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Abstract. We investigate the problem of making an artificial neural net-
work perform hidden computations whose result can be easily retrieved
from the network’s output.
In particular, we consider the following scenario. A user is provided a
neural network for a classification task by a third party. The user’s input
to the network contains some sensible information and the third party
can only observe the output of the network.
I this work, we provide a simple and efficient training procedure, which
we call hidden learning, that produces two networks: (i) one that solves
the original classification task with performance near to state of the art;
(ii) another that takes as input the output of the first, retrieving sensible
information to solve a second classification task with good accuracy.
Our result might expose important issues from an information security
point of view, as for the use of artificial neural networks in sensible
applications.

Keywords: Artificial neural network · Hidden computation · Informa-
tion security.

1 Introduction

In this paper, we investigate the possibility of an attacker training an Artificial

Neural Network (ANN) in such a way that, while its behaviour looks legitimate

on a given task, it secretly performs an additional task, possibly revealing infor-

mation it should not. In particular, we investigate the question: when using a

model from the shelf, is it possible that it computes and outputs more than it

is supposed to?

Such question naturally emerges with the current surge of machine learning

as a service scenarios (MLaaS) [16], which has motivated a lot of research on the

associated privacy and security problems [13]. Within the taxonomy of attacks

investigated by previous works, particular attention has been devoted to model

inversion (MI) attacks [1], in which an attacker tries to retrieve sensible features

about the input data by only accessing the model’s output. One can apply this
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Fig. 1. Diagram illustrating the basic components of the Hidden Learning framework.
See Section 2 for a description of the components.

strategy with or without knowledge of the model itself (white-box vs. black-box

attacks).

In this work we consider a setting in which the attacker forges the weights of

the model based on the training data, being, thus, in a much more powerful posi-

tion compared to the MI settings. To ensure that the model looks unsuspicious,

we further require the attacker to use a conventional design for the network and

that it achieves state of the art accuracy. (We further discuss MI and its relation

with the present work in Section 3.)

A natural way to perform hidden learning would be to use steganography, by

combining two networks with steganographic techniques; however, it is unclear

how to do under the mentioned restrictions without making the model look

suspicious.

In this work, we investigate what may be regarded as the most natural strat-

egy to achieve the aforementioned goal. We consider a simple scheme that trains

a network for two tasks at the same time, namely, the official task, which a user

expects it to perform, and a secret task, which is achieved by feeding the out-

put of the network to a secret network (see Fig. 1). We call this scheme hidden

learning, and we formally define it in Section 3.

To provide some intuition for the proposed framework, consider the following

toy example. Points on the Euclidean plane are sampled from two standard

gaussians centred at (0, 1) and (0,−1). The official task is to classify those points

according to the gaussian they come from, so it only depends on one of the

coordinates of the points. In such set up, the faithful model should use the best

separating line, y = 0. However, the line y = x would still achieve substantial

accuracy on the official task while revealing some information about the input

x coordinate.

As an example where hidden learning could be problematic, consider the

following plausible scenario. For better handling the Covid-19 crisis, the gov-

ernment of a country hires a company to develop a smartphone application for

estimating how many people are at risk in each region of the country. Each user
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is asked to enter sensitive health information which is fed into a neural network

that outputs a probability that the user can develop severe Covid reaction if

infected as well as a probability that the user was already infected. These two

probabilities only and the region of the user, are communicated to a server of the

company that can then provide statistics to the government. If the application is

open source, independent coders can check that the application does indeed be-

have as expected. However, if hidden learning has been used to set up the weights

of the neural network embedded in the application, it could be possible for the

company to retrieve additional information such as high risk of cardio-vascular

accident and/or whether the person is covered by a given insurance company.

Such information could be valuable for some insurance companies that might be

tempted to discreetly change their coverage conditions for cardio-vascular risks

in certain regions accordingly.

Our main goal is to draw attention on the possibility of an attack on the

weights of a model by showing that it can be made effective with a simple

approach at very low computational cost.

After formally defining our framework (Section 2) and discussing related

works (Section 3), we describe and discuss our experiments on several synthetic

tasks defined on the CIFAR-10 and Fashion MNIST datasets (Sections 4 and 5).

