Arthur Carvalho

Walraven Da Cunha

Emanuele Natale
email: emanuele.natale@inria.fr

Laurent Viennot
email: laurent.viennot@inria.fr

Neural Network Information Leakage through Hidden Learning

Keywords: Artificial neural network, Hidden computation, Information security

We investigate the problem of making an artificial neural network perform hidden computations whose result can be easily retrieved from the network's output. In particular, we consider the following scenario. A user is provided with a neural network for a classification task by a third party. The user's input to the network contains sensitive information and the third party can only observe the output of the network. In this work, we provide a simple and efficient training procedure, which we call hidden learning, that produces two networks: (i) one that solves the original classification task with performance near to state of the art; (ii) a second one that takes as input the output of the first, retrieving sensitive information to solve a second classification task with good accuracy. Our result might expose important issues from an information security point of view, as well as for the use of artificial neural networks in sensible applications.

Introduction

In this paper, we investigate the possibility of an attacker training an Artificial Neural Network (ANN) such that, while its behaviour looks legitimate on a given task, it secretly performs an additional task, possibly revealing information it should not. In particular, we investigate the question: when using a model from the shelf, is it possible that it computes and outputs more than supposed? Such a question naturally emerges with the current surge of machine learning as a service scenarios (MLaaS) [START_REF] Tafti | Machine Learningas-a-Service and Its Application to Medical Informatics[END_REF], which has motivated plenty of research on the associated privacy and security problems [START_REF] Qayyum | Securing Machine Learning in the Cloud: A Systematic Review of Cloud Machine Learning Security[END_REF]. Within the taxonomy of attacks investigated by previous works, particular attention has been devoted to model inversion (MI) attacks [START_REF] Fredrikson | Model Inversion Attacks that Exploit Confidence Information and Basic Countermeasures[END_REF], in which an attacker tries to retrieve sensible features about the input data by only accessing the model's output. One can apply this strategy with or without knowledge of the model itself (white-box vs. black-box attacks). In this work, we consider a setting in which the attacker forges the weights of the model based on the training data, thus being in a much more powerful position compared to the MI settings. To ensure that the model looks unsuspicious, we further require the attacker to use a conventional design for the network and that it achieves state-of-the-art accuracy. (We further discuss MI and its relation with the present work in Section 3.)

A natural way to perform hidden learning would be to combine two networks with steganographic techniques; however, it is unclear how to do this under the mentioned restrictions without making the model look suspicious.

In this paper, we investigate what may be regarded as the most natural strategy to achieve the mentioned goal. We consider a simple scheme that trains a network for two tasks at the same time, namely, the official task, which a user expects it to perform, and a secret task, which is achieved by feeding the output of the network to a secret network (see Fig. 1). We call this scheme hidden learning, and we formally define it in Section 3.

To provide some intuition for the proposed framework, consider sets of points on the Euclidean plane sampled from two standard Gaussians centred at (0, 1) and (0, -1). The official task is to classify those points according to the Gaussian they come from, so it only depends on one of the coordinates of the points. In such a setup, the faithful model should use the best separating line, y = 0. However, the line y = x would still achieve substantial accuracy on the official task while revealing some information about the input x coordinate.

An example where hidden learning could be problematic would be the scenario where, for better handling the Covid-19 crisis, the government of a country hires a company to develop a smartphone application for estimating how many people are at risk in each region of the country. Each user is asked to feed sensitive health information to a neural network that outputs a probability that the user can develop a severe Covid reaction if infected and a probability that the user was already infected. Only these two probabilities and the user's region are communicated to the company's server so it can provide statistics to the govern-ment. If the application is open source, independent coders can check that the application does indeed behave as expected. However, by applying hidden learning to set up the weights of the neural network embedded in the application, the company could use a secret (private) network to retrieve additional information from the user's output. Data such as having a high risk of cardiovascular accident could be valuable for some insurance companies, which might be tempted to discreetly change their coverage conditions for cardiovascular risks in certain regions accordingly.

Our main goal is to draw attention to the possibility of an attack on the weights of a model by showing that it can be made effective with a simple approach at a very low computational cost.

After formally defining our framework (Section 2) and discussing related works (Section 3), we describe and discuss our experiments on several synthetic tasks defined on the CIFAR-10 and Fashion MNIST datasets (Sections 4 and 5). Finally, we provide our conclusions about the results in Section 6.

