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Abstract

We investigate the problem of making a neural
network perform some hidden computation whose
result can be easily retrieved from the network
output.
In particular, we consider the following scenario.
A user is provided a neural network for a classi-
fication task by a company. We further assume
that the company has limited access to the user’s
computation, and can only observe the output of
the network when the user evaluates it. The user’s
input to the network contains some sensible infor-
mation.
We provide a simple and efficient training proce-
dure, called Hidden Learning, that produces two
networks such that
i) One of the networks solves the original classifi-
cation task with comparable performance to state
of the art solutions of the task;
ii) The other network takes as input the output of
the first and solves another classification task that
retrieves the sensible information with consider-
able accuracy.
Our result might expose important issues from an
information security point of view, as for the use of
artificial neural networks in sensible applications.

1 INTRODUCTION

In this paper, we investigate the possibility for an attacker
to build a model that seems legitimate for a given task,
but secretly performs another additional task and possibly
reveals information it should not. In particular, when using
a model from the shelf, is it possible that it computes and
outputs more than what it is supposed to do?

Such question naturally emerges with the current surge of
machine learning as a service scenarios (MLaaS) Tafti et al.
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Figure 1: Diagram illustrating the basic components of the
Hidden Learning framework. See Section 2 for a description
of the components.

[2017], which is already motivating a lot of research regard-
ing the associated privacy and security problems Qayyum
et al. [2020]. Among the taxonomy of attacks that have
been investigated, particular attention has been devoted to
model inversion (MI) attacks Fredrikson et al. [2015], in
which an attacker tries to retrieve sensible features about
the input data by accessing the model output with or with-
out knowledge of the model itself (white-box vs black-box
attacks).

Contrarily to model inversion, in this work we consider a
setting in which the attacker forges the weights of the model
based on the training data, and he is thus in a much powerful
position compared to the attacker in MI settings. Although
we assume the attacker must use a classical design for the
model so that it looks legitimate for the task, he may set the
weights in any manner that achieves state of the art accuracy.
(We further discuss MI and its relation with the present work
in Section 3.)

A natural possibility for hidden learning would be to use
steganography, by combining two networks with stegano-
graphic techniques; however, it is unclear how such design
could prevent the model from looking suspicious.
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In this work, we investigate what may be regarded as the
most natural strategy to achieve the aforementioned goal of
the attacker, by considering a simple scheme that trains a
network for two tasks at the same time, namely the official
task which a user expect it to perform, and a secret task
which is achieved by feeding the output of the network into
a secret network (see Fig. 1). We call the latter scheme
hidden learning, and we formally define it in Section 3.

To provide some intuition for the proposed framework, con-
sider the following toy example. Points on the Euclidean
plane are generated according to two standard gaussians cen-
tered in (0,1) and (0,−1) respectively, and the official task
is to classify points according to the gaussian they come
from. The faithful model should use the best separating
line y = 0. However, if we wish to extract information on
the x coordinate of the input point, the line y = x would
still achieve substantial accuracy on the official task while
revealing some information about the input x coordinate.

As an example where hidden learning could be problem-
atic, consider the following plausible scenario. For better
handling the Covid-19 crisis, the government of a country
hires a company to develop a smartphone application for
estimating how many people are at risk in each region of
the country. Each user is asked to enter sensitive health in-
formation which is fed into a neural network that outputs a
probability that the user can develop severe Covid reaction
if infected as well as a probability that the user was already
infected. These two probabilities only and the region of the
user, are communicated to a server of the company that can
then provide statistics to the government. If the application
is open source, independent coders can check that the appli-
cation does indeed behave as expected. However, if hidden
learning has been used to set up the weights of the neural net-
work embedded in the application, it could be possible for
the company to retrieve additional information such as high
risk of cardio-vascular accident and/or whether the person
is covered by a given insurance company. Such information
could be valuable for some insurance companies that might
be tempted to discreetly change their coverage conditions
for cardio-vascular risks in certain regions accordingly.

Our main goal is to draw attention on the possibility of
an attack on the weights of a model by showing that it
can be made effective with a simple approach at very low
computational cost.