Finally, we provide our conclusions on the aforementioned results in Section 6.

2 Hidden Learning Framework

In this section we formally describe our Hidden Learning framework, whose main

components are represented in Figure 1.

We start by providing the key definitions. Let S be a generic set and ko and

ks be two positive integers. Hidden Learning is performed by considering two

classification tasks:

– The official task To which asks to classify points in S in ko categories;

– The secret task Ts, which asks to classify points in S in ks categories.

In order to achieve the previous two tasks, the Hidden Learning framework

produces two artificial neural networks:

– An official network No, which assigns to points in S a vector in [0, 1]ko , and

which can be interpreted as a vector of scores associated to each of the ko
categories of the task To.

– A secret network Ns, which classify vectors in [0, 1]ko into ks categories.

Remark 1. The only specific constraint in the above framework lies in the co-

domain of the official network No, namely the space of vectors in Rko , which

are then passed to a softmax function. The latter is a natural choice in many

scenarios and is consistent with typical MI attack settings, in which the attacker

is assumed to have query access to some model’s scores about the possible output

categories [15].
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The training of the official and decoded networks is performed simultane-

ously: at each epoch, the updates of the weights of the two networks are com-

puted by back-propagation according to a combination of the loss functions for

the respective tasks. As a first simple choice regarding the way the loss functions

may be combined, in this work we consider the their sum.

More formally, let Lo(ŷ, y) and Ls(ŷ, y) be the loss functions for the official

task To and the secret task Ts, respectively. The network is then trained by

optimizing the combined loss function Lo(ŷ, y) + Ls(ŷ, y). More details about

how we perform the training in our experiments can be found in Section 4.

3 Related Work

Our work is closely related to the class of privacy attacks to neural network

models known as (white box ) model inversion (MI) attacks [1]. In the latter

setting, given an output f(x) and the model f that produced it, an attacker

tries to reconstruct the corresponding input x.We emphasize that, in contrast

to the MI setting in which the attacker does not intervene in the creation of the

model f , our hidden learning framework assumes that the attacker can forge the

model f (our No) itself in a disguised fashion that allows, by design, to easily

invert it (using Ns). Note also that contrarily to many MI settings, the training

data is not considered as sensitive here, while the attack concerns input data

fed to the model in production use. We also mention here black box MI attacks

which, as the name suggest, are a more restrictive kind of MI attacks where

the attacker only needs to be able to arbitrarily query the model and observe

the corresponding output, without any knowledge about the model internals [5].

Contrarily to this setting, we do not assume that the attacker can propose forged

inputs and get the corresponding outputs.

Part of our experiments are aimed at verifying the robustness of the secret

network with respect to perturbation of the official one. This should be com-

pared to recent work which investigate the sensitivity of the explainability of a

model when the latter is perturbed as a consequence of other procedures, such

as the disruption of input attribution that arises when standard neural network

compression methods are employed, as recently shown in [11].

The present work investigates a simple approach to produce a neural network

(the official network No) which performs some hidden computation that can

be exploited by a third party to extract sensible information from a private

input. In this respect, it can be contextualized in the general area of [12]. While

the application of artificial neural networks for standard steganographic tasks

(statically hiding information in a given object), is being actively investigated

[20,17], we are not aware of works which, like the present one, investigate how to

produce an artificial neural network which tries to hide information in its output,

while its calculations are entirely transparent to the party who is making use

of it. In particular, its architecture should be legitimate for the official task. A

related concept to the latter one are backdoor attacks on deep neural networks,

where the goal is to produce a neural network which appears to solve a certain
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task, but which then behaves quite differently when fed certain triggering inputs

[3,10]. It has also been shown that the latter triggering inputs can be designed

via steganography so that they would not be identifiable by direct inspection [9].

4 Experiments

In this section we describe the experiments we carried out to validate the Hidden

Learning framework described in Section 2.

We perform experiments on the classical CIFAR-10 dataset [7] and Fashion

MNIST dataset (FMNIST) [19]. Both of them consist of small-size images (32×
32 and 28× 28 pixels, respectively) classified in 10 classes:

– airplane, automobile, bird, cat, deer, dog, frog, horse, ship, and truck for

CIFAR-10,

– T-shirt/top, trouser, pullover, dress, coat, sandal, shirt, sneaker, bag, and

ankle boot for FMNIST.

