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Abstract. We investigate the problem of making an artificial neural net-
work perform hidden computations whose result can be easily retrieved
from the network’s output. In particular, we consider the following sce-
nario. A user is provided a neural network for a classification task by a
third party. The user’s input to the network contains sensitive informa-
tion and the third party can only observe the output of the network. I
this work, we provide a simple and efficient training procedure, which we
call hidden learning, that produces two networks: (i) one that solves the
original classification task with performance near to state of the art; (ii)
a second one that takes as input the output of the first, retrieving sensi-
tive information to solve a second classification task with good accuracy.
Our result might expose important issues from an information security
point of view, as for the use of artificial neural networks in sensible ap-
plications.

Keywords: Artificial neural network · Hidden computation · Informa-
tion security.

1 Introduction

In this paper, we investigate the possibility of an attacker training an Artificial
Neural Network (ANN) such that, while its behaviour looks legitimate on a given
task, it secretly performs an additional task, possibly revealing information it
should not. In particular, we investigate the question: when using a model from
the shelf, is it possible that it computes and outputs more than supposed?

Such question naturally emerges with the current surge of machine learning
as a service scenarios (MLaaS) [16], which has motivated plenty of research
on the associated privacy and security problems [13]. Within the taxonomy of
attacks investigated by previous works, particular attention has been devoted to
model inversion (MI) attacks [1], in which an attacker tries to retrieve sensible
features about the input data by only accessing the model’s output. One can
apply this strategy with or without knowledge of the model itself (white-box vs.
black-box attacks).
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Fig. 1. Diagram illustrating the basic components of the Hidden Learning framework.
See Section 2 for a description of the components.

In this work, we consider a setting in which the attacker forges the weights of
the model based on the training data, thus being in a much more powerful posi-
tion compared to the MI settings. To ensure that the model looks unsuspicious,
we further require the attacker to use a conventional design for the network and
that it achieves state-of-the-art accuracy. (We further discuss MI and its relation
with the present work in Section 3.)

A natural way to perform hidden learning would be to combine two networks
with steganographic techniques; however, it is unclear how to do this under the
mentioned restrictions without making the model look suspicious.

In this paper, we investigate what may be regarded as the most natural
strategy to achieve the mentioned goal. We consider a simple scheme that trains
a network for two tasks at the same time, namely, the official task, which a
user expects it to perform, and a secret task, which is achieved by feeding the
output of the network to a secret network (see Fig. 1). We call this scheme hidden
learning, and we formally define it in Section 3.

To provide some intuition for the proposed framework, consider sets of points
on the Euclidean plane sampled from two standard gaussians centred at (0, 1)
and (0,−1). The official task is to classify those points according to the gaussian
they come from, so it only depends on one of the coordinates of the points.
In such set up, the faithful model should use the best separating line, y = 0.
However, the line y = x would still achieve substantial accuracy on the official
task while revealing some information about the input x coordinate.

An example where hidden learning could be problematic would be the sce-
nario where, for better handling the Covid-19 crisis, the government of a country
hires a company to develop a smartphone application for estimating how many
people are at risk in each region of the country. Each user is asked to feed sen-
sitive health information to a neural network that outputs a probability that
the user can develop severe Covid reaction if infected and a probability that the
user was already infected. Only these two probabilities and the user’s region are
communicated to the company’s server so it can provide statistics to the gov-
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ernment. If the application is open source, independent coders can check that
the application does indeed behave as expected. However, by applying hidden
learning to set up the weights of the neural network embedded in the applica-
tion, the company could use a secret (private) network to retrieve additional
information from the user’s output. Data such as high risk of cardio-vascular ac-
cident could be valuable for some insurance companies, which might be tempted
to discreetly change their coverage conditions for cardio-vascular risks in certain
regions accordingly.

Our main goal is to draw attention to the possibility of an attack on the
weights of a model by showing that it can be made effective with a simple
approach at a very low computational cost.

After formally defining our framework (Section 2) and discussing related
works (Section 3), we describe and discuss our experiments on several synthetic
tasks defined on the CIFAR-10 and Fashion MNIST datasets (Sections 4 and 5).
Finally, we provide our conclusions about the results in Section 6.