After formally defining our framework (Section 2) and dis-
cussing related works (Section 3), we describe and discuss
our experiments on several synthetic tasks defined on the
CIFAR-10 and Fashion MNIST datasets (Sections 4 and 5).
Finally, we provide our conclusions on the aforementioned
results in Section 6.

2 HIDDEN LEARNING FRAMEWORK

In this section we formally describe our Hidden Learning
framework, whose main components are represented in Fig-
ure 1.

We start by providing the key definitions. Let S be a generic
set and ko and ks be two positive integers. Hidden Learning
is performed by considering two classification tasks:

• The official task To which asks to classify points in S
in ko categories;

• The secret task Ts, which asks to classify points in S in
ks categories.

In order to achieve the previous two tasks, the Hidden Learn-
ing framework produces two artificial neural networks:

• An official network No, which assigns to points in S
a vector in [0,1]ko , and which can be interpreted as a
vector of scores associated to each of the ko categories
of the task To.

• A secret network Ns, which classify vectors in [0,1]ko

into ks categories.

Remark. The only specific constraint in the above frame-
work lies in the co-domain of the official network No, namely
the space of vectors in Rko , which are then passed to a soft-
max function. The latter is a natural choice in many sce-
narios and is consistent with typical MI attack settings, in
which the attacker is assumed to have query access to some
model’s scores about the possible output categories Shokri
et al. [2017].

The training of the official and decoded networks is per-
formed simultaneously: at each epoch, the updates of
the weights of the two networks are computed by back-
propagation according to a combination of the loss functions
for the respective tasks. As a first simple choice regarding
the way the loss functions may be combined, in this work
we consider the their sum.

More formally, let Lo(ŷ,y) and Ls(ŷ,y) be the loss functions
for the official task To and the secret task Ts, respectively.
The network is then trained by optimizing the combined
loss function

Lo(ŷ,y)+Ls(ŷ,y). (1)

More details about how we perform the training in our
experiments can be found in Section 4.

3 RELATED WORK

Our work is closely related to the class of privacy attacks
to neural network models known as (white box) model in-
version (MI) attacks Fredrikson et al. [2015]. In the latter
setting, given an output f (x) and the model f that produced



Figure 2: In green, a representation of the LeNet-like architecture for the official network, described in Section 4, applied to
a classification into m classes. In red, the architecture the multilayer perceptron used as secret network for a secret task with
n classes.

it, an attacker tries to reconstruct the corresponding input
x.We emphasize that, in contrast to the MI setting in which
the attacker does not intervene in the creation of the model f ,
our hidden learning framework assumes that the attacker can
forge the model f (our No) itself in a disguised fashion that
allows, by design, to easily invert it (using Ns). Note also
that contrarily to many MI settings, the training data is not
considered as sensitive here, while the attack concerns input
data feeded to the model in production use. We also mention
here black box MI attacks which, as the name suggest, are a
more restrictive kind of MI attacks where the attacker only
needs to be able to arbitrarily query the model and observe
the corresponding output, without any knowledge about the
model internals He et al. [2019]. Contrarily to this setting,
we do not assume that the attacker can propose forged inputs
and get the corresponding outputs.

Part of our experiments are aimed at verifying the robust-
ness of the secret network with respect to perturbation of
the official one. This should be compared to recent work
which investigate the sensitivity of the explainability of a
model when the latter is perturbed as a consequence of other
procedures, such as the disruption of input attribution that
arises when standard neural network compression methods
are employed, as recently shown in Park et al. [2020].

