ∈ E (H n ) (i.e. a ∈ D (H n ) and a has compact support, see [35] Theorem 24.2). If φ ∈ D(H n ) and K is a kernel in L 1 loc , we notice first that φ * v K ∈ E(H n ) so that the map φ → a|φ * v K E ,E =: a * K|φ D ,D belongs to D .
Moreover, if W is a horizontal derivative, then the convolution a * W K is well defined since a is compactly supported. In addition,

(20) W (a * K) = a * W K.
Proof. The first statement follows from [START_REF] Franc | Topological vector spaces, distributions and kernels[END_REF], Definition 27.3 and Theorem 27.6.

As for the last statement, consider a test function φ ∈ D(H n ). We claim that

W (a * K)|φ = a * K|W φ = a * W K|φ . Indeed a * K|W φ = a|W φ * v K . Since W φ * v K(x) = W φ(y)K(x -1 y) dy = φ(y)(W K)(x -1 y) dy = φ * v (W K)(x),
we can conclude since a|W φ

* v K = a|φ * v (W K) = a * W K|φ .
Proposition 2.9. Let U be a bounded open subset of H n , and suppose a ∈ L ∞ (U ) is compactly supported. If K is a kernel in L 1 loc , then the convolution a * K defined in Lemma 2.8 belongs to L ∞ (U ), and

a * K L ∞ (U ) ≤ C(K, U, supp a) a L ∞ (U ) .
Proof. Take φ ∈ D(U ). We note first that φ * v K belongs to L 1 (supp a) and ( 21)

φ * v K L 1 (supp a) ≤ C(K) φ L 1 (U ) . Indeed, if x ∈ supp a, |(φ * v K)(x)| ≤ d(z,e)≤R |φ(xz)| |K(z)| dz, since d(z, e) ≤ d(z -1 , x) + d(x, e) ≤ diam (U ) + d(supp a, e) =: R. Thus φ * v K L 1 (supp a) ≤ |φ| * (|K|χ B(e,R) L 1 (H n ) ≤ C(K, R) φ L 1 (U ) .
Thus, by definition,

| a * K|φ D ,D | ≤ C(K, U, supp a) φ L 1 (U ) a L ∞ (U ) ,
and the assertion follows by duality since L ∞ = (L 1 ) * .

2.2.

Multilinear algebra in H n and Rumin's complex. Unfortunately, when dealing with differential forms in H n , the de Rham complex lacks scale invariance under anisotropic dilations (see [START_REF] Bourgain | New estimates for elliptic equations and Hodge type systems[END_REF]). Thus, a substitute for de Rham's complex, that recovers scale invariance under δ t has been defined by M. Rumin, [START_REF] Michel Rumin | Formes différentielles sur les variétés de contact[END_REF]. In turn, this notion makes sense for arbitrary contact manifolds. We refer to [START_REF] Michel Rumin | Formes différentielles sur les variétés de contact[END_REF] and [START_REF] Baldi | Compensated compactness for differential forms in Carnot groups and applications[END_REF], [START_REF]Poincaré and Sobolev inequalities for differential forms in Heisenberg groups and contact manifolds[END_REF] for details of the construction. In the present paper, we shall merely need the following list of formal properties (for the sake of completeness, in an Appendix we describe in more detail the construction of Rumin's complex).

Throughout this paper, h h denotes the h-th exterior power of the Lie algebra h. Keeping in mind that the Lie algebra h can be identified with the tangent space to H n at x = e (see, e.g. [START_REF] Gallot | Riemannian geometry[END_REF], Proposition 1.72), starting from h h we can define by left translation a fiber bundle over H n that we can still denote by h h h T * H n . Moreover, a scalar product in h induces a scalar product and a norm on h h.

We can think of h-forms as sections of h h and we denote by Ω h the vector space of all smooth h-forms.

• For h = 0, . . . , 2n + 1, the space of Rumin h-forms, E h 0 , is the space of smooth sections of a left-invariant subbundle of h h (that we still denote by E h 0 ). Hence it inherits the inner product and the norm of h h.

• A differential operator d c : E h 0 → E h+1 0
is defined. It is left-invariant, homogeneous with respect to group dilations. It is a first order homogeneous operator in the horizontal derivatives in degree = n, whereas it is a second order homogeneous horizontal operator in degree n.

• Altogether, operators d c form a complex:

d c • d c = 0.
• This complex is homotopic to de Rham's complex (Ω • , d). More precisely there exist a sub-complex (E, d) of the de Rham complex and a suitable "projection"

Π E : Ω • → E • such that Π E is a differential operator of order ≤ 1 in the hori- zontal derivatives. • Π E is a chain map, i.e. dΠ E = Π E d. • Let Π E0 be the orthogonal projection on E • 0 . Then Π E0 Π E Π E0 = Π E0 and Π E Π E0 Π E = Π E .
(we stress that Π E0 is an algebraic operator). • The exterior differential d c can be written as

d c = Π E0 dΠ E Π E0 .
Let us list a bunch of notations for vector-valued function spaces (for the scalar case, we refer to Section 2.1).

Definition 2.10. If U ⊂ H n is an open set, 0 ≤ h ≤ 2n + 1, 1 ≤ p ≤ ∞ and m ≥ 0, we denote by L p (U, h h), E(U, h h), D(U, h h), W m,p (U, h h) (by • W m,p (U, h h))
the space of all sections of h h such that their components with respect to a given leftinvariant frame belong to the corresponding scalar spaces.

The spaces L p (U,

E h 0 ), E(U, E h 0 ), D(U, E h 0 ), W m,p (U, E h 0 ) and • W m,p (U, E h 0 )
are defined in the same way.

Finally, the spaces W m,p Euc (U, h h),

• W m,p Euc (U, h h), W m,p Euc (U, E h 0 ) and • W m,p
Euc (U, E h 0 ) are defined replacing Folland-Stein Sobolev spaces by usual Sobolev spaces.

Clearly, all these definitions are independent of the choice of frame.

When d c is second order (when acting on forms of degree n), (E • 0 , d c ) stops behaving like a differential module. This is the source of many complications. In particular, the classical Leibniz formula for the de Rham complex d(α ∧ β) = dα ∧ β ± α ∧ dβ in general fails to hold (see [START_REF] Baldi | Compensated compactness in the contact complex of Heisenberg groups[END_REF]-Proposition A.7). This causes several technical difficulties when we want to localize our estimates by means of cut-off functions.

Lemma 2.11 (see also [START_REF]L 1 -Poincaré inequalities for differential forms on Euclidean spaces and Heisenberg groups[END_REF], Lemma 4.1). If ζ is a smooth real function, then the following formulae hold in the sense of distributions:

i) if h = n, then on E h 0 we have [d c , ζ] = P h 0 (W ζ),
where Remark 2.12. On forms of degree h > n, Lemma 2.11 i) takes the following simpler form.

P h 0 (W ζ) : E h 0 → E h+1
If α ∈ L 1 loc (H n , E h 0 ) with h > n and ψ ∈ E(H n ), then d c (ψα) = d(ψα) = dψ ∧ α + ψdα = d c ψ ∧ α + ψd c α,
This follows from Theorem 8.6, viii), since α is a multiple of θ.

Leibniz formula has the following quantitative form.

Remark 2.13. Denote by B = B(e, 1) the unit ball in

H n . If λ > 1, let ζ be a smooth function on H n that is supported outside of a neighborhood of B, such that W i ζ is com- pactly supported in B λ = B(e, λ) for i = 1, . . . , 2n. i) If h = n, let σ ∈ L ∞ B λ , E h 0 ∩ d -1 L ∞ B λ , E h 0 , then (22) 
d c (ζσ) L ∞ (B λ ,E h 0 ) ≤ C ζ σ L ∞ (B λ ,E h 0 ) + d c σ L ∞ (B λ ,E h+1 0 ) . ii) If h = n let σ ∈ W 1,∞ (B λ , E n 0 ) ∩ d -1 L ∞ (B λ , E n 0 ) and, then (23) 
d c (ζσ) L ∞ (B λ ,E n+1 0 ) ≤ C ζ σ W 1,∞ (B λ ,E n 0 ) + d c σ L ∞ (S ζ ,E n+1 0 ) ,
where

S ζ is a neighborhood in B λ of supp ζ ∩ B λ (contained in B λ \ B).
The following generalizes Remark 2.16 of [START_REF] Baldi | Compensated compactness for differential forms in Carnot groups and applications[END_REF]. The proof uses a notation from the Appendix, Theorem 8.6.