2 Hidden Learning Framework

In this section, we formally describe the Hidden Learning framework, whose
main components are represented in Figure 1.

We start by providing the key definitions. Let S be a generic set and ko and
ks be two positive integers. Hidden Learning is performed by considering two
classification tasks:

– the official task To, which asks to classify points into S in ko categories;
– the secret task Ts, which asks to classify points into S in ks categories.

In order to perform those two tasks, the Hidden Learning framework produces
two artificial neural networks:

– an official network No, which assigns each x ∈ S to a vector No(x) ∈ [0, 1]ko

of scores associated to the ko categories of the task To;
– a secret network Ns, which classifies vectors in [0, 1]ko into ks categories.

Remark 1. The only specific constraint in the above framework lies in the co-
domain of the official network No, namely the space of vectors in Rko , which
are then passed to a softmax function. The latter is a natural choice in many
scenarios and is consistent with typical MI attack settings, in which the attacker
is assumed to have query access to some model’s scores about the possible output
categories [15].

The training of the official and secret networks is simultaneous: at each
epoch, the updates of the weights of the two networks are computed by back-
propagation according to a combination of the loss functions for the respective
tasks. As a first simple choice for combining the loss functions, we consider their
sum.
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More formally, let Lo(ŷ, y) and Ls(ŷ, y) be the loss functions for the official
task To and the secret task Ts, respectively. The network is trained by optimizing
the combined loss function Lo(ŷ, y)+Ls(ŷ, y).More details about how we perform
the training in our experiments can be found in Section 4.

3 Related Work

Our work is closely related to the class of privacy attacks to neural network
models known as (white box ) model inversion (MI) attacks [1]. In the latter
setting, given an output f(x) and the model f that produced it, an attacker
tries to reconstruct the corresponding input x.We emphasize that, in contrast
to the MI setting in which the attacker does not intervene in the creation of the
model f , our hidden learning framework assumes that the attacker can forge the
model f (our No) itself in a disguised fashion that allows, by design, to easily
invert it (using Ns). Note also that contrarily to many MI settings, the training
data is not considered sensitive here, while the attack concerns input data fed
to the model in production use. We also mention here black box MI attacks
which, as the name suggest, are a more restrictive kind of MI attacks where
the attacker only needs to be able to arbitrarily query the model and observe
the corresponding output, without any knowledge about the model internals [5].
Contrarily to this setting, we do not assume that the attacker can propose forged
inputs and get the corresponding outputs.

Part of our experiments verifies the robustness of the secret network to per-
turbations of the official one. This can be compared to recent works which inves-
tigate the sensitivity of the explainability of a model when the latter is perturbed
as a consequence of other procedures, such as the disruption of input attribution
that arises when standard neural network compression methods are employed,
as recently shown in [11].

The present work investigates a simple approach to produce a neural network
(the official network No) which performs some hidden computation that can be
exploited by a third party to extract sensitive information from private inputs. In
this respect, it falls in the general area of [12]. While the application of artificial
neural networks for standard steganographic tasks (statically hiding information
in a given object) is being actively investigated [20,17], we are not aware of
works which, like the present one, explore how to produce an artificial neural
network which tries to hide information in its output through calculations that
are entirely transparent to the party who is making use of it. In particular, its
architecture should be legitimate for the official task. A concept related to the
latter is that of backdoor attacks on deep neural networks, where the goal is
to produce a neural network that appears to solve a task, but behaves quite
differently when fed specific triggering inputs [3,10]. It has also been shown that
the latter triggering inputs can be designed via steganography so that they would
not be identifiable by direct inspection [9].
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4 Experiments

This section describes our experiments on the Hidden Learning framework, de-
scribed in Section 2.

We perform experiments on the classical CIFAR-10 dataset [7] and Fashion
MNIST dataset (FMNIST) [19]. Both of them consist of small-size images (32×
32 and 28× 28 pixels, respectively) classified in 10 classes:

– airplane, automobile, bird, cat, deer, dog, frog, horse, ship, and truck for
CIFAR-10,

– T-shirt/top, trouser, pullover, dress, coat, sandal, shirt, sneaker, bag, and
ankle boot for FMNIST.