The present work investigates a simple approach to produce
a neural network (the official network No) which performs
some hidden computation that can be exploited by a third
party to extract sensible information from a private input. In
this respect, it can be contextualized in the general area of
Petitcolas et al. [1999]. While the application of artificial
neural networks for standard steganographic tasks (stati-
cally hiding information in a given object), is being actively
investigated Yang et al. [2019], Tao et al. [2019], we are not
aware of works which, like the present one, investigate how
to produce an artificial neural network which tries to hide
information in its output, while its calculations are entirely
transparent to the party who is making use of it. In partic-
ular, its architecture should be legitimate for the official
task. A related concept to the latter one are backdoor attacks
on deep neural networks, where the goal is to produce a

neural network which appears to solve a certain task, but
which then behaves quite differently when feeded certain
triggering inputs Gu et al. [2019], Nguyen and Tran [2020].
It has also been shown that the latter triggering inputs can
be steganographically designed so that they would not be
identifiable by direct inspection Li et al. [2020].

4 EXPERIMENTS

In this section we describe the experiments we carried out
to validate the Hidden Learning framework described in
Section 2.

We perform experiments on the classical CIFAR-10 dataset
Krizhevsky [2009] and Fashion MNIST dataset (FMNIST)
Xiao et al. [2017]. Both of them consist of small-size images
(32× 32 and 28× 28 pixels, respectively) classified in 10
classes:

• airplane, automobile, bird, cat, deer, dog, frog, horse,
ship, and truck for CIFAR-10,

• T-shirt/top, trouser, pullover, dress, coat, sandal, shirt,
sneaker, bag, and ankle boot for FMNIST.

We wrote our code in the Julia Programming Language1

Bezanson et al. [2017] using the Flux ML library Innes et al.
[2018], Innes [2018]. The source code is available upon
request.

The experiments have been performed on the NEF com-
puting infrastructure of Inria Sophia Antipolis Méditer-
ranée2, which includes a variety of heterogeneous GPU
nodes. Given that we focus on the reached accuracy and that
our experiments are not aimed at improving any state of the
art for the traditional setting we consider, the experiments
were scheduled on single GPU nodes assigned by the cluster

1Precisely, we used Julia v1.5.2 with Flux v0.11.1, BSON
v0.2.6, CUDA v1.3.3, MLDatasets v0.5.3, TensorBoardLogger
v0.1.13, ValueHistories v0.5.4 and Zygote v0.5.16.

2https://wiki.inria.fr/ClustersSophia/
Clusters_Home.
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job scheduling system, OARSUB system3, with no specific
hardware constraints.

4.1 DESCRIPTION OF EXPERIMENTAL
RESULTS

In this section we describe the experiments summarized in
Table 1. All values are truncated to the fourth decimal point.

We have adopted the same architecture for all experiments
up to the number of neurons in the output layers of the
tasks To and Ts. For simplicity, we have opted for a simple
convolutional architecture for the official network, based on
LeNet54 Lecun [1998] (see Fig. 2):

• A convolutional layer with 16 kernels 3× 3, stride
1×1, padding of one pixel, and ReLu Hahnloser et al.
[2000] activation function; the convolution is followed
by 2×2 max pooling;

• Two convolutional layers with 32 kernels, and oth-
erwise identical to the previous (including the max
pooling);

• A fully connected linear layer.

As for the secret network, we consider a multilayer percep-
tron with two hidden layer with ReLu activation, the first
with 16 and the second with 32 hidden nodes. We remark
that the above choices do not leave out any hyperparameter
which needs to be set.

We ran two types of experiments.

Hidden learning experiments. These experiments,
which are summarized in Table 1, are aimed at showing the
accuracy achieved by the official network No over several
different tasks described below. With the expression To-and-
Ts we refer to the accuracies achieved in the experiments in
which the networks No and Ns have been trained according
to our hidden learning framework described in Section 2.
On the row To of column To-then-Ts and on the column
Ts-only we show, the accuracies achieved in the experiments
in which the networks No and Ns have been trained by
taking into account, respectively, only the loss function for
To and for Ts (separately). Finally, on the rows Ts of the
column To-then-Ts, we show the accuracies achieved by
Ns in the experiments in which, first, the network No has
been trained by taking into account only the loss function
for To and, then, Ns has been trained by taking into account
only the loss function for Ts while the weights of No are
not modified. We observe that the latter experiments can
be seen as a kind of black-box MI where the attacker has

3http://oar.imag.fr.
4As a sanity check, we remark that for the classical CIFAR-10

classification task the model achieved test accuracy of ca. 66%,
consistently with similar, non-optimized textbook experiments;

access to the full training dataset with corresponding model
outputs.

