Coaction and double-copy properties of configuration-space integrals at genus zero - Archive ouverte HAL
Article Dans Une Revue Journal of High Energy Physics Année : 2021

Coaction and double-copy properties of configuration-space integrals at genus zero

Sebastian Mizera
  • Fonction : Auteur
Carlos Rodriguez
  • Fonction : Auteur
Oliver Schlotterer
  • Fonction : Auteur

Résumé

We investigate configuration-space integrals over punctured Riemann spheres from the viewpoint of the motivic Galois coaction and double-copy structures generalizing the Kawai-Lewellen-Tye (KLT) relations in string theory. For this purpose, explicit bases of twisted cycles and cocycles are worked out whose orthonormality simplifies the coaction. We present methods to efficiently perform and organize the expansions of configuration-space integrals in the inverse string tension α′ or the dimensional-regularization parameter ϵ of Feynman integrals. Generating-function techniques open up a new perspective on the coaction of multiple polylogarithms in any number of variables and analytic continuations in the unintegrated punctures. We present a compact recursion for a generalized KLT kernel and discuss its origin from intersection numbers of Stasheff polytopes and its implications for correlation functions of two-dimensional conformal field theories. We find a non-trivial example of correlation functions in ($ \mathfrak{p} $, 2) minimal models, which can be normalized to become uniformly transcendental in the $ \mathfrak{p} $ → ∞ limit.

Dates et versions

hal-03157121 , version 1 (02-03-2021)

Identifiants

Citer

Ruth Britto, Sebastian Mizera, Carlos Rodriguez, Oliver Schlotterer. Coaction and double-copy properties of configuration-space integrals at genus zero. Journal of High Energy Physics, 2021, 05, pp.053. ⟨10.1007/JHEP05(2021)053⟩. ⟨hal-03157121⟩
87 Consultations
0 Téléchargements

Altmetric

Partager

More