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Abstract

We review the theoretical aspects relevant in the description of high energy heavy
ion collisions, with an emphasis on the learnings about the underlying QCD phenomena
that have emerged from these collisions.

1 Introduction to heavy ion collisions

Elementary forces in Nature The interactions among the elementary constituents of
matter are divided into four fundamental forces: gravitation, electromagnetism, weak nuclear
forces and strong nuclear forces. All these interactions except gravity have a well tested a
microscopic quantum description in terms of local gauge theories, in which the elementary
matter fields are spin-1/2 fermions, interacting via the exchange of spin-1 bosons. In this
framework, a special role is played by the Higgs spin-0 boson (the only fundamental scalar
particle in the Standard Model), whose non-zero vacuum expectation value gives to all
the other fields a mass proportional to their coupling to the Higgs. The discovery of the
Higgs boson at the Large Hadron Collider in 2012 has so far confirmed all the Standard
Model expectations. In this picture, gravity has remained a bit of an outlier: even though
the classical field theory of gravitation (general relativity) has been verified experimentally
with a high degree of precision (the latest of these verifications being the observation of
gravitational waves emitted during the merger of massive compact objects - black holes or
neutron stars), the quest for a theory of quantum gravity has been inconclusive until now
(and possible experimental probes are far out of reach for the foreseeable future).

Strong nuclear force Quantum chromodynamics (QCD), the microscopic theory that
governs strong nuclear interactions, was formulated in the early 1970’s under the guidance
of several experimental clues. In particular, deep inelastic scattering of electrons off proton
targets indicated that the proton charge is concentrated into smaller constituents (unresolved
in the scattering) of spin 1/2 (this follows from the measured structure functions), that
interact weakly at high momentum transfer. These observations paved the way towards a
non-Abelian gauge theory with the property of asymptotic freedom [1, 2], i.e. a theory in
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which the coupling strength decreases at short distance. Combined with some insights from
hadron spectroscopy, this led to an SU(3) gauge theory, with spin-1/2 matter fields (the
quarks) in the fundamental representation. The fundamental property of QCD that resolved
the tension between the fact that quarks must interact strongly enough to form bound
hadronic states and the fact that they appear to be weakly interacting in deep inelastic
scattering experiments is asymptotic freedom: namely, the property that the running of
the coupling due to quantum corrections is such that the strong coupling constant becomes
small at short distance and large on distance scales compared to the size of a hadron.

We now know that there are six families of quarks: up, down, strange, charm, bottom
and top, ranging from nearly massless to about 175 GeV for the top quark [3]. The nucleons
that compose the atomic nuclei of ordinary matter are built solely from the up and down
quarks, and the heavier quarks appear only in more massive hadrons (at the exception of the
top quark, whose lifetime is so short that it decays before bound states can be formed). QCD
has received ample experimental support as the correct microscopic theory for describing
strong nuclear interactions. However, because of asymptotic freedom, the most quantitative
comparisons between theory and experiments are based on hard processes (i.e., processes
involving at least one hard momentum particle in the final state). Although this is sufficient
to ascertain the fact that strong nuclear interactions are indeed well described by QCD,
these experiments leave unexplored another important aspect of strong interactions, that
has to do with the rich properties of nuclear matter in extreme conditions of temperature
or density.

Asymptotic freedom, confinement and deconfinement A crucial property of QCD,
consequence of asymptotic freedom, is color confinement [4], namely the fact that isolated
quarks or gluons cannot exist but instead combine into bound states –the hadrons– in which
their color charge is “hidden”. Thus, trying to pull a quark out of a hadron (for instance in a
high energy collision with another hadron) merely creates more hadrons. Conversely, when
one packs many hadrons in a small volume, the average distance between their constituents
decreases, and therefore they interact more and more weakly1. Given this, we may expect
that the forces that bind quarks inside hadrons eventually become weak enough to allow the
quarks to become unconfined, i.e., free to wander in the entire volume of the system. This
state of nuclear matter is called the quark-gluon plasma (QGP). Note that this transition
is non-perturbative, since it happens at an energy scale where the coupling constant is still
too large to apply reliably perturbation theory.