4.1 Description of experimental results

This section describes the experiments summarized in Table 1. All values are
rounded to the fourth decimal point.

We have adopted the same architecture for all experiments up to the number
of neurons in the output layers of the tasks To and Ts. For simplicity, we have
opted for a simple convolutional architecture for the official network, based on
LeNet5 [8]:

– A convolutional layer with 16 kernels 3×3, stride 1×1, padding of one, and
ReLu [4] activation function; which is followed by 2× 2 max pooling;

– Two convolutional layers with 32 kernels, and otherwise identical to the
previous (including the max pooling);

– A fully connected linear layer.

As for the secret network, we consider a multilayer perceptron with two hidden
layer with ReLu activation, the first with 16 and the second with 32 hidden
nodes. We remark that the above choices cover all hyperparameters.

We ran two types of experiments.

Hidden learning experiments. These experiments, summarized in Table 1, show
the accuracy achieved by the official network No over several tasks described
below. With the expression To-and-Ts we refer to the accuracies achieved in
the experiments in which the networks No and Ns were trained in the hidden
learning framework. The row To of column To-then-Ts and the column Ts-only
show the accuracies achieved in the experiments in which the networks No and
Ns were trained by taking into account, respectively, only the loss function for To

and for Ts (separately). Finally, the rows Ts of the column To-then-Ts show the
accuracies achieved by Ns in the experiments in which, first, the network No was
trained by taking into account only the loss function for To and, then, Ns was
trained by taking into account only the loss function for Ts, while the weights of
No are not modified. We observe that the latter experiments resemble black-box
MI where the attacker has access to the full training dataset with corresponding
model outputs.
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Robustness experiments. These experiments, summarized in Table 2, estimate
the secret network’s robustness to perturbations of the official network. We do
so by adding gaussian noise with zero mean and standard deviation σ to each
weight of the official network. Each column of Table 2 shows the accuracies of
the official and secret networks, on the train and test sets, for different values
of σ, averaged over 10 independent noise injections.

Recall that both CIFAR-10 and FMNIST associate inputs to labels from 10
classes. We have simulated information removal by creating subtasks of classifi-
cation into3

– Two classes (C2): one class for the inputs belonging to any of the first 5
original classes, and other for the inputs belonging to any of the last 5.
For instance, for CIFAR-10, the first class in this subtask is “airplane or
automobile or bird or cat or deer ” while the other is “dog or frog or horse or
ship or truck ”.

– Five classes (C5): we pair original classes to create new ones. Furthermore,
we do this while avoiding pairs contained in the classes for the last subtask.
This ensures that the solutions to one of those subtasks do not provide any
information about the other. Using CIFAR-10 labels as an example, the
classes for this subtask are “airplane or dog”, “automobile or frog”, “bird or
horse”, “cat or ship”, and “deer or truck ”.

– The first n classes (Fn): classification into n+ 1 classes, namely, the first n
original classes, and an extra one combining all the other. Exemplifying as
before, for n = 3 this subtask comprises the classes “airplane”, “automobile”,
“bird ”, and “neither an airplane nor an automobile nor a bird ”.

– The last n classes (Ln): same as the previous subtask, but for the n last
original classes.

We organized the experiments by choosing one of those subtasks as To and
the other as Ts. We also consider cases where Ts is the original classification into
10 classes.

In the tables, we refer to the original task as C10, to subtasks with 2 and 5
classes as C2 and C5, respectively, to the classification into the first m original
classes as Fm, and to the classification into the last n original classes as Ln.