4.1 Description of experimental results

In this section we describe the experiments summarized in Table 1. All values

are truncated to the fourth decimal point.

We have adopted the same architecture for all experiments up to the number

of neurons in the output layers of the tasks To and Ts. For simplicity, we have

opted for a simple convolutional architecture for the official network, based on

LeNet5 [8]:

– A convolutional layer with 16 kernels 3×3, stride 1×1, padding of one, and

ReLu [4] activation function; which is followed by 2× 2 max pooling;

– Two convolutional layers with 32 kernels, and otherwise identical to the

previous (including the max pooling);

– A fully connected linear layer.

As for the secret network, we consider a multilayer perceptron with two hidden

layer with ReLu activation, the first with 16 and the second with 32 hidden

nodes. We remark that the above choices do not leave out any hyperparameter

which needs to be set.

We ran two types of experiments.

Hidden learning experiments. These experiments, which are summarized in Ta-

ble 1, are aimed at showing the accuracy achieved by the official network No

over several different tasks described below. With the expression To-and-Ts we

refer to the accuracies achieved in the experiments in which the networks No

and Ns have been trained according to our hidden learning framework described

in Section 2. On the row To of column To-then-Ts and on the column Ts-only we

show, the accuracies achieved in the experiments in which the networks No and

Ns have been trained by taking into account, respectively, only the loss function
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for To and for Ts (separately). Finally, on the rows Ts of the column To-then-Ts,
we show the accuracies achieved by Ns in the experiments in which, first, the

network No has been trained by taking into account only the loss function for

To and, then, Ns has been trained by taking into account only the loss function

for Ts while the weights of No are not modified. We observe that the latter ex-

periments can be seen as a kind of black-box MI where the attacker has access

to the full training dataset with corresponding model outputs.

Robustness experiments. These experiments, which are summarized in Table 2,

are aimed at estimating the robustness of the secret network w.r.t. perturbations

of the official network; in order to do that, gaussian noise with zero mean and

standard deviation σ is added to each weight of the official network; each column

shows the accuracies of the official and secret networks, on the train and test

sets, for different values of σ, averaged over 10 independent injections of noise.

Record that both CIFAR-10 and FMNIST associate inputs to labels from 10

classes. We have simulated information removal by creating subtasks of classifi-

cation into3

– Two classes (C2): one class for the inputs belonging to any of the first 5

original classes, and other for the inputs belonging to any of the last 5.

For instance, for CIFAR-10, the first class in this subtask is “airplane or

automobile or bird or cat or deer ” while the other is “dog or frog or horse or

ship or truck ”.

– Five classes (C5): we pair original classes to create new ones. Furthermore,

we do this while avoiding pairs contained in the classes for the last subtask.

This ensures that the solutions to one of those subtasks do not provide any

information about the other. Using CIFAR-10 labels as an example, the

classes for this subtask are “airplane or dog”, “automobile or frog”, “bird or

horse”, “cat or ship”, and “deer or truck ”.

– The first n classes (Fn): classification into n+ 1 classes, namely, the first n
original classes, and an extra one combining all the other. Exemplifying as

before, for n = 3 this subtask comprises the classes “airplane”, “automobile”,

“bird ”, and “neither an airplane nor an automobile nor a bird ”.

– The last n classes (Ln): same as the previous subtask, but for the n last

original classes.

We organized the experiments by choosing one of those subtasks as To and

other as Ts. We also consider some cases where Ts is the original classification

into 10 classes.

In the tables, we refer to the original task as C10, to subtasks with 2 and 5

classes as C2 and C5, respectively, to the classification into the first m original

classes as Fm, and to the classification into the last n original classes as Ln.

We initialized the weights of all the neural networks using Glorot uniform

initialization [2]. and then trained all of them for 40 epochs using the ADAM

3 The symbols between parenthesis refer to the one used in the experiment tables.
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optimizer [6] with a learning rate of 0.001. over 45,000 training entries for CIFAR-

10 and 54,000 for FMNIST, organized into batches of size 64. Even though the

actual number of training points in those datasets is, respectively, 50,000 and

60,000, we reserved 10% of those to use as validation dataset. When training No

and Ns simultaneously, we chose set of weights that maximizes the sum of the

accuracies of both networks. The accuracy values discussed in this work refer to

the performance of the networks with these sets of weights on the test set. The

test dataset consists of 10,000 data points for both CIFAR-10 and FMNIST.