Lemma 2.14. Let U ⊂ H n be an open set. i) Let ψ be an h-form in L 1 loc (U, E h 0 ) and α ∈ D(U, E 2n-h 0 ). Then U (d c φ) ∧ α = (-1) h+1 U φ ∧ d c α,
where the left-hand side is understood in distribution sense.

Assume further that U is contractible. Let ω and ψ be d c -closed Rumin forms on U of complementary degrees h and 2n + 1 -h, with 1 ≤ h ≤ 2n.

Then U ω ∧ ψ = 0
in the following cases:

ii) ω ∈ L 1 loc (U, E h 0 ) and ψ ∈ D(U, E 2n+1-h 0 ). iii) 1 < p < ∞, 1 p + 1 p = 1, ω ∈ L p loc (U, E h 0 ) and ψ ∈ L p (U, E 2n+1-h 0 ) is compactly supported in U . Proof. Assume first that φ is smooth. Since φ ∧ α has degree 2n ≥ n + 1, d(φ ∧ α) = d c (φ ∧ α). If h = n, the formula d c (φ ∧ α) = (d c φ) ∧ α + (-1) h φ ∧ d c α
is established in [START_REF] Pansu | Averages and the q,1 cohomology of Heisenberg groups[END_REF], Prop. 4.2. Let us assume that both φ and α have degree n. Then, by definition, d c φ = dΠ E φ where Π E φ -φ has weight n + 1 (see Theorem 8.6 ix)). Since

d c α has weight n + 2, (Π E φ -φ) ∧ d c α = 0. Symmetrically, (Π E α -α) ∧ d c φ = 0. It follows that d(Π E φ ∧ Π E α) = (d c φ) ∧ α + (-1) n φ ∧ d c α.
In all cases, we have come up with a compactly supported primitive of (d c φ)∧α+(-1)

h φ∧ d c α, hence U ((d c φ) ∧ α + (-1) h φ ∧ d c α) = 0.
Formula i) extends to Rumin forms φ with distributional coefficients, and in particular to forms in L 1 loc (U, E h 0 ). Assume first that ω and ψ are smooth. Since Rumin's complex is homotopic to de Rham's, ω admits a smooth primitive φ on U , Definition 2.15. In H n , following [START_REF] Michel Rumin | Formes différentielles sur les variétés de contact[END_REF], we define the operators ∆ H,h on E h 0 by setting

d c φ = ω. Then i) implies that U ω ∧ ψ = U (d c φ) ∧ ψ = ± U φ ∧ d c ψ = 0.
∆ H,h =    d c d * c + d * c d c if h = n, n + 1; (d c d * c ) 2 + d * c d c if h = n; d c d * c + (d * c d c ) 2 if h = n + 1. Notice that -∆ H,0 = 2n j=1 (W 2 j )
is the usual sub-Laplacian of H n . For sake of simplicity, once a basis of E h 0 is fixed, the operator ∆ H,h can be identified with a matrix-valued map, still denoted by ∆ H,h , ( 24)

∆ H,h = (∆ ij H,h ) i,j=1,...,N h : D (H n , R N h ) → D (H n , R N h ), where D (H n , R N h )
is the space of vector-valued distributions on H n , and N h is the dimension of E h 0 (see [START_REF] Baldi | A recursive basis for primitive forms in symplectic spaces and applications to Heisenberg groups[END_REF]). This identification makes possible to avoid the notion of currents: we refer to [START_REF] Baldi | Compensated compactness for differential forms in Carnot groups and applications[END_REF] for a more elegant presentation.

Combining [START_REF] Michel Rumin | Formes différentielles sur les variétés de contact[END_REF], Section 3, and [START_REF]Hypoellipticity, fundamental solution and Liouville type theorem for matrix-valued differential operators in Carnot groups[END_REF], Theorems 3.1 and 4.1, we obtain the following result.

Theorem 2.16 (see [START_REF]Hypoellipticity, fundamental solution and Liouville type theorem for matrix-valued differential operators in Carnot groups[END_REF], Theorem 3.1). If 0 ≤ h ≤ 2n + 1, then the differential operator ∆ H,h is homogeneous of degree µ with respect to group dilations, where µ = 2 if h = n, n + 1 and µ = 4 if h = n, n + 1. It follows that i) for j = 1, . . . , N h there exists

(25) K j = K 1j , . . . , K N h j , j = 1, . . . N h with K ij ∈ D (H n ) ∩ E(H n \ {0}), i, j = 1, . . . , N h ; ii) if µ < Q, then the K ij 's are kernels of type µ for i, j = 1, . . . , N h If µ = Q, then the K ij 's satisfy the logarithmic estimate |K ij (p)| ≤ C(1 + | ln ρ(p)|) and hence belong to L 1 loc (H n ). Moreover, their horizontal derivatives W K ij , = 1, . . . , 2n, are kernels of type Q -1; iii) when α ∈ D(H n , R N h ), if we set (26) ∆ -1 H,h α := j α j * K 1j , . . . , j α j * K N h j , then ∆ h ∆ -1 H,h α = α. Moreover, if µ < Q, also ∆ -1 H,h ∆ h α = α. iv) if µ = Q, then for any α ∈ D(H n , R N h ) there exists β α := (β 1 , . . . , β N h ) ∈ R N h , such that ∆ -1 H,h ∆ h α -α = β α . iv) ∆ -1 H,h : D(H n , R N h ) → E(H n , R N h ) and ∆ -1 H,h : E (H n , R N h ) → D (H n , R N h ). Remark 2.17. If µ < Q, ∆ H,h (∆ -1 H,h -v ∆ -1 H,h ) = 0 and hence ∆ -1 H,h = v ∆ -1 H,h
, by the Liouville-type theorem of [START_REF]Hypoellipticity, fundamental solution and Liouville type theorem for matrix-valued differential operators in Carnot groups[END_REF], Proposition 3.2.

Remark 2.18. From now on, if there are no possible misunderstandings, we identify ∆ -1 H,h with its kernel. Lemma 2.19 (see [START_REF]Poincaré and Sobolev inequalities for differential forms in Heisenberg groups and contact manifolds[END_REF], Lemma 4.11).

If φ ∈ D(H n , E h 0 ) and n ≥ 1, then i) d c ∆ -1 H,h φ = ∆ -1 H,h+1 d c φ, h = 0, 1, . . . , 2n, h = n -1, n + 1. ii) d c ∆ -1 H,n-1 φ = d c d * c ∆ -1 H,n d c φ (h = n -1). iii) d c d * c d c ∆ -1 H,n+1 φ = ∆ -1 H,n+2 d c φ, (h = n + 1). iv) d * c ∆ -1 H,h φ = ∆ -1 H,h-1 d * c φ h = 1, . . . , 2n + 1, h = n, n + 2. v) d * c ∆ -1 H,n+2 φ = d * c d c ∆ -1 H,n+1 d * c φ (h = n + 2). vi) d * c d c d * c ∆ -1 H,n φ = ∆ -1 H,n-1 d * c φ, (h = n).

DUAL FORMULATIONS AND PROOF OF THEOREM 1.8

The interior Poincaré inequality of Theorem 1.8 relies on three tools: i) the formulation by duality of the interior Poincaré inequality H-Poincaré p,∞ (h) (see Proposition 3.1) below; ii) the integration by parts formula of Lemma 2.14; iii) the relationship between H-Sobolev 1,p (2n+2-h) and H-Poincaré p,∞ (h), when 1 < p < ∞ and p is the dual exponent of p.

Proposition 3.1. Assume that 1 ≤ h < 2n + 1. Let B, B λ be concentric balls as in Definition 1.2. Take 1 < p < ∞. Then the H-Poincaré p,∞ (h) inequality in E h 0 holds if and only if there exists a constant C such that for every d c -closed differential h-form ω on L p (B λ , E h 0 ) and every smooth differential (2n + 1 -h)-form α with compact support in B,

(27) | B ω ∧ α| ≤ C ω L p (B λ ,E h 0 ) d c α L 1 (B,E 2n+2-h 0
) .