Robustness experiments. These experiments, which are
summarized in Table 2, are aimed at estimating the robust-
ness of the secret network w.r.t. perturbations of the official
network; in order to do that, gaussian noise with zero mean
and standard deviation σ is added to each weight of the
official network; each column shows the accuracies of the
official and secret networks, on the train and test sets, for dif-
ferent values of σ , averaged over 10 independent injections
of noise.

Record that both CIFAR-10 and FMNIST associate inputs
to labels from 10 classes. We have simulated information
removal by creating subtasks of classification into5

• Two classes (C2): one class for the inputs belonging
to any of the first 5 original classes, and other for the
inputs belonging to any of the last 5. For instance, for
CIFAR-10, the first class in this subtask is “airplane or
automobile or bird or cat or deer” while the other is
“dog or frog or horse or ship or truck”.

• Five classes (C5): we pair original classes to create
new ones. Furthermore, we do this while avoiding pairs
contained in the classes for the last subtask. This en-
sures that the solutions to one of those subtasks do not
provide any information about the other. Using CIFAR-
10 labels as an example, the classes for this subtask
are “airplane or dog”, “automobile or frog”, “bird or
horse”, “cat or ship”, and “deer or truck”.

• The first n classes (Fn): classification into n+1 classes,
namely, the first n original classes, and an extra one
combining all the other. Exemplifying as before, for
n = 3 this subtask comprises the classes “airplane”,
“automobile”, “bird”, and “neither an airplane nor an
automobile nor a bird”.

• The last n classes (Ln): same as the previous subtask,
but for the n last original classes.

We organized the experiments by choosing one of those
subtasks as To and other as Ts. We also consider some cases
where Ts is the original classification into 10 classes.

In the tables, we refer to the original task as C10, to subtasks
with 2 and 5 classes as C2 and C5, respectively, to the
classification into the first m original classes as Fm, and to
the classification into the last n original classes as Ln.

We initialized the weights of all the neural networks using
Glorot uniform initialization Glorot and Bengio [2010], the
default in Flux framework. and then trained all of them
for 40 epochs using the ADAM optimizer Kingma and Ba
[2015] with a learning rate of 0.001, which is the default in

5The symbols between parenthesis refer to the one used in the
experiment tables.
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Flux. over 45,000 training entries for CIFAR-10 and 54,000
for FMNIST, organized into batches of size 64. Even though
the actual number of training points in those datasets is,
respectively, 50,000 and 60,000, we reserved 10% of those
to use as validation dataset. That is, we further subdivide
the training dataset and use these validation points only for
estimating of the generalization capabilities of the model.
The resulting model is the set of weights that achieved the
highest accuracy on the validation dataset during training.
When training No and Ns simultaneously, we chose set of
weights that maximizes the sum of the accuracies of both
networks. The accuracy values discussed in this work re-
fer to the performance of the networks with these sets of
weights on the test set. The test dataset consists of 10,000
data points for both CIFAR-10 and FMNIST. Those do not
take any part in training.

For the loss function, given an input x and a neural network
N f , let y ∈ Rk be the one-hot vector associated with the
correct class for x and let ŷ = N f (x), which is also in Rk.
As usual for classification tasks, we employed the cross
entropy between y and softmax(ŷ). To be more precise, let
z = softmax(ŷ), that is, zi =

eŷi

∑
k
j=1 eŷ j

, for j = 1,2, . . . ,k; the

loss function used is

L(ŷ,y) =−
k

∑
i=1

yi · log(zi).

Furthermore, in subtasks of the type Fn and Ln, some of the
classes are the same as in the original task, and, therefore,
each of them correspond to 10% of the datasets. On the
other hand, the extra class merges all the remaining original
classes, corresponding to 10−n tenths of the points. We try
to compensate for this unbalance by proportionally under-
weighting the loss for these extra classes. More precisely,
when computing the loss for subtasks of type Fn or Ln, we
divide the loss by 10− n whenever the input belongs to,
respectively, the first n or last n original classes.