Those do not take any part in training.

Furthermore, in subtasks of the type Fn and Ln, some of the classes are the

same as in the original task, and, therefore, each of them correspond to 10% of

the datasets. On the other hand, the extra class merges all the remaining original

classes, corresponding to 10− n tenths of the points. We try to compensate for

this unbalance by proportionally under-weighting the loss for these extra classes.

More precisely, when computing the loss for subtasks of type Fn or Ln, we divide
the loss by 10−n whenever the input belongs to, respectively, the first n or last

n original classes.

The results of our experiments are discussed in Section 5.

5 Discussion

We start by discussing the experiments summarized in Table 1. By comparing

the accuracy achieved by the official network in the Hidden Learning experiments

(To-and-Ts) with its accuracy when it is trained for To only (provided in the To
row of the To-then-Ts column), we can see that the framework does not sensible

decrease accuracy: for CIFAR-10 the two numbers are respectively4 68.5 ± 6.4
and 71.2± 10.6, while for FMNIST we have 91.5± 2.2 and 92.1± 2.6.

The corresponding accuracies achieved by the secret network Ns, namely

when trained with the framework and when trained after No has been trained

alone and is not modified, are respectively 58.7± 9.5 and 46.5± 16.3 on CIFAR-

10, and 82.6± 10.9 and 65.7± 15.1 on FMNIST. Hence, we can see that Hidden

Learning drastically improves the accuracy compared to what may be regarded

as a black-box MI approach (as mentioned in Section 4).

We can furthermore see that, when the entire architecture is trained by

uniquely taking into account the loss function of the secret task Ts, Ns achieves

accuracies which are only slightly better than those achieved with the Hidden

Learning framework, scoring 59.1±8.3 on CIFAR-10 and 83.4±9.9 on FMNIST.

The fact that the framework is able to match the latter results for Ts shows that

it is effective in exploiting the whole network despite the interference of the

official task.

We observe that the gain in accuracy for Ts is especially significant in the

experiments where this task involves fewer classes. This is consistent with the

fact that, in such cases, the secret network has fewer neurons as input and, thus,

4 The value reported after the average is the sample standard deviation. All reported
statistical values are rounded to the first decimal place.
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Table 1. Summary table of experimental results described in Section 4.1.