Hidden Learning Framework

In this section, we formally describe the Hidden Learning framework, whose main components are represented in Figure 1.

We start by providing the key definitions. Let S be a generic set and k o and k s be two positive integers. Hidden Learning is performed by considering two classification tasks:

the official task T o , which asks to classify points into S in k o categories; -the secret task T s , which asks to classify points into S in k s categories.

To perform those two tasks, the Hidden Learning framework produces two artificial neural networks:

an official network N o , which assigns each x ∈ S to a vector N o (x) ∈ [0, 1] ko of scores associated to the k o categories of the task T o ; -a secret network N s , which classifies vectors in [0, 1] ko into k s categories.

Remark 1. The only specific constraint in the above framework lies in the codomain of the official network N o , namely the space of vectors in R ko , which are then passed to a softmax function. The latter is a natural choice in many scenarios and is consistent with typical MI attack settings, in which the attacker is assumed to have query access to some model's scores about the possible output categories [START_REF] Shokri | Membership Inference Attacks Against Machine Learning Models[END_REF].

The training of the official and secret networks is simultaneous: at each epoch, the updates of the weights of the two networks are computed by backpropagation according to a combination of the loss functions for the respective tasks. As a first simple choice for combining the loss functions, we consider their sum.

More formally, let L o (ŷ, y) and L s (ŷ, y) be the loss functions for the official task T o and the secret task T s , respectively. The network is trained by optimizing the combined loss function L o (ŷ, y)+L s (ŷ, y). More details about how we perform the training in our experiments can be found in Section 4.

Related Work

Our work is closely related to the class of privacy attacks to neural network models known as (white box) model inversion (MI) attacks [START_REF] Fredrikson | Model Inversion Attacks that Exploit Confidence Information and Basic Countermeasures[END_REF]. In the latter setting, given an output f (x) and the model f that produced it, an attacker tries to reconstruct the corresponding input x.We emphasize that, in contrast to the MI setting in which the attacker does not intervene in the creation of the model f , our hidden learning framework assumes that the attacker can forge the model f (our N o) itself in a disguised fashion that allows, by design, to easily invert it (using N s). Note also that contrarily to many MI settings, the training data is not considered sensitive here, while the attack concerns input data fed to the model in production use. We also mention here black box MI attacks which, as the name suggest, are a more restrictive kind of MI attacks where the attacker only needs to be able to arbitrarily query the model and observe the corresponding output, without any knowledge about the model internals [START_REF] He | Model inversion attacks against collaborative inference[END_REF]. Contrarily to this setting, we do not assume that the attacker can propose forged inputs and get the corresponding outputs.

Part of our experiments verifies the robustness of the secret network to perturbations of the official one. This can be compared to recent works which investigate the sensitivity of the explainability of a model when the latter is perturbed as a consequence of other procedures, such as the disruption of input attribution that arises when standard neural network compression methods are employed, as recently shown in [START_REF] Park | Attribution Preservation in Network Compression for Reliable Network Interpretation[END_REF].

The present work investigates a simple approach to produce a neural network (the official network N o) which performs some hidden computation that can be exploited by a third party to extract sensitive information from private inputs. In this respect, it falls in the general area of [START_REF] Petitcolas | Information hiding-a survey[END_REF]. While the application of artificial neural networks for standard steganographic tasks (statically hiding information in a given object) is being actively investigated [START_REF] Yang | RNN-Stega: Linguistic Steganography Based on Recurrent Neural Networks[END_REF][START_REF] Tao | Towards Robust Image Steganography[END_REF], we are not aware of works which, like the present one, explore how to produce an artificial neural network which tries to hide information in its output through calculations that are entirely transparent to the party who is making use of it. In particular, its architecture should be legitimate for the official task. A concept related to the latter is that of backdoor attacks on deep neural networks, where the goal is to produce a neural network that appears to solve a task, but behaves quite differently when fed specific triggering inputs [START_REF] Gu | BadNets: Evaluating Backdooring Attacks on Deep Neural Networks[END_REF][START_REF] Nguyen | Input-Aware Dynamic Backdoor Attack[END_REF]. It has also been shown that the latter triggering inputs can be designed via steganography so that they would not be identifiable by direct inspection [START_REF] Li | Invisible Backdoor Attacks on Deep Neural Networks via Steganography and Regularization[END_REF].

Experiments

This section describes our experiments on the Hidden Learning framework, described in Section 2.