The results of our experiments are discussed in Section 5.

5 DISCUSSION

We start by discussing the experiments summarized in Table
1. By comparing the accuracy achieved by the official net-
work in the Hidden Learning experiments (To-and-Ts) with
its accuracy when it is trained for To only (provided in the
To row of the To-then-Ts column), we can see that the frame-
work does not sensible decrease accuracy: for CIFAR-10 the
two numbers are respectively6 68.5±6.4 and 71.2±10.6,
while for FMNIST we have 91.5±2.2 and 92.1±2.6.

The corresponding accuracies achieved by the secret net-
work Ns, namely when trained with the framework and when

6The value reported after the average is the sample stdev. All
reported statistical values are rounded to the first decimal place.

trained after No has been trained alone and is not modified,
are respectively 58.7±9.5 and 46.5±16.3 on CIFAR-10,
and 82.6± 10.9 and 65.7± 15.1 on FMNIST. Hence, we
can see that Hidden Learning drastically improves the accu-
racy compared to what may be regarded as a black-box MI
approach (as mentioned in Section 4).

We can furthermore see that, when the entire architecture
is trained by uniquely taking into account the loss function
of the secret task Ts, Ns achieves accuracies which are only
slightly better than those achieved with the Hidden Learning
framework, scoring 59.1±8.3 on CIFAR-10 and 83.4±9.9
on FMNIST. The fact that the framework is able to match
the latter results for Ts shows that it is effective in exploiting
the whole network despite the interference of the official
task.

We observe that the gain in accuracy for Ts is especially
significant in the experiments where this task involves fewer
classes. This is consistent with the fact that, in such cases,
the secret network has fewer neurons as input and, thus,
when Ns is trained independently (Ts) it should get access to
less information in the first place.

Finally, we remark that, since our tasks consisted of differ-
ent ways to group and split the original dataset classes in
different ones, we also verified that our results are not sensi-
tive to the ordering of the original labels. We now discuss
the robustness experiments summarized in Table 2. The goal
of these experiments is to provide a first assessment of the
sensitivity of the secret network Ns to perturbations of the
official network No. We remark that our experiments have in
no way being optimized to improve network robustness to
weight noise, e.g. by some regularization approach Zheng
et al. [2016].

The table displays the corresponding accuracies obtained for
the smallest values we considered for the standard deviation
of the gaussian noise applied (σ for short) to the weights of
No, namely from 0 to 0.1 with a step of 0.025.

When noise is very low (σ = 0.025), the average test accu-
racy for No drops by 4.7% for CIFAR-10 while we see a
1.1% average decrease for FMNIST. The corresponding per-
centages for Ns are 5.8% (CIFAR-10) and 1.7% (FMNIST).
In comparison, when σ = 0.5, No achieves average accuracy
31.5%±13.3 on FMNIST and 26.0%±13.6 on CIFAR10.
For Ns those values are 28.4%± 13.2 and 25.4%± 10.9.
This indicates that the perturbation in the official output
tends not to disturb the computation of the secret network
unless it is strong enough to change the official answer.

We can appreciate from the table that a noise level of 0.1
already deteriorates the accuracy of the official network
by 29.5% and 22.3% on average for CIFAR-10 and FM-
NIST respectively. In particular, the fact that No achieves, on
across different experiments, higher accuracies (22.9% dif-
ference) on FMNIST (average 91.4±2.2) than on CIFAR10