However, it is possible to formulate QCD non-perturbatively by discretizing Euclidean
space-time on a lattice. This setup provides a way of computing certain observables without
resorting to an expansion in powers of the coupling. Some of the quantities that one may
calculate in lattice QCD are related to the confinement/deconfinement transition: e.g., the
expectation value of the trace of a Wilson loop (that one may relate to the potential between
a pair of infinitely heavy quark and antiquark), or the entropy density (that measures the
number of active degrees of freedom in the system). Moreover, in lattice QCD, one may
vary several parameters of the theory, like the number of quark families and their masses, in
order to investigate the role they play in the observed phenomena. Some of these results are
summarized in the plot of Figure 1, taken from [5]. For instance, pure-glue QCD (equivalent
to QCD with infinitely massive quarks) has a first order deconfinement transition at a
temperature of the order of 270 MeV. A first order transition may also exist in the opposite

1Let us clear out a possible misconception related to this: a small coupling constant in pairwise parton
interactions does not necessarily imply that the system as a whole is weakly interacting. The latter is true
only if the mean free path is large compared to the De Broglie wavelength of the constituents, and the inverse
mean free path is the product of a cross-section by a density. In other words, in such a dense system, there
may be strong collective effects despite a weak coupling.
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limit, with massless quarks. In this limit, the classical QCD Lagrangian also has a chiral
symmetry, spontaneously broken at low temperature (this transition is also a first order
transition). The physical spectrum of light quarks in Nature lies in between these two

Figure 1: Nature of the transition at null chemical potential as a function of quark masses.
From [5].

extreme situations, and there is now a consensus that this physical point corresponds to a
mere crossover transition, i.e., a perfectly smooth (but rather rapid) transition from hadrons
to deconfined quarks, that takes place at a temperature around 155 MeV. Even in the
absence of a genuine transition in the thermodynamical sense, this transition exhibits signs
of deconfinement accompanied by a restoration of chiral symmetry (up to explicit residual
violations due to the non-zero quark masses).

Lattice QCD and baryon chemical potential In statistical equilibrium, the param-
eters that control the possible states of nuclear matter are the temperature, the chemical
potentials associated to conserved quantities (the most important of which is the baryon
chemical potential µ

B
), and possibly some external fields (such as magnetic fields). How-

ever, a non-zero chemical potential is a very serious obstacle for lattice QCD. Indeed, the
chemical potential turns the exponential of the action integrated over the quark fields into
a non-positive measure, that cannot be sampled by Monte-Carlo. At very small µ

B
/T ,

various lattice techniques [6, 7, 8, 9, 10] can be used to track the transition to non-zero
values of µ

B
, but these methods loose their accuracy when the chemical potential becomes

of the order of the temperature. Note that a perturbative approach becomes possible at
very large µ

B
and/or large T , since these parameters control the relevant scale for the run-

ning coupling. At high T and low µ
B

, these analytic calculations are consistent with lattice
computations. At high µ

B
and very low temperature, they indicate the presence of sev-

eral color super-conducting phases [11, 12, 13, 14] (in these phases, the ground state of the
system exhibits a non-zero quark-quark condensate, very similar to Cooper pairing in BCS
super-conductivity).

Outside the regions accessible to lattice simulations or to perturbation theory, our knowl-
edge of the phase diagram of nuclear matter is mostly speculative. It is for instance expected
that the system is strongly interacting near the transition line, implying small transport co-
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efficients, consistent with the measurements of final state correlations among the produced
particles (see later the section on hydrodynamics).

Heavy Ion Collisions In the history of the early Universe, the confinement transition
was crossed when the Universe was about one microsecond old, but as far as we know this
did not leave any visible imprint accessible to present astronomical observations. In the
early 1980’s emerged the idea to collide heavy nuclei in order to produce in the laboratory
nuclear matter at high temperature and density, possibly sufficient to reach and go beyond
the critical line. Subsequently, several experiments have had all or part of their scientific
program devoted to the study of heavy ion collisions:

• Bevatron (Billions of eV Synchrotron) :
From 1954 to 1993 at Lawrence Berkeley National Laboratory, U.S

• AGS (Alternating Gradient Synchrotron) :
Since 1960 at Brookhaven National Laboratory, U.S
Now used as injector for RHIC

• SPS (Super Proton Synchrotron) :
Since 1976 at CERN
Now the injector for the LHC

• SIS-18 (Schwer-Ionen-Synchrotron) :
Since 2001 at GSI

• RHIC (Relativistic Heavy Ion Collider) :
Since 2000 at Brookhaven National Laboratory, U.S

• LHC (Large Hadron Collider) :
Since 2009 at CERN

The first experimental hints of a deconfinement transition were observed at the CERN SPS
[15, 16, 17, 18, 19, 20, 21, 22], that collided heavy ions at a center of mass energy of 17 GeV,
and in the subsequent experimental programs at higher energies (the RHIC at Brookhaven
National Laboratory, and the Large Hadron Collider at CERN) the focus has shifted from
assessing the production of a quark-gluon plasma towards measuring quantitatively some of
its properties [23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36].