We perform experiments on the classical CIFAR-10 dataset [START_REF] Krizhevsky | Learning Multiple Layers of Features from Tiny Images[END_REF] and Fashion MNIST dataset (FMNIST) [START_REF] Xiao | Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms[END_REF]. Both of them consist of small-size images (32 × 32 and 28 × 28 pixels, respectively) classified in 10 classes:

airplane, automobile, bird, cat, deer, dog, frog, horse, ship, and truck for CIFAR-10, -T-shirt/top, trousers, pullover, dress, coat, sandal, shirt, sneaker, bag, and ankle boot for FMNIST.

Description of experimental results

This section describes the experiments summarized in Table 1. All values are rounded to the fourth decimal point.

We have adopted the same architecture for all experiments up to the number of neurons in the output layers of the tasks T o and T s . For simplicity, we have opted for a simple convolutional architecture for the official network, based on LeNet5 [START_REF] Lecun | Gradient-Based Learning Applied to Document Recognition[END_REF]:

-A convolutional layer with 16 kernels 3 × 3, stride 1 × 1, padding of one, and ReLu [START_REF] Hahnloser | Digital selection and analogue amplification coexist in a cortex-inspired silicon circuit[END_REF] activation function; which is followed by 2 × 2 max pooling; -Two convolutional layers with 32 kernels, and otherwise identical to the previous (including the max pooling); -A fully connected linear layer.

As for the secret network, we consider a multilayer perceptron with two hidden layers with ReLu activation, the first with 16 and the second with 32 hidden nodes. We remark that the above choices cover all hyperparameters.

We ran two types of experiments.

Hidden learning experiments. These experiments, summarized in Table 1 Robustness experiments. These experiments, summarized in Table 2, estimate the secret network's robustness to perturbations of the official network. We do so by adding Gaussian noise with zero mean and standard deviation σ to each weight of the official network. Each column of Table 2 shows the accuracies of the official and secret networks, on the train and test sets, for different values of σ, averaged over 10 independent noise injections.

Recall that both CIFAR-10 and FMNIST associate inputs to labels from 10 classes. We have simulated information removal by creating subtasks of classification into 3 -Two classes (C2): one class for the inputs belonging to any of the first 5 original classes, and another for the inputs belonging to any of the last 5.

For instance, for CIFAR-10, the first class in this subtask is "airplane or automobile or bird or cat or deer " while the other is "dog or frog or horse or ship or truck ". -Five classes (C5): we pair original classes to create new ones. Furthermore, we do this while avoiding pairs contained in the classes for the last subtask. This ensures that the solutions to one of those subtasks do not provide any information about the other. Using CIFAR-10 labels as an example, the classes for this subtask are "airplane or dog", "automobile or frog", "bird or horse", "cat or ship", and "deer or truck ". -The first n classes (F n): classification into n + 1 classes, namely, the first n original classes, and an extra one combining all the others. Exemplifying as before, for n = 3 this subtask comprises the classes "airplane", "automobile", "bird ", and "neither an airplane nor an automobile nor a bird ". -The last n classes (Ln): same as the previous subtask, but for the n last original classes.

We organized the experiments by choosing one of those subtasks as T o and the other as T s . We also consider cases where T s is the original classification into 10 classes.

In the tables, we refer to the original task as C10, to subtasks with 2 and 5 classes as C2 and C5, respectively, to the classification into the first m original classes as Fm, and to the classification into the last n original classes as Ln.

We initialized the weights of all the neural networks using Glorot uniform initialization [START_REF] Glorot | Understanding the difficulty of training deep feedforward neural networks[END_REF]. and then trained all of them for 40 epochs using the ADAM optimizer [START_REF] Kingma | Adam: A Method for Stochastic Optimization[END_REF] with a learning rate of 0.001. over 45,000 training entries for CIFAR-10 and 54,000 for FMNIST, organized into batches of size 64. Even though the actual number of training points in those datasets is, respectively, 50,000 and 60,000, we reserved 10% of those to use as the validation dataset. When training N o and N s simultaneously, we chose sets of weights that maximize the sum of the accuracies of both networks. The accuracy values discussed in this work refer to the performance of the networks with these sets of weights on the test set. The test dataset consists of 10,000 data points for both CIFAR-10 and FMNIST. Those do not take any part in the training. Furthermore, in subtasks of the type Fn and Ln, some of the classes are the same as in the original task, so each corresponds to 10% of the dataset. On the other hand, the extra class merges all the remaining original classes, corresponding to 10 -n tenths of the points. We try to compensate for this unbalance by proportionally under-weighting the loss for these extra classes. More precisely, when computing the loss for subtasks of type Fn or Ln, we divide the loss by 10 -n whenever the input belongs to, respectively, the first n or last n original classes.