Exp. Task CIFAR-10 FMNIST

To and Ts To then Ts Ts only To and Ts To then Ts Ts only

C2-C10 To 73.5% 74.9% 94.2% 94.3%
Ts 43.5% 21.3% 47.5% 85.3% 50.2% 86.5%

C5-C10 To 65.3% 64.8% 90.3% 89.5%
Ts 61.4% 49.6% 61.3% 89.8% 87.2% 89.5%

C5-C2 To 64.3% 65.0% 89.9% 89.9%
Ts 75.7% 66.3% 74.3% 94.3% 90.0% 94.5%

C2-C5 To 66.3% 74.7% 94.2% 94.4%
Ts 53.0% 27.6% 58.4% 85.6% 51.1% 88.0%

F2-L8 To 78.2% 89.8% 94.0% 96.3%
Ts 51.7% 22.2% 50.3% 87.0% 38.2% 86.9%

F3-L7 To 71.0% 81.4% 90.9% 93.3%
Ts 56.3% 41.9% 58.3% 88.4% 68.4% 88.9%

F4-L6 To 63.5% 67.0% 90.1% 92.1%
Ts 58.0% 45.6% 62.2% 89.9% 74.8% 90.1%

F5-L5 To 61.4% 60.4% 90.4% 90.2%
Ts 64.4% 49.1% 66.1% 92.2% 78.6% 92.9%

F6-L4 To 63.4% 60.4% 89.9% 89.6%
Ts 60.6% 51.4% 64.2% 78.9% 74.9% 78.7%

F7-L3 To 64.2% 64.0% 90.5% 90.3%
Ts 67.1% 63.1% 64.7% 66.1% 65.3% 65.9%

F8-L2 To 65.8% 65.8% 87.7% 89.3%
Ts 41.3% 45.3% 49.5% 62.0% 64.1% 71.8%

F2-L5 To 79.4% 89.3% 95.3% 96.3%
Ts 57.3% 33.2% 59.5% 92.3% 48.2% 92.4%

F5-L2 To 64.1% 58.9% 90.6% 90.2%
Ts 60.8% 73.9% 44.9% 80.3% 69.3% 75.0%

F3-L3 To 78.6% 80.8% 92.3% 93.6%
Ts 70.9% 60.9% 65.9% 64.7% 59.0% 66.0%

Table 1: Summary table of experimental results described in Section 4.1.

(average 68.5±6.4) in the absence of noise corresponds to
lower deterioration when σ = 0.1, namely 69.2±12.3 ver-
sus 39.0±14.0.

We remark that the average standard deviation of test ac-
curacies for No appears quite low on both datasets despite
the heterogeneity of the experiments (especially the number
of output classes). The trend is consistent for Ns, where
the noiseless averages are 82.6± 10.9 for FMNIST and
58.7±9.5 for CIFAR-10, while the corresponding numbers
when σ = 0.1 are respectively 57.2±12.5 and 28.5±9.9.

6 CONCLUSIONS

In this work we have introduced a simple and efficient train-
ing procedure, called Hidden Learning, that produces two
networks, an official and a secret one, such that

• the official network solves an official task with com-
parable performance to state of the art solutions of the
task;

• the secret network takes as input the output of official
one and solves a secret task with considerable accuracy.

After contextualizing the above framework with respect to
current research on Model Inversion and related attacks
on neural networks, we have tested it on several synthetic
tasks on the CIFAR-10 and Fashion MNIST dataset. In



Exp. Task CIFAR-10 FMNIST

σ = 0 0.025 0.05 0.075 0.1 0 0.025 0.05 0.075 0.1

C2-C10 To 73.5% 71.0% 65.5% 60.6% 54.9% 94.2% 93.4% 91.6% 83.8% 74.0%
Ts 43.5% 38.5% 30.6% 21.5% 14.0% 85.3% 80.3% 67.2% 48.8% 37.2%

C5-C10 To 65.3% 56.3% 43.5% 33.5% 28.1% 90.3% 88.3% 80.9% 73.1% 50.3%
Ts 61.4% 51.0% 34.8% 23.4% 17.1% 89.8% 87.7% 77.7% 69.4% 39.9%

C5-C2 To 64.3% 56.9% 42.8% 32.5% 29.0% 89.9% 88.4% 84.3% 75.7% 54.4%
Ts 75.7% 71.0% 61.1% 55.0% 53.9% 94.3% 93.2% 90.6% 83.3% 69.1%