An analogous statement holds for the global Poincaré inequality on H

n . Proof. Suppose ω is a h-form satisfying Definition 1.2. If ω |B = d c φ with φ ∈ L ∞ (H n , E h-1 0
) as in Definition 1.2, and α ∈ D(B, E 2n+1-h 0 ), then, according to Lemma 2.14 i),

| B ω ∧ α| = | B φ ∧ d c α| ≤ φ L ∞ (B,E h-1 ) d c α L 1 (B,E 2n+2-h 0 ) . Since φ L ∞ (B,E h-1 0
) can be estimated by ω L p (B λ ,E h 0 ) , inequality [START_REF] Montgomery | A tour of subriemannian geometries, their geodesics and applications[END_REF] follows. Conversely, assume that for all forms α ∈ D(B;

E 2n+1-h 0 ), | B ω ∧ α| ≤ C ω L p (B λ ;E h 0 ) d c α L 1 (B;E 2n+2-h 0 ) .
Define a linear functional η on differentials of smooth (2n + 1 -k)-forms with compact support in B as follows. If

β = d c α, α ∈ D(B; E 2n+1-h 0 ), set η(β) = B ω ∧ α.
Then η is well defined since ω ∈ L 1 loc , and is continuous in

L 1 (B; E 2n+2-h 0 )-norm, by (27), i.e. |η(β)| ≤ C ω L p (B λ ;E h 0 ) β L 1 (B;E 2n+2-h 0 )
.

By the Hahn-Banach theorem, η extends to a linear functional on all of L 1 (B; E 2n+2-h 0 ), with the same norm. Such a functional is represented by a differential form φ ∈ L ∞ (B; E h-1 0 ) as follows,

η(β) = B φ ∧ β. The L ∞ -norm of φ is at most C ω L p (B λ ;E h 0 ) . Since, for all forms α ∈ D(B; E 2n+1-h 0 ), B φ ∧ d c α = η(d c α) = B ω ∧ α,
one concludes that d c φ = ω on B in the distributional sense. The proof of the statement for the global Poincaré inequality can be carried out repeating verbatim the same arguments. 

Proposition 3.2. If 2 ≤ h ≤ 2n + 1, 1 < p < ∞
(2n + 1 -h)-form β ∈ L p (B λ , E 2n+1-h 0 ) such that d c β = d c α in B and β L p (B λ ,E 2n+1-h 0 ) ≤ C d c α L 1 (B,E 2n+2-h 0 ) . (28) 
If h = 2n + 1, α and β are compactly supported functions and d c (β -α) = 0, hence

β = α. Otherwise, since ψ = β -α ∈ L p (B λ , E 2n+1-h 0 ) is d c -closed, Lemma 2.14 iii) implies that B λ ω ∧ (β -α) = 0.
Therefore in both cases, by Hölder inequality and by [START_REF] Pansu | Cup-products in l q,p -cohomology: discretization and quasi-isometry invariance[END_REF],

| B ω ∧ α| = | B λ ω ∧ α| = | B λ ω ∧ β| ≤ C ω L p (B λ ,E h 0 ) d c α L 1 (B,E 2n+2-h 0 )
.

By Proposition 3.1, this implies H-Poincaré p,∞ (h).

The global Sobolev inequality implies the global Poincaré inequality in the same manner.

Proof of Theorem 1.8. Theorem 1.8 follows straightforwardly, combining the L 1 Sobolev inequality proven in [START_REF]L 1 -Poincaré inequalities for differential forms on Euclidean spaces and Heisenberg groups[END_REF], Corollary 6.5, and previous Proposition 3.2.

HOMOTOPY FORMULAE IN L ∞

The following global homotopy formula has been proven in D(H n , E • 0 ) in [START_REF]Poincaré and Sobolev inequalities for differential forms in Heisenberg groups and contact manifolds[END_REF], Proposition 6.9. However we have to stress that here we deal with L ∞ forms, hence we have to adapt the proof since we cannot rely on a density argument in L ∞ .

Proposition 4.1. If α ∈ L ∞ (H n , E h 0 )
is compactly supported, then the following homotopy formulas hold: there exist operators

K 1 , K 2 such that i) if h = n, n + 1, then α = d c K 1 α + K 1 d c α in the sense of distributions, where K 1 is associated with a kernel k 1 of type 1; ii) if h = n, then α = d c K 1 α + K 2 d c
α in the sense of distributions, where K 1 and K 2 are associated with kernels k 1 , k 2 of type 1 and 2, respectively;

iii) if h = n + 1, then α = d c K 2 α + K 1 d c α in the sense of distributions, where K 2
and K 1 are associated with kernels k 2 , k 1 of type 2 and 1, respectively.

Proof. The proof can be carried out by duality. Consider for instance the case i), and let φ ∈ D(H n , E h 0 ) be a test form. By Theorem 2.16,

α|φ D ,D = α|(d c d * c + d * c d c )∆ -1 H φ D ,D = α|(d c d * c + d * c d c )∆ -1 H φ E ,E = α|∆ -1 H d c d * c φ E ,E + α|d * c ∆ -1 H d c φ E ,E (by Lemma 2.19) = ∆ -1 H α|d c d * c φ D ,D + d * c ∆ -1 H d c α|φ D ,D (since d c α ∈ E ) = d c d * c ∆ -1 H α|φ D ,D + d * c ∆ -1 H d c α|φ D ,D =: d c K 1 α + K 1 d c α|φ D ,D ,
and the assertion follows since

K 1 := d * c ∆ -1
H is a kernel of type 1 by Theorem 2.16. The proofs of ii) and iii) can be carried out through similar duality arguments keeping in mind [START_REF]Poincaré and Sobolev inequalities for differential forms in Heisenberg groups and contact manifolds[END_REF], Proposition 6.9.

Remark 4.2. To avoid cumbersome notations, from now on we denote by K 0 one of the convolution operators K 1 , K 2 , so that the homotopy formulas of Proposition 4.1 can be written concisely as follows: if α ∈ L ∞ (H n , E h 0 ) is compactly supported then K 0 α and K 0 d c α are well defined distributions by Lemma 2.8 and

(29) α = d c K 0 α + K 0 d c α,
where K 0 is associated with a kernel of type 1 or 2, depending on the degree of α. Notice that in any case, K 0 belongs to L 1 loc . Proposition 4.3. Let U U be bounded open sets in H n . For h = 1, . . . , 2n, for every s ∈ N, there exist a bounded operator [START_REF] Michel Rumin | Formes différentielles sur les variétés de contact[END_REF] T :

L ∞ (U , E • 0 ) → L ∞ (U, E •-1 0 )
and a smoothing operator

(31) S : L ∞ (U , E • 0 ) → E(U, E •-1 0 )
such that, in addition,

(32) S ∈ L L ∞ (U , E • 0 ), W s,∞ (U, E •-1 0 ) so that for any h-forms α in L ∞ (U , E • 0 ) such that d c α ∈ L ∞ (U , E •+1 0
) the following approximate homotopy formula holds in the sense of distributions

(33) α = d c T α + T d c α + Sα on U.
In addition, on forms of degree n + 1, T is bounded

(34) T : L ∞ (U , E n+1 0 ) → W 1,∞ (U, E n 0 ). Finally, if α ∈ L ∞ (U , E • 0 ) ∩ d -1 c (L ∞ (U , E •+1 0 
)) we notice that, by difference,

d c T α ∈ L ∞ (U, E h 0 ). Proof. If α ∈ L ∞ (U , E h 0 )
, we set α 0 to be α continued by zero outside U , the so-called trivial extension of α. Obviously, α 0 belongs to L ∞ (H n , E h 0 ) and is compactly supported, hence belongs to E (H n , E h 0 ). The trivial extension defines a continuous linear map from D(U ) to D(U ).