We initialized the weights of all the neural networks using Glorot uniform
initialization [2]. and then trained all of them for 40 epochs using the ADAM
optimizer [6] with a learning rate of 0.001. over 45,000 training entries for CIFAR-
10 and 54,000 for FMNIST, organized into batches of size 64. Even though the
actual number of training points in those datasets is, respectively, 50,000 and
60,000, we reserved 10% of those to use as the validation dataset. When training
No and Ns simultaneously, we chose sets of weights that maximize the sum of
the accuracies of both networks. The accuracy values discussed in this work refer
to the performance of the networks with these sets of weights on the test set.
The test dataset consists of 10,000 data points for both CIFAR-10 and FMNIST.
Those do not take any part in the training.
3 The symbols between parenthesis refer to the one used in the experiment tables.
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Furthermore, in subtasks of the type Fn and Ln, some of the classes are
the same as in the original task, so each corresponds to 10% of the dataset.
On the other hand, the extra class merges all the remaining original classes,
corresponding to 10 − n tenths of the points. We try to compensate for this
unbalance by proportionally under-weighting the loss for these extra classes.
More precisely, when computing the loss for subtasks of type Fn or Ln, we
divide the loss by 10− n whenever the input belongs to, respectively, the first n
or last n original classes.

The results of our experiments are discussed in Section 5.

5 Discussion

We start by discussing the experiments summarized in Table 1. Comparing the
accuracy achieved by the official network in the Hidden Learning experiments
(To-and-Ts) with its accuracy when trained for To only (provided in the To row
of the To-then-Ts column), we can see that the framework does not sensibly
decrease accuracy: for CIFAR-10 the two numbers are respectively4 68.5 ± 6.4
and 71.2± 10.6, while for FMNIST we have 91.5± 2.2 and 92.1± 2.6.

The corresponding accuracies achieved by the secret network Ns, namely
when trained with the framework and when trained after No has been trained
alone and is not modified, are respectively 58.7± 9.5 and 46.5± 16.3 on CIFAR-
10, and 82.6± 10.9 and 65.7± 15.1 on FMNIST. Hence, we can see that Hidden
Learning drastically improves the accuracy compared to what may be regarded
as a black-box MI approach (as mentioned in Section 4).

We can furthermore see that, when the entire architecture is trained by
uniquely taking into account the loss function of the secret task Ts, Ns achieves
accuracies which are only slightly better than those achieved with the Hidden
Learning framework, scoring 59.1±8.3 on CIFAR-10 and 83.4±9.9 on FMNIST.
The fact that the framework matches the latter results for Ts shows that it is
effective in exploiting the whole network despite the interference of the official
task.

We observe that the gain in accuracy for Ts is especially significant in the
experiments where this task involves fewer classes. This finding is consistent
with the fact that, in such cases, the secret network has fewer neurons as input
and, thus, when Ns is trained independently (Ts), it should get access to less
information in the first place.

Finally, we remark that, since our tasks consisted of different ways to group
and split the original dataset classes into different ones, we also verified that our
results are not sensitive to the ordering of the original labels.

We now discuss the robustness experiments summarized in Table 2. The goal
of these experiments is to provide a first assessment of the sensitivity of the
secret network Ns to perturbations of the official network No. We remark that

4 The value reported after the average is the sample standard deviation. All reported
statistical values are rounded to the first decimal place.
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Table 1. Summary table of experimental results described in Section 4.1.