C2-C5 To 66.3% 64.5% 59.1% 54.1% 52.4% 94.2% 93.2% 90.9% 86.1% 79.2%
Ts 53.0% 45.7% 32.0% 25.1% 24.2% 85.6% 82.8% 73.3% 53.6% 48.8%

F2-L8 To 78.2% 78.0% 73.9% 64.0% 66.3% 94.0% 93.6% 92.9% 90.1% 86.6%
Ts 51.7% 44.6% 32.9% 23.7% 18.6% 87.0% 84.4% 72.5% 58.8% 51.4%

F3-L7 To 71.0% 70.0% 64.2% 43.5% 41.8% 90.9% 91.1% 86.1% 80.4% 74.9%
Ts 56.3% 45.4% 35.2% 27.6% 22.4% 88.4% 85.0% 74.8% 64.2% 46.5%

F4-L6 To 63.5% 60.0% 53.1% 47.8% 35.0% 90.1% 89.8% 86.4% 79.6% 70.0%
Ts 58.0% 50.1% 38.6% 27.8% 28.5% 89.9% 88.2% 81.3% 74.5% 56.1%

F5-L5 To 61.4% 55.2% 46.9% 39.1% 34.7% 90.4% 89.4% 85.8% 78.6% 74.7%
Ts 64.4% 60.6% 51.2% 37.0% 30.9% 92.2% 91.3% 86.0% 76.6% 70.5%

F6-L4 To 63.4% 56.9% 44.4% 31.8% 28.8% 89.9% 88.8% 85.0% 77.4% 67.2%
Ts 60.6% 55.4% 43.8% 38.9% 32.3% 78.9% 78.4% 74.4% 70.2% 63.0%

F7-L3 To 64.2% 56.1% 42.6% 26.2% 25.9% 90.5% 88.7% 84.6% 73.5% 53.8%
Ts 67.1% 62.5% 44.9% 40.2% 31.8% 66.1% 65.9% 65.1% 62.3% 52.9%

F8-L2 To 65.8% 55.9% 40.4% 29.0% 17.6% 87.7% 84.7% 75.5% 62.0% 48.9%
Ts 41.3% 39.5% 32.4% 31.2% 27.4% 62.0% 60.1% 67.7% 65.4% 66.6%

F2-L5 To 79.4% 78.7% 74.7% 63.1% 58.2% 95.3% 94.9% 93.4% 90.0% 82.8%
Ts 57.3% 53.4% 43.1% 30.9% 26.8% 92.3% 91.3% 88.4% 83.6% 74.0%

F5-L2 To 64.1% 59.2% 47.8% 37.3% 35.1% 90.6% 89.2% 85.9% 79.9% 75.8%
Ts 60.8% 57.6% 53.9% 39.3% 37.1% 80.3% 79.4% 79.8% 74.6% 74.6%

F3-L3 To 78.6% 74.3% 68.0% 62.3% 38.7% 92.3% 91.9% 88.4% 84.6% 75.3%
Ts 70.9% 64.9% 53.9% 45.9% 33.7% 64.7% 64.6% 63.2% 54.5% 49.9%

Table 2: Summary table displaying the obtained accuracies in the robustness experiments described in Section 4.1.

our experiments, Hidden Learning shows to be effective in
tuning the official network for better enabling the attacker to
recover information, by the means of a secret network which
is computationally very light. The possibility for such kind
of attacks should be then taken into account when using a
model provided by a third party.

Our preliminary investigation demands more sophisticated
ones, in particular regarding possible defense mechanism
against the Hidden Learning framework. Even if the official
network is suspected to be produced using such a frame-
work, naive strategies to use the network while preventing
information leakage such as perturbing the network weights,
appear ineffective in our robustness experiments7. More

7Similarly, we expect the framework to be robust to output

generally, the fact that the official network is, by design, pro-
duced to assist the secret network in extracting information,
might allow the framework to find ways around defense
mechanisms that have been proven successful against simi-
lar attacks, such as model inversion ones. On the other hand,
differential privacy Wang et al. [2015], together with other
strategies to decouple data from model training Ryffel et al.
[2018], should prove successful in protecting against it.
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