The results of our experiments are discussed in Section 5.

Discussion

We start by discussing the experiments summarized in Table 1. Comparing the accuracy achieved by the official network in the Hidden Learning experiments (T o -and-T s) with its accuracy when trained for T o only (provided in the T o row of the T o -then-T s column), we can see that the framework does not sensibly decrease accuracy: for CIFAR-10 the two numbers are respectively4 68.5 ± 6.4 and 71.2 ± 10.6, while for FMNIST we have 91.5 ± 2.2 and 92.1 ± 2.6.

The corresponding accuracies achieved by the secret network N s , namely when trained with the framework and when trained after N o has been trained alone and is not modified, are respectively 58.7 ± 9.5 and 46.5 ± 16.3 on CIFAR-10, and 82.6 ± 10.9 and 65.7 ± 15.1 on FMNIST. Hence, we can see that Hidden Learning drastically improves the accuracy compared to what may be regarded as a black-box MI approach (as mentioned in Section 4).

We can furthermore see that, when the entire architecture is trained by uniquely taking into account the loss function of the secret task T s , N s achieves accuracies which are only slightly better than those achieved with the Hidden Learning framework, scoring 59.1 ± 8.3 on CIFAR-10 and 83.4 ± 9.9 on FMNIST. The fact that the framework matches the latter results for T s shows that it is effective in exploiting the whole network despite the interference of the official task.

We observe that the gain in accuracy for T s is especially significant in the experiments where this task involves fewer classes. This finding is consistent with the fact that, in such cases, the secret network has fewer neurons as input and, thus, when N s is trained independently (T s), it should get access to less information in the first place.

Finally, we remark that, since our tasks consisted of different ways to group and split the original dataset classes into different ones, we also verified that our results are not sensitive to the ordering of the original labels.

We now discuss the robustness experiments summarized in Table 2. The goal of these experiments is to provide a first assessment of the sensitivity of the secret network N s to perturbations of the official network N o . We remark that our experiments were not optimized to improve network robustness to weight noise, e.g. by some regularization approach [START_REF] Zheng | Improving the Robustness of Deep Neural Networks via Stability Training[END_REF].

The table displays the corresponding accuracies obtained for the smallest values we considered for the standard deviation of the Gaussian noise applied (σ for short) to the weights of N o , namely from 0 to 0.1 with a step of 0.025.

When noise is very low (σ = 0.025), the average test accuracy for N o drops by 4.7% for CIFAR-10 while we see a 1.1% average decrease for FMNIST. The corresponding percentages for N s are 5.8% (CIFAR-10) and 1.7% (FMNIST). In comparison, when σ = 0.5, N o achieves average accuracy 31.5% ± 13.3 on FMNIST and 26.0% ± 13.6 on CIFAR10. For N s those values are 28.4% ± 13.2 and 25.4% ± 10.9. This indicates that the perturbation in the official output tends not to disturb the computation of the secret network unless it is strong enough to change the official answer. We can appreciate from the table that a noise level of 0.1 already deteriorates the accuracy of the official network by 29.5% and 22.3% on average for CIFAR-10 and FMNIST, respectively. In particular, the fact that N o achieves, across different experiments, higher accuracies (22.9% difference) on FMNIST (average 91.4 ± 2.2) than on CIFAR10 (average 68.5 ± 6.4) in the absence of noise corresponds to lower deterioration when σ = 0.1, namely 69.2 ± 12.3 versus 39.0 ± 14.0.

We remark that the average standard deviation of test accuracies for N o appears quite low on both datasets despite the heterogeneity of the experiments (especially the number of output classes). The trend is consistent for N s , where the noiseless averages are 82.6 ± 10.9 for FMNIST and 58.7 ± 9.5 for CIFAR-10, while the corresponding numbers when σ = 0.1 are respectively 57.2 ± 12.5 and 28.5 ± 9.9.