Denote by k 0 the kernel associated with K 0 as defined in Remark 4.2. We consider a cut-off function ψ R supported in a R-neighborhood of the origin, such that ψ R ≡ 1 near the origin. Then we have k 0 = k 0 ψ R + (1 -ψ R )k 0 Let us denote by K 0,R the convolution operator associated with k 0,R := ψ R k 0 and by K 0,R = K 0 -K 0,R the convolution operator associated with the kernel k 0,R :

= k 0 -k 0,R . The kernel ψ R k 0 ∈ L 1 (H n ), so that, by Theorem 2.7, i), K 0,R maps L ∞ to L ∞ .
Let us apply Proposition 4.1 using the decomposition

K 0 = K 0,R + K 0,R : for φ ∈ D(H n , E h 0 ), α 0 |φ D ,D = d c K 0,R α 0 + K 0,R d c α 0 + d c K 0,R α 0 + K 0,R d c α 0 |φ D ,D , i.e. α 0 = d c K 0,R α 0 + K 0,R d c α 0 + d c K 0,R α 0 + K 0,R d c α 0 in the sense of distributions. Taking the restriction to U , we get (35) α = d c K 0,R α 0 U + K 0,R d c α 0 U + d c K 0,R α 0 + K 0,R d c α 0 U ,
where the restriction has to be meant as restriction of a distribution as in Proposition 2.6, (5). First we notice that, by Proposition 2.6, ii) and iv), we have

Sα := d c K 0,R α 0 + K 0,R d c α 0 U ∈ E(U ),
yielding [START_REF]Differential geometry on C-C spaces and application to the Novikov-Shubin numbers of nilpotent Lie groups[END_REF]. Since derivatives commute with restriction, if R > 0 is small enough, we have

d c K 0,R α 0 U = d c K 0,R α 0 U , and (35) 
reads ( 36)

α U = d c K 0,R α 0 U + K 0,R d c α 0 U + Sα. If now β ∈ L ∞ (U , E • 0 ), we set T β := K 0,R β 0 U .
Thus, in [START_REF] Trudinger | On imbeddings into Orlicz spaces and some applications[END_REF], we have

d c K 0,R α 0 U = d c T α.
Consider now in [START_REF] Trudinger | On imbeddings into Orlicz spaces and some applications[END_REF] the term K 0,R d c α 0 U . We observe preliminarily that (37)

(d c α 0 ) U = (d c α) 0 U ,
where, as above, (d c α) 0 is the trivial extension of

d c α. Indeed, if φ ∈ D(U , E •+1 0 ) then d c α 0 |φ D ,D = α 0 |d * c φ D ,D = U α, d * c φ dx = U d c α, φ dx = H n (d c α) 0 , φ dx = (d c α) 0 |φ D ,D .
This proves [START_REF] Th | Analysis and geometry on groups[END_REF]. Thus, we can apply Proposition 2.6, (6) and we get, for R small enough,

K 0,R d c α 0 U = (d c α 0 ) * k 0,R U = (d c α) 0 * k 0,R U = K 0,R (d c α) 0 U = T (d c α).
Eventually, identity [START_REF] Trudinger | On imbeddings into Orlicz spaces and some applications[END_REF] becomes

α = d c T α + T d c α + Sα in U.
This proves the homotopy formula [START_REF]Around heat decay on forms and relations of nilpotent Lie groups[END_REF].

Since the kernel k 0,R belongs to L 1 (H n ), by Hausdorff-Young inequality (see Theorem 2.7, i),

T : L ∞ (U , E • 0 ) → L ∞ (U, E •-1 0 ),
and this proves [START_REF] Michel Rumin | Formes différentielles sur les variétés de contact[END_REF].

Let us prove the continuity estimates [START_REF]Sub-Riemannian limit of the differential form spectrum of contact manifolds[END_REF] for the operator S. Consider first the term

d c (K 0,R α 0 ) U = d c (α 0 * k 0,R ) U . If 1 ≤ h ≤ 2n, let (ξ h 1 , . . . , ξ h dim E h 0 ) be a basis of E h 0 . Then α = j α j ξ h j with α j ∈ L ∞ (U ), j = 1, . . . , dim E h 0 .
Obviously, α 0 = j (α j ) 0 ξ h j , and d c (α 0 * k 0,R ) can be written as sum of terms of the form

W I (α j ) 0 * κ = (α j ) 0 * W I κ,
where κ is a smooth kernel and d(I) = 1 or d(I) = 2, according to the degree h. Thus, in order to prove [START_REF]Sub-Riemannian limit of the differential form spectrum of contact manifolds[END_REF] we have to estimate the L ∞ -norms in U of a sum of terms of the form (α j ) 0 * W J κ, with d(J) = s + 1 or d(J) = s + 2, according to the degree h. Then the assertion follows by Proposition 2.9, since the smooth kernel

W J κ belongs to L 1 loc (H n ) (notice that α j L ∞ (U ) = (α j ) 0 L ∞ (H n ) ).
Analogously, if we aim to estimate the term K 0,R d c α 0 = (d c α 0 ) * k 0,R , we have to estimate in L ∞ (U ) a sum of terms of the form (keep in mind ( 19))

(W I (α j ) 0 ) * W J κ = (α j ) 0 ) * v W I v W J κ,
where κ is a smooth kernel, d(J) = s and d(I) = 1 or d(I) = 2 according to the degree h. Since v W I v W J κ is still a smooth kernel, the estimate can be carried out as for the first term.

Thus we are left with the proof of [START_REF] Elias | Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals[END_REF]. To this end, we notice first that on forms of degree h = n + 1, the kernel of K 0,R is obtained by truncation near the origin of a kernel of type 2. Therefore, on forms of degree h = n + 1 all the horizontal derivatives W K 0,R belongs to

L 1 and, if α ∈ L ∞ (U , E n+1 0 ), then W T α L ∞ (U,E n 0 ) = W (α * k 0,R ) L ∞ (U,E n 0 ) = α * W k 0,R L ∞ (U,E n 0 )
, and the proof can be carried out again by Proposition 2.9.

Remark 4.4. Since, in U , W 2s,p ⊂ W s,p Euc for 1 ≤ p ≤ ∞, then (32) 
can be equivalently stated as

(38) S ∈ L L ∞ (U , E • 0 ), W s,∞ Euc (U, E •-1 0 ) .

INTERMEDIATE TOOLS

: INTERIOR H-Poincaré ∞,∞ AND H-Sobolev ∞,∞

INEQUALITIES

In [START_REF] Iwaniec | Integral estimates for null Lagrangians[END_REF], starting from Cartan's homotopy formula, the authors proved that, if D ⊂ R N is a convex set, 1 < p < ∞, 1 ≤ h ≤ N , then there exists a bounded linear map:

K Euc,h : L p (D, h ) → W 1,p Euc (D, h-1
) that is a homotopy operator, i.e.

(39) ω = dK Euc,h ω + K Euc,h+1 dω for all ω ∈ C ∞ (D, h ).

(see Proposition 4.1 and Lemma 4.2 in [START_REF] Iwaniec | Integral estimates for null Lagrangians[END_REF]). More precisely, K Euc,h has the form

(40) K Euc,h ω(x) = D ψ(y)K y ω(x) dy,
where ψ ∈ D(D), D ψ(y) dy = 1, and

K y ω(x)|ξ 1 ∧ • • • ∧ ξ h-1 ) := 1 0 t h-1 ω(y + t(x -y))|(x -y) ∧ ξ 1 ∧ • • • ∧ ξ h-1 ) . (41) 
The definition (41) can be written as

K y ω(x) = 1 0 t -1 ι x-y ω(y t ) dt,
where y t = y + t(x -y). Here, ι denotes the interior product of a differential form with a vector field, i.e. ι : h+1 → h and is defined by

ι Y ω|v 1 ∧ • • • ∧ v h := ω|Y ∧ v 1 ∧ • • • ∧ v h .
Let us remind the following identity that follows straightforwardly from the relationship between the Lie derivative L X along a vector field X of a differential form and the interior product of a vector field Y and a differential form:

(42) [L X , ι Y ] = ι [X,Y ] .
The following theorem provides a continuity result in W k,p of Iwaniec & Lutoborski's kernel K Euc,• , though with a loss on domain.