Exp. Task CIFAR-10 FMNIST

To and Ts To then Ts Ts only To and Ts To then Ts Ts only

C2-C10 To 73.5% 74.9% 94.2% 94.3%
Ts 43.5% 21.3% 47.5% 85.3% 50.2% 86.5%

C5-C10 To 65.3% 64.8% 90.3% 89.5%
Ts 61.4% 49.6% 61.3% 89.8% 87.2% 89.5%

C5-C2 To 64.3% 65.0% 89.9% 89.9%
Ts 75.7% 66.3% 74.3% 94.3% 90.0% 94.5%

C2-C5 To 66.3% 74.7% 94.2% 94.4%
Ts 53.0% 27.6% 58.4% 85.6% 51.1% 88.0%

F2-L8 To 78.2% 89.8% 94.0% 96.3%
Ts 51.7% 22.2% 50.3% 87.0% 38.2% 86.9%

F3-L7 To 71.0% 81.4% 90.9% 93.3%
Ts 56.3% 41.9% 58.3% 88.4% 68.4% 88.9%

F4-L6 To 63.5% 67.0% 90.1% 92.1%
Ts 58.0% 45.6% 62.2% 89.9% 74.8% 90.1%

F5-L5 To 61.4% 60.4% 90.4% 90.2%
Ts 64.4% 49.1% 66.1% 92.2% 78.6% 92.9%

F6-L4 To 63.4% 60.4% 89.9% 89.6%
Ts 60.6% 51.4% 64.2% 78.9% 74.9% 78.7%

F7-L3 To 64.2% 64.0% 90.5% 90.3%
Ts 67.1% 63.1% 64.7% 66.1% 65.3% 65.9%

F8-L2 To 65.8% 65.8% 87.7% 89.3%
Ts 41.3% 45.3% 49.5% 62.0% 64.1% 71.8%

F2-L5 To 79.4% 89.3% 95.3% 96.3%
Ts 57.3% 33.2% 59.5% 92.3% 48.2% 92.4%

F5-L2 To 64.1% 58.9% 90.6% 90.2%
Ts 60.8% 73.9% 44.9% 80.3% 69.3% 75.0%

F3-L3 To 78.6% 80.8% 92.3% 93.6%
Ts 70.9% 60.9% 65.9% 64.7% 59.0% 66.0%

when Ns is trained independently (Ts) it should get access to less information

in the first place.

Finally, we remark that, since our tasks consisted of different ways to group

and split the original dataset classes in different ones, we also verified that our

results are not sensitive to the ordering of the original labels. We now discuss the

robustness experiments summarized in Table 2. The goal of these experiments

is to provide a first assessment of the sensitivity of the secret network Ns to

perturbations of the official network No. We remark that our experiments have
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Table 2. Accuracies obtained in robustness experiments described in Section 4.1.

Exp. Task CIFAR-10 FMNIST

σ = 0 0.025 0.05 0.075 0.1 0 0.025 0.05 0.075 0.1

C2-C10 To 73.5% 71.0% 65.5% 60.6% 54.9% 94.2% 93.4% 91.6% 83.8% 74.0%
Ts 43.5% 38.5% 30.6% 21.5% 14.0% 85.3% 80.3% 67.2% 48.8% 37.2%

C5-C10 To 65.3% 56.3% 43.5% 33.5% 28.1% 90.3% 88.3% 80.9% 73.1% 50.3%
Ts 61.4% 51.0% 34.8% 23.4% 17.1% 89.8% 87.7% 77.7% 69.4% 39.9%

C5-C2 To 64.3% 56.9% 42.8% 32.5% 29.0% 89.9% 88.4% 84.3% 75.7% 54.4%
Ts 75.7% 71.0% 61.1% 55.0% 53.9% 94.3% 93.2% 90.6% 83.3% 69.1%

C2-C5 To 66.3% 64.5% 59.1% 54.1% 52.4% 94.2% 93.2% 90.9% 86.1% 79.2%
Ts 53.0% 45.7% 32.0% 25.1% 24.2% 85.6% 82.8% 73.3% 53.6% 48.8%

F2-L8 To 78.2% 78.0% 73.9% 64.0% 66.3% 94.0% 93.6% 92.9% 90.1% 86.6%
Ts 51.7% 44.6% 32.9% 23.7% 18.6% 87.0% 84.4% 72.5% 58.8% 51.4%

F3-L7 To 71.0% 70.0% 64.2% 43.5% 41.8% 90.9% 91.1% 86.1% 80.4% 74.9%
Ts 56.3% 45.4% 35.2% 27.6% 22.4% 88.4% 85.0% 74.8% 64.2% 46.5%

F4-L6 To 63.5% 60.0% 53.1% 47.8% 35.0% 90.1% 89.8% 86.4% 79.6% 70.0%
Ts 58.0% 50.1% 38.6% 27.8% 28.5% 89.9% 88.2% 81.3% 74.5% 56.1%

F5-L5 To 61.4% 55.2% 46.9% 39.1% 34.7% 90.4% 89.4% 85.8% 78.6% 74.7%
Ts 64.4% 60.6% 51.2% 37.0% 30.9% 92.2% 91.3% 86.0% 76.6% 70.5%

F6-L4 To 63.4% 56.9% 44.4% 31.8% 28.8% 89.9% 88.8% 85.0% 77.4% 67.2%
Ts 60.6% 55.4% 43.8% 38.9% 32.3% 78.9% 78.4% 74.4% 70.2% 63.0%

F7-L3 To 64.2% 56.1% 42.6% 26.2% 25.9% 90.5% 88.7% 84.6% 73.5% 53.8%
Ts 67.1% 62.5% 44.9% 40.2% 31.8% 66.1% 65.9% 65.1% 62.3% 52.9%