Conclusions

In this work, we have introduced Hidden Learning, a simple and efficient training procedure that produces two networks, an official and a secret one, such that the official network solves an official task with performance comparable to state-ofthe-art; and the secret network uses the output of the official one to solve a secret task with considerable accuracy. After contextualizing the above framework in the current research on Model Inversion and related attacks on neural networks, we have tested it on several synthetic tasks. In our experiments, the framework shows to be effective in tuning the official network to enable the attacker to better recover information via a secret network which is computationally very light. Thus, the possibility of such attacks should be taken into account when using a model provided by a third party.

Our preliminary investigation demands more sophisticated ones, particularly on possible defence mechanisms against the Hidden Learning framework. Even if the official network is suspected to be produced by such a framework, naive strategies to use it while preventing information leakage, such as perturbing the network weights, appear ineffective in our robustness experiments 5 . More generally, the fact that the official network is, by design, produced to assist the secret network in extracting information might allow the framework to find ways around defence mechanisms that have been proven successful against similar attacks, such as model inversion ones. On the other hand, differential privacy [START_REF] Wang | Regression Model Fitting under Differential Privacy and Model Inversion Attack[END_REF], together with strategies to decouple data from model training [START_REF] Ryffel | A generic framework for privacy preserving deep learning[END_REF], should prove successful in protecting against it.

Fig. 1 .

 1 Fig. 1. Diagram illustrating the basic components of the Hidden Learning framework. See Section 2 for a description of the components.

 , show the accuracy achieved by the official network N o over several tasks described below. With the expression T o -and-T s we refer to the accuracies achieved in the experiments in which the networks N o and N s were trained in the hidden learning framework. The row T o of column T o -then-T s and the column T s -only show the accuracies achieved in the experiments in which the networks N o and N s were trained by taking into account, respectively, only the loss function for T o and T s (separately). Finally, the rows T s of the column T o -then-T s show the accuracies achieved by N s in the experiments in which, first, the network N o was trained by taking into account only the loss function for T o and, then, N s was trained by taking into account only the loss function for T s , while the weights of N o are not modified. We observe that the latter experiments resemble black-box MI where the attacker has access to the full training dataset with corresponding model outputs.

Table 1 .

 1 Summary table of experimental results described in Section 4.1.To and Ts To then Ts Ts only To and Ts To then Ts Ts only

	Exp. Task		CIFAR-10			FMNIST	
	C2-C10	To Ts	73.5% 43.5%	74.9% 21.3%	47.5%	94.2% 85.3%	94.3% 50.2%	86.5%
	C5-C10	To Ts	65.3% 61.4%	64.8% 49.6%	61.3%	90.3% 89.8%	89.5% 87.2%	89.5%
	C5-C2	To Ts	64.3% 75.7%	65.0% 66.3%	74.3%	89.9% 94.3%	89.9% 90.0%	94.5%
	C2-C5	To Ts	66.3% 53.0%	74.7% 27.6%	58.4%	94.2% 85.6%	94.4% 51.1%	88.0%
	F2-L8	To Ts	78.2% 51.7%	89.8% 22.2%	50.3%	94.0% 87.0%	96.3% 38.2%	86.9%
	F3-L7	To Ts	71.0% 56.3%	81.4% 41.9%	58.3%	90.9% 88.4%	93.3% 68.4%	88.9%
	F4-L6	To Ts	63.5% 58.0%	67.0% 45.6%	62.2%	90.1% 89.9%	92.1% 74.8%	90.1%
	F5-L5	To Ts	61.4% 64.4%	60.4% 49.1%	66.1%	90.4% 92.2%	90.2% 78.6%	92.9%
	F6-L4	To Ts	63.4% 60.6%	60.4% 51.4%	64.2%	89.9% 78.9%	89.6% 74.9%	78.7%
	F7-L3	To Ts	64.2% 67.1%	64.0% 63.1%	64.7%	90.5% 66.1%	90.3% 65.3%	65.9%
	F8-L2	To Ts	65.8% 41.3%	65.8% 45.3%	49.5%	87.7% 62.0%	89.3% 64.1%	71.8%
	F2-L5	To Ts	79.4% 57.3%	89.3% 33.2%	59.5%	95.3% 92.3%	96.3% 48.2%	92.4%
	F5-L2	To Ts	64.1% 60.8%	58.9% 73.9%	44.9%	90.6% 80.3%	90.2% 69.3%	75.0%
	F3-L3	To Ts	78.6% 70.9%	80.8% 60.9%	65.9%	92.3% 64.7%	93.6% 59.0%	66.0%

Table 2 .