Theorem 5.1. Let B = B(0, 1) and B = B(0, 2) be concentric Euclidean balls in R N . Then for k ∈ N and p ∈ [1, ∞], Iwaniec-Lutoborski's homotopy K Euc,h is a bounded operator K Euc,h : W k,p Euc (B , • ) → W k,p Euc (B, •-1 )
Proof. For the sake of simplicity, from now on we omit the degree h of the form and we write simply K Euc . We show that for every k-th order partial derivative D k there exist matrix valued kernels M 1 and M 2 on the ball of radius 2 such that for every differential form ω on the unit ball,

D k K Euc ω = M 1 * (D k ω) + M 2 * (RD k-1 ω), where RD k-1 is a constant coefficient (k -1)-order differential operator and for all h ∈ R n , |h| < 2, i = 1, 2, |M i (h)| ≤ C |h| 1-N .
We set y t = y + t(x -y). Iterating (42), we obtain

D k (ι x-y ω(y t )) = t k ι x-y D k ω(y t ) + t k-1 RD k-1 ω(y t ),
where RD k-1 denotes the following (k -1)-order differential operator from -forms to -1 forms. If, for sake of simplicity, we take D k of the form

D k = D 1 • • • D k , RD k-1 ω = k i=1 ι Di (D 1 • • • D i-1 D i+1 • • • D k ω).
Therefore

D k K Euc ω(x) = 1 0 t -1 B φ(y)D k (ι x-y ω(y t )) dy dt = B 1 0 t -1 φ(y)(t k ι x-y D k ω(y t ) + t k-1 RD k-1 ω(y t )) dy dt.
Let us perform a change of variables z = y t and denote by h = x -z. T hen y =

1 1-t z -t 1-t x = z -t 1-t h, x -y = (1 -t) -1 h, dy = (1 -t) -n dz, whence D k K Euc ω(x) = B 1 0 t -1 φ(z -sh)(t k (1 -t) -1 ι h D k ω(z) + t k-1 RD k-1 ω(z)) (1 -t) -N dt dz.
We treat both terms separately. The first one is

B 1 0 t -1 φ(z - t 1 -t h)t k (1 -t) -1 ι h D k ω(z) (1 -t) -N dt dz = B 1 0 t k+ -1 (1 -t) -N -1 φ(z - t 1 -t h)ι h D k ω(z) dt dz = B ∞ 0 ( s 1 + s ) k+ -1 (1 + s) N -1 φ(z -sh)ι h ds, D k ω(z) dz,
where we have made the change of variables s = t 1-t . One recognizes the convolution of the Λ -valued function D k ω with the matrix valued kernel

M 1 (z, h) := ∞ 0 ( s 1 + s ) k+ -1 (1 + s) N -1 φ(z -sh)ι h ds.
The second term is

B 1 0 t -1 φ(z - t 1 -t h)t k-1 RD k-1 ω(z) (1 -t) -N dt dz = B 1 0 t k+ -2 (1 -t) -N φ(z - t 1 -t h)RD k-1 ω(z) dt dz = B ∞ 0 ( s 1 + s ) k+ -2 (1 + s) N φ(z -sh) ds, RD k-1 ω(z) dz.
Again, this is the convolution of the Λ -1 -valued function SW k-1 ω with the scalar kernel

M 2 (z, h) := ∞ 0 ( s 1 + s ) k+ -2 (1 + s) N -2 φ(z -sh) ds.
Since φ has compact support in B, in both cases, the integral stops no later that 2|h| -1 , thus

|M 1 (z, h)| ≤ C |h| 2|h| -1 0 (1 + s) N -1 ds ≤ C |h| 1-N , |M 2 (z, h)| ≤ C 2|h| -1 0 (1 + s) N -2 ds ≤ C |h| 1-N .
With Young's inequality, this implies that for all p ∈ [1, ∞],

D k K Euc ω L p (B, •-1 ) ≤ C ∇ k ω L p (B , • ) + ∇ k-1 ω L p (B , • ) .
Since this holds for every k-th order partial derivative,

K Euc ω W k,p Euc (B, •-1 ) ≤ C ω W k,p Euc (B , • ) .
Starting from [START_REF] Iwaniec | Integral estimates for null Lagrangians[END_REF], in [START_REF] Mitrea | The Poisson problem for the exterior derivative operator with Dirichlet boundary condition in nonsmooth domains[END_REF], Theorem 4.1, the authors define a compact homotopy operator J Euc,h in Lipschitz star-shaped domains in Euclidean space R N , providing an explicit representation formula for J Euc,h , together with continuity properties among Sobolev spaces. More precisely: Theorem 5.2. [(see [START_REF] Mitrea | The Poisson problem for the exterior derivative operator with Dirichlet boundary condition in nonsmooth domains[END_REF], formula (167))] if D ⊂ R N is a star-shaped Lipschitz domain and 1 ≤ h ≤ N , then there exists

J Euc,h : L p (D, h ) → W 1,p 0,Euc (D, h-1 )
On the other hand,

(48) φ L ∞ (B,E h-1 0 ) ≤ KSω L ∞ (B,E h-1 0 ) + T ω L ∞ (B,E h-1 0 
) . First of all, by [START_REF] Michel Rumin | Formes différentielles sur les variétés de contact[END_REF],

(49) T ω L ∞ (B,E h-1 0 ) ≤ C ω L ∞ (B,E h-1 0 
) . Take now q > 2n + 1. By [START_REF] Adams | Pure and Applied Mathematics (Amsterdam)[END_REF], Theorem 4.12, keeping in mind that Π E is an operator of order 0 or 1, depending on the degree of the form, we have:

KSω L ∞ (B,E h-1 0 ) ≤ C KSω W 1,q Euc (B,E h-1 0 ) = C (Π E0 • Π E • K Euc • Π E )Sω W 1,q Euc (B,E h-1 0 ) ≤ C (Π E • K Euc • Π E )Sω W 1,q Euc (B, h-1 ) ≤ C (K Euc • Π E )Sω W 2,q Euc (B, h-1 ) ≤ C Π E Sω W 2,q Euc (B1, h-1 )
(by Theorem 5.1)

≤ C Sω W 3,q Euc (B1,E h-1 0 ) ≤ C Sω W 3,∞ Euc (B1,E h-1 0 ) ≤ C ω L ∞ (B λ ,E h-1 0 )
(by [START_REF]Sub-Riemannian limit of the differential form spectrum of contact manifolds[END_REF]).

(50)

Combining ( 49) and (50) it follows from (48) that We notice now that T ω is supported in B 1 provided R > 0 is small enough, so that, by [START_REF]Differential geometry on C-C spaces and application to the Novikov-Shubin numbers of nilpotent Lie groups[END_REF], also Sω is supported in B 1 . Thus, arguing as above, we can apply (45) to Sω and we get Sω = d c JSω, where J is defined in (44). In B 1 , put now φ := (JS + T )ω.

(51) φ L ∞ (B,E h-1 0 ) ≤ C ω L ∞ (B λ ,E h-1 0 ) , i.e. (keeping in mind (47)), interior H-Poincaré ∞,∞ (h) inequality holds. ii) Interior H-Sobolev ∞,∞ (h) inequality: let ω ∈ L ∞ (B λ , E h 0 ) be d c -
We stress that, again by Lemma 5.3, JSω is compactly supported in B 1 . Again as above, (52)

d c φ = d c JSω + d c T ω = Sω + d c T ω = ω.
We can repeat now the arguments yielding the estimates (50) and (51), replacing Theorem 5.1 by Theorem 5.2. Thus interior H-Sobolev ∞,∞ (h) inequality follows.

COHOMOLOGY FOR ANNULI

The proof of H-Poincaré Q,∞ (h) (Theorem 1.8) given in Section 3 relies basically on a duality argument and the dual inequality of [START_REF]L 1 -Poincaré inequalities for differential forms on Euclidean spaces and Heisenberg groups[END_REF] (see Theorem 1.7).

On the contrary, the proof of H-Sobolev Q,∞ (h) (Theorem 1.9) requires a more sophisticated argument based on localization on Korányi annuli. The present section is precisely devoted to prove that the L ∞,∞ cohomology of Rumin's closed forms vanishes on Korányi annuli. To this end, we prove first that de Rham L ∞,∞ cohomology of closed forms vanishes on Euclidean annuli. It follows that the same statement holds for suitable Korányi annuli (see Corollary 6.6) end eventually the assertion is proven.

Let us start with the following definition. Definition 6.1. Let D ⊂ R 2n+1 be an open set. Let s ∈ N and 1 ≤ p, q ≤ ∞. If 1 ≤ h ≤ 2n + 1, we define cohomology spaces H s,q,p,h de Rham (D) = (W s,p Euc (D, h h) ∩ kerd)/dW s,q Euc (D,

h-1 h),
and we denote by EH s,q,p,h de Rham (D) = ker(H s,q,p,h de Rham (D) → H h (D)) the cohomology of exact differential forms. Similar definitions hold with d replaced with d c , yielding the corresponding spaces H s,q,p,h E0 and EH s,q,p,h E0 for Rumin's differential forms.