Exp. Task CIFAR-10 FMNIST

To and Ts To then Ts Ts only To and Ts To then Ts Ts only

C2-C10 To 73.5% 74.9% 94.2% 94.3%
Ts 43.5% 21.3% 47.5% 85.3% 50.2% 86.5%

C5-C10 To 65.3% 64.8% 90.3% 89.5%
Ts 61.4% 49.6% 61.3% 89.8% 87.2% 89.5%

C5-C2 To 64.3% 65.0% 89.9% 89.9%
Ts 75.7% 66.3% 74.3% 94.3% 90.0% 94.5%

C2-C5 To 66.3% 74.7% 94.2% 94.4%
Ts 53.0% 27.6% 58.4% 85.6% 51.1% 88.0%

F2-L8 To 78.2% 89.8% 94.0% 96.3%
Ts 51.7% 22.2% 50.3% 87.0% 38.2% 86.9%

F3-L7 To 71.0% 81.4% 90.9% 93.3%
Ts 56.3% 41.9% 58.3% 88.4% 68.4% 88.9%

F4-L6 To 63.5% 67.0% 90.1% 92.1%
Ts 58.0% 45.6% 62.2% 89.9% 74.8% 90.1%

F5-L5 To 61.4% 60.4% 90.4% 90.2%
Ts 64.4% 49.1% 66.1% 92.2% 78.6% 92.9%

F6-L4 To 63.4% 60.4% 89.9% 89.6%
Ts 60.6% 51.4% 64.2% 78.9% 74.9% 78.7%

F7-L3 To 64.2% 64.0% 90.5% 90.3%
Ts 67.1% 63.1% 64.7% 66.1% 65.3% 65.9%

F8-L2 To 65.8% 65.8% 87.7% 89.3%
Ts 41.3% 45.3% 49.5% 62.0% 64.1% 71.8%

F2-L5 To 79.4% 89.3% 95.3% 96.3%
Ts 57.3% 33.2% 59.5% 92.3% 48.2% 92.4%

F5-L2 To 64.1% 58.9% 90.6% 90.2%
Ts 60.8% 73.9% 44.9% 80.3% 69.3% 75.0%

F3-L3 To 78.6% 80.8% 92.3% 93.6%
Ts 70.9% 60.9% 65.9% 64.7% 59.0% 66.0%

our experiments were not optimized to improve network robustness to weight
noise, e.g. by some regularization approach [21].

The table displays the corresponding accuracies obtained for the smallest
values we considered for the standard deviation of the gaussian noise applied (σ
for short) to the weights of No, namely from 0 to 0.1 with a step of 0.025.

When noise is very low (σ = 0.025), the average test accuracy for No drops
by 4.7% for CIFAR-10 while we see a 1.1% average decrease for FMNIST. The
corresponding percentages for Ns are 5.8% (CIFAR-10) and 1.7% (FMNIST).
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Table 2. Accuracies obtained in robustness experiments described in Section 4.1.

Exp. Task CIFAR-10 FMNIST

σ = 0 0.025 0.05 0.075 0.1 0 0.025 0.05 0.075 0.1

C2-C10 To 73.5% 71.0% 65.5% 60.6% 54.9% 94.2% 93.4% 91.6% 83.8% 74.0%
Ts 43.5% 38.5% 30.6% 21.5% 14.0% 85.3% 80.3% 67.2% 48.8% 37.2%

C5-C10 To 65.3% 56.3% 43.5% 33.5% 28.1% 90.3% 88.3% 80.9% 73.1% 50.3%
Ts 61.4% 51.0% 34.8% 23.4% 17.1% 89.8% 87.7% 77.7% 69.4% 39.9%

C5-C2 To 64.3% 56.9% 42.8% 32.5% 29.0% 89.9% 88.4% 84.3% 75.7% 54.4%
Ts 75.7% 71.0% 61.1% 55.0% 53.9% 94.3% 93.2% 90.6% 83.3% 69.1%

C2-C5 To 66.3% 64.5% 59.1% 54.1% 52.4% 94.2% 93.2% 90.9% 86.1% 79.2%
Ts 53.0% 45.7% 32.0% 25.1% 24.2% 85.6% 82.8% 73.3% 53.6% 48.8%

F2-L8 To 78.2% 78.0% 73.9% 64.0% 66.3% 94.0% 93.6% 92.9% 90.1% 86.6%
Ts 51.7% 44.6% 32.9% 23.7% 18.6% 87.0% 84.4% 72.5% 58.8% 51.4%

F3-L7 To 71.0% 70.0% 64.2% 43.5% 41.8% 90.9% 91.1% 86.1% 80.4% 74.9%
Ts 56.3% 45.4% 35.2% 27.6% 22.4% 88.4% 85.0% 74.8% 64.2% 46.5%

F4-L6 To 63.5% 60.0% 53.1% 47.8% 35.0% 90.1% 89.8% 86.4% 79.6% 70.0%
Ts 58.0% 50.1% 38.6% 27.8% 28.5% 89.9% 88.2% 81.3% 74.5% 56.1%

F5-L5 To 61.4% 55.2% 46.9% 39.1% 34.7% 90.4% 89.4% 85.8% 78.6% 74.7%
Ts 64.4% 60.6% 51.2% 37.0% 30.9% 92.2% 91.3% 86.0% 76.6% 70.5%