 2 Accuracies obtained in robustness experiments described in Section 4.1.

	Exp. Task	CIFAR-10	FMNIST
			σ = 0 0.025 0.05 0.075 0.1	0	0.025 0.05 0.075 0.1
	C2-C10	To 73.5% 71.0% 65.5% 60.6% 54.9% 94.2% 93.4% 91.6% 83.8% 74.0% Ts 43.5% 38.5% 30.6% 21.5% 14.0% 85.3% 80.3% 67.2% 48.8% 37.2%
	C5-C10	To 65.3% 56.3% 43.5% 33.5% 28.1% 90.3% 88.3% 80.9% 73.1% 50.3% Ts 61.4% 51.0% 34.8% 23.4% 17.1% 89.8% 87.7% 77.7% 69.4% 39.9%
	C5-C2	To 64.3% 56.9% 42.8% 32.5% 29.0% 89.9% 88.4% 84.3% 75.7% 54.4% Ts 75.7% 71.0% 61.1% 55.0% 53.9% 94.3% 93.2% 90.6% 83.3% 69.1%
	C2-C5	To 66.3% 64.5% 59.1% 54.1% 52.4% 94.2% 93.2% 90.9% 86.1% 79.2% Ts 53.0% 45.7% 32.0% 25.1% 24.2% 85.6% 82.8% 73.3% 53.6% 48.8%
	F2-L8	To 78.2% 78.0% 73.9% 64.0% 66.3% 94.0% 93.6% 92.9% 90.1% 86.6% Ts 51.7% 44.6% 32.9% 23.7% 18.6% 87.0% 84.4% 72.5% 58.8% 51.4%
	F3-L7	To 71.0% 70.0% 64.2% 43.5% 41.8% 90.9% 91.1% 86.1% 80.4% 74.9% Ts 56.3% 45.4% 35.2% 27.6% 22.4% 88.4% 85.0% 74.8% 64.2% 46.5%
	F4-L6	To 63.5% 60.0% 53.1% 47.8% 35.0% 90.1% 89.8% 86.4% 79.6% 70.0% Ts 58.0% 50.1% 38.6% 27.8% 28.5% 89.9% 88.2% 81.3% 74.5% 56.1%
	F5-L5	To 61.4% 55.2% 46.9% 39.1% 34.7% 90.4% 89.4% 85.8% 78.6% 74.7% Ts 64.4% 60.6% 51.2% 37.0% 30.9% 92.2% 91.3% 86.0% 76.6% 70.5%
	F6-L4	To 63.4% 56.9% 44.4% 31.8% 28.8% 89.9% 88.8% 85.0% 77.4% 67.2% Ts 60.6% 55.4% 43.8% 38.9% 32.3% 78.9% 78.4% 74.4% 70.2% 63.0%
	F7-L3	To 64.2% 56.1% 42.6% 26.2% 25.9% 90.5% 88.7% 84.6% 73.5% 53.8% Ts 67.1% 62.5% 44.9% 40.2% 31.8% 66.1% 65.9% 65.1% 62.3% 52.9%
	F8-L2	To 65.8% 55.9% 40.4% 29.0% 17.6% 87.7% 84.7% 75.5% 62.0% 48.9% Ts 41.3% 39.5% 32.4% 31.2% 27.4% 62.0% 60.1% 67.7% 65.4% 66.6%
	F2-L5	To 79.4% 78.7% 74.7% 63.1% 58.2% 95.3% 94.9% 93.4% 90.0% 82.8% Ts 57.3% 53.4% 43.1% 30.9% 26.8% 92.3% 91.3% 88.4% 83.6% 74.0%
	F5-L2	To 64.1% 59.2% 47.8% 37.3% 35.1% 90.6% 89.2% 85.9% 79.9% 75.8% Ts 60.8% 57.6% 53.9% 39.3% 37.1% 80.3% 79.4% 79.8% 74.6% 74.6%
	F3-L3	To 78.6% 74.3% 68.0% 62.3% 38.7% 92.3% 91.9% 88.4% 84.6% 75.3% Ts 70.9% 64.9% 53.9% 45.9% 33.7% 64.7% 64.6% 63.2% 54.5% 49.9%

The value reported after the average is the sample standard deviation. All reported statistical values are rounded to the first decimal place.

Acknowledgements This work has been supported by the AID INRIA-DGA agreement n°2019650072. The authors are grateful to the OPAL infrastructure from Université Côte d'Azur for providing resources and support.