If s = 0 we shall write H q,p,h E0 f orH 0,q,p,h E0 . Notation 6.2. If 0 < s 1 < s 2 we denote by A Euc s1,s2 the (Euclidean) annulus A Euc s1,s2 = B Euc (e, s 2 ) \ B Euc (e, s 1 ). Analogously, if 0 < r 1 < r 2 , we denote by A r1,r2 the (Korányi) annulus A r1,r2 = B(e, r 2 ) \ B(e, r 1 ).

Given 0 < r 1 < r 2 , let A r1,r2 be the (Korányi) annulus in H n . Put ∂ + A r1.r2 := ∂B(e, r 2 ) and ∂ -A r1.r2 := ∂B(e, r 1 ). The meaning, in the Euclidean case, of ∂ ± A Euc Notice that σ 1 = 1 2 min B(e,1) c |x|, τ 1 = 1 2 min BEuc(e, 1 2 σ1) c ρ(x) and σ 2 = 2 max B(e,2) |x|, τ 2 = 2 max BEuc(e,2σ2) ρ(x). Definition 6.3. With the notation introduced above, let U = A s1,s2 and U = A r1,r2 be concentric Korányi annuli in H n , U ⊂ U . We say that the couple (U, U ) is annulusadmissible if, with the notations of (53), there exists t > 0 such that

V ⊂ δ t U and δ t U ⊂ V.
Remark 6.4. A straightforward computation shows that the previous definition make sense. Indeed, if 0 < r 1 < r 2 < τ2 τ1 r 1 there exist 0 < s 1 < s 2 such that the couple U := A s1,s2

and

U := A r1,r2
is annulus admissible. More precisely the assertion holds provided

r 2 τ 2 < s 1 < r 1 τ 1 or 2r 2 τ 2 < s 2 < 2r 1 τ 1 . Proposition 6.5. Let 1 ≤ p ≤ ∞. Let A Euc s1,s2
A Euc r1,r2 be concentric Euclidean annuli in R 2n+1 . Then the map EH s,p,p, * de Rham (A Euc r1,r2 ) → EH s,p,p, * de Rham (A Euc s1,s2 ) induced by the inclusion A Euc s1,s2 ⊂ A Euc r1,r2 vanishes.

Proof. We use a diffeomorphism of U to (-2, 2) × Σ mapping U to (-1, 1) × Σ, where Σ denotes the 2n-sphere. Then we use Poincaré's homotopy formula in order to relate the cohomology of (-2, 2) × Σ to the cohomology of Σ. Forms on the product can be written

ω = a t + dt ∧ b t ,
where a t and b t are forms on Σ. Then

dω = da t + dt ∧ ( ∂a t ∂t -db t ),
where the right-hand side d is the exterior differential on Σ. Assuming that dω = 0, i.e. da t = 0 and ∂at ∂t = db t for all t ∈ (-2, 2), set, for σ ∈ Σ and x ∈ (-1, 1),

γ x (t, σ) = t x b u du.
We observe that for all p ≥ 1,

1 2 1 -1 γ x dx W s,p Euc ≤ ω W s,p

Euc

By construction,

dγ x = dt ∧ b t + t x db u du = ω -a x . Now assume that ω is exact, ω = d(e t + dt ∧ f t ). Then de t = a t for all t ∈ (-2, 2). Set γ = 1 2 1 -1 (e x + γ x ) dx, so that dγ = ω.
If ω ∈ W s,p Euc , so is each γ x . On Σ, use the coexact primitive e x = δ∆ -1 a x (see, e.g. [START_REF] Giaquinta | Cartesian currents in the calculus of variations. I, Ergebnisse der Mathematik und ihrer Grenzgebiete[END_REF], Section 2.5). Here ∆ is the usual Hodge Laplacian on de Rham's differential d). Then, if p < ∞,

1 2 1 -1 e x dx W s+1,p Euc ≤ C 1 2 1 -1 a x dx W s,p Euc ≤ C ω W s,p
Euc . If p = ∞, one picks p > 2n + 1, so that the Sobolev embedding theorem applies,

1 2 1 -1 e x dx W s,∞ Euc ≤ C 1 2 1 -1 e x dx W s+1,p Euc . Obviously, ω W s,p Euc ≤ C ω W s,∞ Euc .
Hence the primitive γ is bounded by ω in W s,p Euc norm in all cases. This shows that the cohomology class of ω in EH s,p,p, * de Rham (U ) vanishes. As a consequence of the previous result and keeping in mind Definition 6.3, we can prove the following corollary. Corollary 6.6. Let U, U be concentric Korányi annuli in H n , U ⊂ U such that the couple (U, U ) is annulus-admissible. Then the map EH s,p,p,• de Rham (U ) → EH s,p,p,• de Rham (U ) induced by the inclusion U ⊂ U vanishes for 1 ≤ p ≤ ∞.

Proof. Suppose U ⊂ δ t V and δ t V ⊂ U , where V, V and t > 0 are as in Definition 6.3. By (53) and Proposition 6.5 we can conclude straightforwardly that the map EH s,p,p, * de Rham (V ) → EH s,p,p, * de Rham (V ) induced by the inclusion V ⊂ V vanishes, so that the map EH s,p,p, * de Rham (δ t U ) → EH s,p,p, * de Rham (δ t U ) vanishes. The assertion follows by a pull-back argument. Proposition 6.7. Let U = A s1,s2 and U = A r1,r2 be concentric Korány annuli in H n . Assume (U, U ) are annulus-admissible (see Definition 6.3). Then the map

EH ∞,∞,• E0 (A r1,r2 ) → EH ∞,∞,• E0 (A s1,s2 )
induced by inclusion U ⊂ U vanishes.

Proof. Let the annulus U be such that U ⊂ U ⊂ U and such that the couple (U, U ) is still annulus-admissible as in Definition 6.3 (this is possible by Remark 6.4).

Let ω be a d c -exact Rumin form on U , which belongs to L ∞ (U , E • 0 ). Apply formula (32) of Proposition 4.3 with s = 5. Then, if we set Sω =:

ω ∈ W 5,∞ (U , E • 0 ), we have (54) ω = ω + d c α on U , where α = T ω ∈ L ∞ (U , E •-1 0 
).

Consider ω := Π E ω . Obviously, ω = Π E ω . Moreover, by Theorem 8.6-iv), Π E0 Π E Π E0 = Π E0 , and Π E0 ω since ω is a Rumin form. Therefore

Π E0 ω = Π E0 Π E ω = Π E0 Π E Π E0 ω = ω . Notice that dω = 0 in U . Indeed, since ω is d c -exact, then 0 = d c ω and hence d c ω = 0 in U . Therefore 0 = d c ω = Π E0 Π E dω , so that 0 = Π E Π E0 Π E dω = Π E dω = dΠ e ω = dω in U (keep in mind dΠ E = Π E d by Theorem 8.6). In addition, ω ∈ W 4,∞ (U , Ω • ) ⊂ W 2,∞ Euc (U , Ω • ). According to Corollary 6.6, there exists a differential form γ ∈ W 2,∞ Euc (U ) such that ω = dγ on U . Hence ω = Π E ω = Π E dγ = dΠ E γ. If we set η = Π E0 Π E γ, then in particular η ∈ L ∞ (U, E •-1 0
) and it follows that

d c η = Π E0 dΠ E Π E0 Π E γ = Π E0 dΠ E γ = Π E0 Π E dγ = Π E0 Π E ω = Π E0 ω = ω . Hence, by (54), ω = d c (η + α) in U .
This shows that the cohomology class of the restriction of ω to U vanishes in EH ∞,∞,• E0 (U ).

Remark 6.8. Repeating verbatim the proof of the previous theorem and keeping into account (34) in Proposition 4.3, when dealing with (n + 1)-forms the previous result guarantees the existence of a W 1,∞ -primitive, i.e. the map

EH ∞,∞,n+1 E0 (A r1,r2 ) → EH 1,∞,∞,n+1 E0 (A s1,s2 )
induced by the inclusion U ⊂ U vanishes.

7. PROOF OF THEOREM 1.9

We are now able to prove the Sobolev inequality as stated in Theorem 1.9. The proof will be carried out starting from the corresponding Poincaré inequality by means of localizations of our estimates on a family of annuli via a suitable cut-off. Then a problem arises since the differential d c may have order 1 or 2 according to the degree of the forms on which it acts. Keeping in mind Remark 2.13, for technical reasons, during the proof we are led to distinguish the case h = n + 2 from the case h = n + 2.