F6-L4 To 63.4% 56.9% 44.4% 31.8% 28.8% 89.9% 88.8% 85.0% 77.4% 67.2%
Ts 60.6% 55.4% 43.8% 38.9% 32.3% 78.9% 78.4% 74.4% 70.2% 63.0%

F7-L3 To 64.2% 56.1% 42.6% 26.2% 25.9% 90.5% 88.7% 84.6% 73.5% 53.8%
Ts 67.1% 62.5% 44.9% 40.2% 31.8% 66.1% 65.9% 65.1% 62.3% 52.9%

F8-L2 To 65.8% 55.9% 40.4% 29.0% 17.6% 87.7% 84.7% 75.5% 62.0% 48.9%
Ts 41.3% 39.5% 32.4% 31.2% 27.4% 62.0% 60.1% 67.7% 65.4% 66.6%

F2-L5 To 79.4% 78.7% 74.7% 63.1% 58.2% 95.3% 94.9% 93.4% 90.0% 82.8%
Ts 57.3% 53.4% 43.1% 30.9% 26.8% 92.3% 91.3% 88.4% 83.6% 74.0%

F5-L2 To 64.1% 59.2% 47.8% 37.3% 35.1% 90.6% 89.2% 85.9% 79.9% 75.8%
Ts 60.8% 57.6% 53.9% 39.3% 37.1% 80.3% 79.4% 79.8% 74.6% 74.6%

F3-L3 To 78.6% 74.3% 68.0% 62.3% 38.7% 92.3% 91.9% 88.4% 84.6% 75.3%
Ts 70.9% 64.9% 53.9% 45.9% 33.7% 64.7% 64.6% 63.2% 54.5% 49.9%

In comparison, when σ = 0.5, No achieves average accuracy 31.5% ± 13.3 on
FMNIST and 26.0%± 13.6 on CIFAR10. For Ns those values are 28.4%± 13.2
and 25.4% ± 10.9. This indicates that the perturbation in the official output
tends not to disturb the computation of the secret network unless it is strong
enough to change the official answer.

We can appreciate from the table that a noise level of 0.1 already deterio-
rates the accuracy of the official network by 29.5% and 22.3% on average for
CIFAR-10 and FMNIST, respectively. In particular, the fact that No achieves,
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on across different experiments, higher accuracies (22.9% difference) on FM-
NIST (average 91.4± 2.2) than on CIFAR10 (average 68.5± 6.4) in the absence
of noise corresponds to lower deterioration when σ = 0.1, namely 69.2 ± 12.3
versus 39.0± 14.0.

We remark that the average standard deviation of test accuracies for No

appears quite low on both datasets despite the heterogeneity of the experiments
(especially the number of output classes). The trend is consistent for Ns, where
the noiseless averages are 82.6± 10.9 for FMNIST and 58.7± 9.5 for CIFAR-10,
while the corresponding numbers when σ = 0.1 are respectively 57.2± 12.5 and
28.5± 9.9.

6 Conclusions

In this work, we have introduced Hidden Learning, a simple and efficient training
procedure that produces two networks, an official and a secret one, such that the
official network solves an official task with performance comparable to state-of-
the-art; and the secret network uses the output of the official one to solve a secret
task with considerable accuracy. After contextualizing the above framework in
the current research on Model Inversion and related attacks on neural networks,
we have tested it on several synthetic tasks. In our experiments, the framework
shows to be effective in tuning the official network to enable the attacker to
better recover information via a secret network which is computationally very
light. Thus, the possibility for such attacks should be taken into account when
using a model provided by a third party.

Our preliminary investigation demands more sophisticated ones, particularly
on possible defence mechanisms against the Hidden Learning framework. Even
if the official network is suspected to be produced by such a framework, naive
strategies to use the it while preventing information leakage, such as perturbing
the network weights, appear ineffective in our robustness experiments5. More
generally, the fact that the official network is, by design, produced to assist the
secret network in extracting information might allow the framework to find ways
around defence mechanisms that have been proven successful against similar
attacks, such as model inversion ones. On the other hand, differential privacy
[18], together with strategies to decouple data from model training [14], should
prove successful in protecting against it.
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