F8-L2 To 65.8% 55.9% 40.4% 29.0% 17.6% 87.7% 84.7% 75.5% 62.0% 48.9%
Ts 41.3% 39.5% 32.4% 31.2% 27.4% 62.0% 60.1% 67.7% 65.4% 66.6%

F2-L5 To 79.4% 78.7% 74.7% 63.1% 58.2% 95.3% 94.9% 93.4% 90.0% 82.8%
Ts 57.3% 53.4% 43.1% 30.9% 26.8% 92.3% 91.3% 88.4% 83.6% 74.0%

F5-L2 To 64.1% 59.2% 47.8% 37.3% 35.1% 90.6% 89.2% 85.9% 79.9% 75.8%
Ts 60.8% 57.6% 53.9% 39.3% 37.1% 80.3% 79.4% 79.8% 74.6% 74.6%

F3-L3 To 78.6% 74.3% 68.0% 62.3% 38.7% 92.3% 91.9% 88.4% 84.6% 75.3%
Ts 70.9% 64.9% 53.9% 45.9% 33.7% 64.7% 64.6% 63.2% 54.5% 49.9%

in no way being optimized to improve network robustness to weight noise, e.g.

by some regularization approach [21].

The table displays the corresponding accuracies obtained for the smallest

values we considered for the standard deviation of the gaussian noise applied (σ
for short) to the weights of No, namely from 0 to 0.1 with a step of 0.025.

When noise is very low (σ = 0.025), the average test accuracy for No drops

by 4.7% for CIFAR-10 while we see a 1.1% average decrease for FMNIST. The

corresponding percentages for Ns are 5.8% (CIFAR-10) and 1.7% (FMNIST).
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In comparison, when σ = 0.5, No achieves average accuracy 31.5% ± 13.3 on

FMNIST and 26.0%± 13.6 on CIFAR10. For Ns those values are 28.4%± 13.2
and 25.4% ± 10.9. This indicates that the perturbation in the official output

tends not to disturb the computation of the secret network unless it is strong

enough to change the official answer.

We can appreciate from the table that a noise level of 0.1 already deteriorates

the accuracy of the official network by 29.5% and 22.3% on average for CIFAR-

10 and FMNIST respectively. In particular, the fact that No achieves, on across

different experiments, higher accuracies (22.9% difference) on FMNIST (aver-

age 91.4 ± 2.2) than on CIFAR10 (average 68.5 ± 6.4) in the absence of noise

corresponds to lower deterioration when σ = 0.1, namely 69.2 ± 12.3 versus

39.0± 14.0.
We remark that the average standard deviation of test accuracies for No

appears quite low on both datasets despite the heterogeneity of the experiments

(especially the number of output classes). The trend is consistent for Ns, where

the noiseless averages are 82.6± 10.9 for FMNIST and 58.7± 9.5 for CIFAR-10,

while the corresponding numbers when σ = 0.1 are respectively 57.2± 12.5 and

28.5± 9.9.

6 Conclusions

In this work we have introduced a simple and efficient training procedure, called

Hidden Learning, that produces two networks, an official and a secret one,

such that the official network solves an official task with comparable perfor-

mance to state of the art solutions of the task; and the secret network takes as

input the output of official one and solves a secret task with considerable accu-

racy. After contextualizing the above framework with respect to current research

on Model Inversion and related attacks on neural networks, we have tested it

on several synthetic tasks. In our experiments, Hidden Learning shows to be

effective in tuning the official network for better enabling the attacker to recover

information, by the means of a secret network which is computationally very

light. The possibility for such kind of attacks should be then taken into account

when using a model provided by a third party.

Our preliminary investigation demands more sophisticated ones, in particular

regarding possible defense mechanism against the Hidden Learning framework.

Even if the official network is suspected to be produced using such a framework,

naive strategies to use the network while preventing information leakage such

as perturbing the network weights, appear ineffective in our robustness experi-

ments5. More generally, the fact that the official network is, by design, produced

to assist the secret network in extracting information, might allow the frame-

work to find ways around defense mechanisms that have been proven successful

against similar attacks, such as model inversion ones. On the other hand, differ-

ential privacy [18], together with other strategies to decouple data from model

training [14], should prove successful in protecting against it.

5 Similarly, we expect the framework to be robust to output truncation.
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