APPENDIX: RUMIN'S COMPLEX

Coherently with the notations introduced through the paper, we set (see [START_REF] Cohn | Best constants for Moser-Trudinger inequalities on the Heisenberg group[END_REF]) ω i := dx i , ω i+n := dy i and ω 2n+1 := θ, for i = 1, . . . , n we denote by •, • the inner product in 1 h that makes (dx 1 , . . . , dy n , θ) an orthonormal basis.

We put 0 h := 0 h = R and, for 1

≤ h ≤ 2n + 1, h h := span{ω i1 ∧ • • • ∧ ω i h : 1 ≤ i 1 < • • • < i h ≤ 2n + 1}.
In the sequel we shall denote by Θ h the basis of h h defined by

Θ h := {ω i1 ∧ • • • ∧ ω i h : 1 ≤ i 1 < • • • < i h ≤ 2n + 1}.
To avoid cumbersome notations, if I := (i 1 , . . . , i h ), we write

ω I := ω i1 ∧ • • • ∧ ω i h .
The inner product 

τ # q α = α for any q ∈ H n .
Here τ # q α denotes the pull-back of α through the left translation τ q . The same construction can be performed starting from the vector subspace h 1 ⊂ h, obtaining the horizontal h-covectors

h h 1 := span{ω i1 ∧ • • • ∧ ω i h : 1 ≤ i 1 < • • • < i h ≤ 2n}.

It is easy to see that

Θ h 0 := Θ h ∩ h h 1
provides an orthonormal basis of h h 1 .

Keeping in mind that the Lie algebra h can be identified with the tangent space to H n at x = e (see, e.g. [START_REF] Gallot | Riemannian geometry[END_REF], Proposition 1.72), starting from h h we can define by left translation a fiber bundle over H n that we can still denote by h h. We can think of h-forms as sections of h h. We denote by Ω h the vector space of all smooth h-forms.

We already pointed out in Section 2 that the stratification of the Lie algebra h yields a lack of homogeneity of de Rham's exterior differential with respect to group dilations δ λ . Thus, to keep into account the different degrees of homogeneity of the covectors when they vanish on different layers of the stratification, we introduce the notion of weight of a covector as follows. Notice that, if η, ζ ∈ h h and w(η) = w(ζ), then η, ζ = 0 (see [START_REF] Baldi | Compensated compactness for differential forms in Carnot groups and applications[END_REF], Remark 2.4).

We notice also that w(dθ) = w(θ).

We stress that generic covectors may fail to have a pure weight: it is enough to consider H 1 and the covector dx 1 + θ ∈ 1 h. However, the following result holds (see [START_REF] Baldi | Compensated compactness for differential forms in Carnot groups and applications[END_REF], formula [START_REF] Folland | Subelliptic estimates and function spaces on nilpotent Lie groups[END_REF]):

(59)

h h = h,h h ⊕ h,h+1 h = h h 1 ⊕ h-1 h 1 ∧ θ,
where h,p h denotes the linear span of the h-covectors of weight p. By our previous remark, the decomposition (59) is orthogonal. In addition, since the elements of the basis Θ h have pure weights, a basis of h,p h is given by Θ h,p := Θ h ∩ h,p h (such a basis is usually called an adapted basis).

As above, starting from h,p h, we can define by left translation a fiber bundle over

H n that we can still denote by h,p h. Thus, if we denote by Ω h,p the vector space of all smooth h-forms in H n of weight p, i.e. the space of all smooth sections of h,p h, we have ( 60)

Ω h = Ω h,h ⊕ Ω h,h+1 .

Definition of Rumin's complex

Let us give a short introduction to Rumin's complex. For a more detailed presentation we refer to Rumin's papers [START_REF]Around heat decay on forms and relations of nilpotent Lie groups[END_REF] following verbatim the presentation of [START_REF]Poincaré and Sobolev inequalities for differential forms in Heisenberg groups and contact manifolds[END_REF]. Here we follow the presentation of [START_REF] Baldi | Compensated compactness for differential forms in Carnot groups and applications[END_REF].

The exterior differential d does not preserve weights. It splits into It is crucial to notice that d 0 is an algebraic operator, in the sense that for any real-valued f ∈ C ∞ (H n ) we have d 0 (f α) = f d 0 α, so that its action can be identified at any point with the action of a linear operator from h h to h+1 h (that we denote again by d 0 ).

Following M. Rumin ( [START_REF]Around heat decay on forms and relations of nilpotent Lie groups[END_REF], [START_REF]Differential geometry on C-C spaces and application to the Novikov-Shubin numbers of nilpotent Lie groups[END_REF]) we give the following definition: Definition 8.3. If 0 ≤ h ≤ 2n + 1, keeping in mind that h h is endowed with a canonical inner product, we set E h 0 := ker d 0 ∩ (Im d 0 ) ⊥ . Straightforwardly, E h 0 inherits from h h the inner product.

As above, E • 0 defines by left translation a fibre bundle over H n , that we still denote by E • 0 . To avoid cumbersome notations, we denote also by E • 0 the space of sections of this fibre bundle.

Let L : h h → h+2 h the Lefschetz operator defined by (61) L ξ = dθ ∧ ξ.

Then the spaces E • 0 can be defined explicitly as follows: Theorem 8.4 (see [START_REF] Michel Rumin | Formes différentielles sur les variétés de contact[END_REF], [START_REF]Sub-Riemannian limit of the differential form spectrum of contact manifolds[END_REF]). We have:

i) E 1 0 = 1 h 1 ; ii) if 2 ≤ h ≤ n, then E h 0 = h h 1 ∩ h-2 h 1 ∧ dθ ⊥ (i.
e. E h 0 is the space of the so-called primitive covectors of h h 1 );

iii) if n < h ≤ 2n + 1, then E h 0 = {α = β ∧ θ, β ∈ h-1 h 1 , γ ∧ dθ = 0} = θ ∧ ker L; iv) if 1 < h ≤ n, then N h := dim E h 0 = 2n h -2n
h-2 ; v) if * denotes the Hodge duality associated with the inner product in

• h and the volume form dV , then * E h 0 = E 2n+1-h 0 . Notice that all forms in E h 0 have weight h if 1 ≤ h ≤ n and weight h+1 if n < h ≤ 2n+1. A further geometric interpretation (in terms of decomposition of h and of graphs within H n ) can be found in [START_REF] Franchi | Intrinsic Lipschitz graphs within Carnot groups[END_REF].

Notice that there exists a left invariant orthonormal basis (62) Ξ h 0 = {ξ h 1 , . . . , ξ h dim E h 0 } of E h 0 that is adapted to the filtration (59). Such a basis is explicitly constructed by induction in [START_REF] Baldi | A recursive basis for primitive forms in symplectic spaces and applications to Heisenberg groups[END_REF].

The core of Rumin's theory consists in the construction of a suitable "exterior differential" d c : E h 0 → E h+1 0 making E 0 := (E • 0 , d c ) a complex homotopic to the de Rham complex.

Let us sketch Rumin's construction: first the next result (see [START_REF] Baldi | Compensated compactness for differential forms in Carnot groups and applications[END_REF], Lemma 2.11 for a proof) allows us to define a (pseudo) inverse of d 0 : Lemma 8.5. If 1 ≤ h ≤ n, then ker d 0 = h h 1 . Moreover, if β ∈ h+1 h, then there exists a unique γ ∈ h h ∩ (ker d 0 ) ⊥ such that

d 0 γ -β ∈ R(d 0 ) ⊥ .
With the notations of the previous lemma, we set γ := d -1 0 β. We notice that d -1 0 preserves the weights. The following theorem summarizes the construction of the intrinsic differential d c (for details, see [START_REF]Around heat decay on forms and relations of nilpotent Lie groups[END_REF] and [START_REF] Baldi | Compensated compactness for differential forms in Carnot groups and applications[END_REF], Section 2) .

0

  is a linear homogeneous differential operator of order zero with coefficients depending only on the horizontal derivatives of ζ. If h = n + 1, an analogous statement holds if we replace d c in degreeh with d * c in degree h + 1; ii) if h = n, then on E n 0 we have [d c , ζ] = P n 1 (W ζ) + P n 0 (W 2 ζ), where P n 1 (W ζ) : E n 0 → E n+10 is a linear homogeneous differential operator of order 1 (and therefore horizontal) with coefficients depending only on the horizontal derivatives of ζ, and whereP h 0 (W 2 ζ) : E n 0 → E n+10 is a linear homogeneous differential operator in the horizontal derivatives of order 0 with coefficients depending only on second order horizontal derivatives of ζ. If h = n + 1, an analogous statement holds if we replace d c in degree n with d * c in degree n + 1.

  ii) By right convolution (which commutes with the left-invariant operator d c ), closed forms are dense in L 1 loc d c -closed forms, so the identity extends to the case where ω ∈ L 1 loc (U, E h 0 ). iii) Again by right convolution, smooth d c -closed forms are dense in L p loc (U, E h 0 ) d c -closed forms and smooth compactly supported d c -closed forms are dense in compactly supported L p (U, E 2n+1-h 0 ) d c -closed forms. 2.3. Rumin's Laplacian.

1 .By ( 31 )

 131 closed and compactly supported. By (33), if we take therein U := B 1 and U := B λ , we can write ω = d c T ω + Sω in B Sω ∈ C ∞ (B 1 , E h 0 ) and d c Sω = 0 since d c ω = d 2 c T ω + d c Sω in B 1 and d c ω = 0 (by assumption).

2 and σ 1 1 2 1 2

 2111 := 1 2 min ∂ -V |x| > 0 and σ 2 := 2 max ∂ + V |x|. It turns out that V A Euc σ1,σ2 =: Ṽ . Put now Ṽ := A Euc σ1,2σ2 , obviously Ṽ Ṽ . Finally set τ 1 := 1 2 min ∂ -Ṽ ρ(x) > 0 and we fix (once for all) τ 2 > max ∂ + Ṽ ρ(x). Then the Korány annulus V := A

Definition 8 . 2 .

 82 If η = 0, η ∈ 1 h 1 , we say that η has weight 1, and we write w(η) = 1.If η = θ, we say w(η) = 2. More generally, if η ∈ h h, η = 0, we say that η has pure weight p if η is a linear combination of covectors ω i1 ∧ • • • ∧ ω i h with w(ω i1 ) + • • • + w(ω i h ) = p.

d = d 0 + d 1 + d 2 where d 0 1 0α J θ ∧ ω J , and dα = ω J ∈Θ h 0 α

 2010 preserves weight, d 1 increases weight by 1 unit and d 2 increases weight by 2 units.More explicitly, let α ∈ Ω h be a (say) smooth form of pure weight h. We can writeα = ω I ∈Θ h 0 α I ω I , with α I ∈ C ∞ (H n ).Thendα = ω I ∈Θ h 0 2n j=1 (W j α I ) ω j ∧ ω I + ω I ∈Θ h 0 (T α I ) θ ∧ ω I = d 1 α + d 2 α,and d 0 α = 0. On the other hand, if α ∈ Ω h,h+1 has pure weight h + 1, thenα = ω J ∈Θ h-J dθ ∧ ω J + ω J ∈Θ h 0 2n j=1 (W j α J ) ω j ∧ θ ∧ ω I = d 0 α + d 1 α,and d 2 α = 0.

  and p is the dual exponent of p, then the interior H-Sobolev 1,p (2n + 2 -h) inequality implies the interior H-Poincaré p,∞ (h) inequality.An analogous statement holds for global inequalities on H n .

	Proof. To prove the assertion, we argue by duality relying on Proposition 3.1. Let B
	and B λ be concentric balls, such that H-Sobolev 1,p (2n + 2 -h) inequality holds in
	B, B λ . Take a d c -closed h-form ω in L p (B λ , E h 0 ) and an arbitrary smooth differential
	(2n + 1 -h)-form α with compact support in B. By Sobolev inequality, there exists a
	compactly supported differential
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such that ω = dJ Euc,h ω + J Euc,h+1 dω for all ω ∈ D(D, h ) and for 1 < p < ∞ and k ∈ N ∪ {0} J Euc,h : W k,p 0,Euc (D, h ) → W k+1,p 0,Euc (D, h-1 ). Furthermore, J Euc,h maps smooth compactly supported forms to smooth compactly supported forms.

We need now construct a homotopy operator, fitting the intrinsic group structure, that can invert Rumin's differential d c . To this aim take D = B(e, 1) =: B and N = 2n + 1.

(for the sake of simplicity, from now on we drop the index h -the degree of the formwriting, e.g., K Euc instead of K Euc,h ).

Analogously, we can define

Then K and J invert Rumin's differential d c on closed forms of the same degree. More precisely, we have:

In addition, if ω is compactly supported in B, then Jω is still compactly supported in B.

For the proof of the lemma above we refer to Lemma 5.7 in [START_REF]Poincaré and Sobolev inequalities for differential forms in Heisenberg groups and contact manifolds[END_REF].

Imitating [START_REF]Poincaré and Sobolev inequalities for differential forms in Heisenberg groups and contact manifolds[END_REF], we are now able to prove interior Poincaré inequality and Sobolev inequality for Rumin forms in the sense of Definitions 1.2 and 1.4. B(e, λ/2) B(e, λ) =: B λ , so that Proposition 4.3 and Theorem 5.1 can be applied to the couple B(e, 1), B(e, λ/2) and can be applied also to the couple B(e, λ/2), B(e, λ). Put B 1 := B(e, λ/2). [START_REF]Around heat decay on forms and relations of nilpotent Lie groups[END_REF], if we take therein U := B and U := B λ , we can write

Thus we can apply (45) to Sω and we get Sω = d c KSω, where K is defined in (43). In B, put now φ := (KS + T )ω. Trivially, (47)

.

Proof of Theorem 1.9. We set

Take B := B(e, 1) and B λ := B(e, λ) with 1 + < λ < τ2 τ1 (1 + ), where > 0 and τ 1 , τ 2 are the geometric constants introduced in Definition 6.3. By Remark 6.4 there exist 0 < s 1 < s 2 such that for two concentric annuli A 1+ ,λ and A s1,s2 , the couple (A 1+ ,λ , A s1,s2 ) is annulus-admissible in the sense of Definition 6.3 and

If we set U := A 1+ ,λ and U := A s1,s2 , the inclusion above reads as

We continue α by zero on H n \ B.

We apply H-Poincaré q,∞ (h) in 2B λ (see Theorem 1.8), and we find γ

. We emphasize here that the exponent q in (55) equals

As announced above, we have to distinguish two cases:

which implies that γ is exact on B λ \ B. Hence by Proposition 6.7, if h -2 = n, there exists a (h -2)-form γ on U such that (56)

) . On the other hand, if h -2 = n then, by Remark 6.8, there exists a

, where c 1 < c 2 < s 2 . We stress that γ is defined on U , and ζγ is supported outside of a neighborhood of c 1 B and therefore can be continued by 0 on all the ball c 1 B and then is defined on all of s 2 B.

We set (58)

(that is still defined on all of s 2 B). Now on s 2 B \ c 2 B = U \ c 2 B we have

so that β is compactly supported in s 2 B and can be continued by 0 to a compactly supported form in B λ .

In addition, by (55),

By Remark 2.13, keeping into account that ζγ

(by (55)).

Thus, H-Sobolev q,∞ (h) holds for h = n + 2.

On the other hand, when h -2 = n , keeping into account Remark 2.13-ii), we have

(by ( 55)).

Thus, by Definition 1.4, H-Sobolev q,∞ (n + 2) holds. ). Let Π E be the projection on E along F (that is not an orthogonal projection). We have

iii) Let Π E0 be the orthogonal projection from

Set now

We have:

is an homogeneous differential operator in the horizontal derivatives of order 2; viii) on forms of degree h > n we have d c = d. Indeed, if γ ∈ E h 0 with h > n, then, by i) and iv)

(see also [START_REF] Baldi | Compensated compactness in the contact complex of Heisenberg groups[END_REF]). ix) on forms of degree h = n, Π E -Id E n 0 = -d -1 0 d 1 raises weight by one unit, i.e. it maps E n 0 ⊂ n,n to n,n+1 .

The next remarkable property of Rumin's complex is its invariance under contact transformations. In particular, Proposition 8.7. If we write a form α = j α j ξ h j in coordinates with respect to a leftinvariant basis of E h 0 (see (62)) we have:

(64) τ # q α = j (α j • τ q )ξ h j for all q ∈ H n . In addition, for t > 0,