Experimental handles In heavy ion collisions, a few experimental handles are available
to vary the conditions in which the quark gluon plasma may be formed. One of them is the
atomic number of the nuclei used in the collisions, whose main effect is to change the volume
of the interaction zone (but as we shall see in the next section, this has also an incidence
on the so-called saturation momentum). When performing collisions with a given species
of ions, another variable that has a direct effect on the volume is the impact parameter of
each collision. Although the impact parameter is not directly measurable, some observable
quantities (such as the total multiplicity in the final state, or the transverse energy) are
strongly correlated with the impact parameter. Finally, the collision energy can in principle
be varied (but of course, this is in practice highly constrained by the accelerator design),
which affects the initial energy density (i.e., temperature) and the net baryon density of the
matter produced in a collision. This translates in different reaches in the phase diagram for
various heavy ion experiments, as sketched in Figure 2.
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Figure 2: Sketch of the phase-diagram of strongly interacting nuclear matter, and approxi-
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Figure 3: Main stages of the evolution of the matter produced in a heavy ion collision.
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Main stages of a heavy ion collision From a theoretical point of view, an ultrarela-
tivistic collision between two nuclei can be conveniently divided in several stages, sketched
in the figure 3. Such a picture stems from the approximate boost invariance (i.e., inde-
pendence on the spatial rapidity variable ηs ≡ 1

2 ln((t + z)/(t − z))) of such collisions, and
the successive stage are ordered by the proper time τ . The collision itself is very short due
to the Lorentz contraction of the nuclei in the laboratory frame. Just after the collision,
the matter produced is predominantly made of non-equilibrated gluons (they are not even
on-shell at the very beginning, and the system is better treated in terms of fields rather than
particles). This matter is strongly interacting due to a large gluon occupation number, and
evolves towards equilibration (both kinetic and chemical, since quark-antiquark pairs are
produced in the process). In the subsequent stages, the bulk evolution of the system is re-
markably well described by nearly ideal (i.e., with very small values of the viscous transport
coefficients) relativistic hydrodynamics. The expansion of the system causes the system to
cool down, and at some point the temperature reaches the confinement temperature. In the
framework of hydrodynamics, as long as the system remains close to equilibrium, the cross-
ing of the confinement transition is rather transparent since it is encoded in the equation of
state. Soon after, the system becomes dilute, the mean free path increases, and a description
of its expansion in terms of kinetic theory rather than hydrodynamics becomes preferable.
In such a description, the values of the various cross-sections control when each type of
reaction stops: the inelastic processes stop first (chemical freezeout), soon followed by a
kinetic freezeout after which the momenta of the particles remain unchanged (afterwards,
all particles therefore fly on straight lines at constant velocity until they hit a detector).

2 Initial state, Color Glass Condensate

Multiparton interactions and gluon saturation Let us start with the very first mo-
ments of a heavy ion collision. This is the realm of the highest momentum scales of the
entire collision, and one may thus expect that this stage is amenable to a perturbative QCD
treatment. The situation is however more complicated. The main difficulty is the fact that
the typical transverse momentum of the produced particles in such a collision is rather low
(around 1 GeV), implying that high energy heavy ion collisions probe the partonic content
of the incoming nuclei at very small values of the longitudinal momentum fraction x (the
fraction of the momentum of a hadron carried by one of its constituents), i.e., in a regime
where the gluon density is large. The consequence of this is that processes initiated by more
than one parton in each nucleus become possible, which invalidates the usual factorization
schemes (based on single parton densities), as illustrated in Figure 4. One may derive a

Figure 4: Left: scattering in the dilute regime. Right: multi-gluon scattering in the satura-
tion regime.

simple criterion for the onset of these multi-parton phenomena (known as gluon saturation)
by combining the estimated gluon recombination cross-section and the number of gluons per
unit of transverse area [37, 38, 39]. Gluon saturation happens when the product of these
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two quantities is greater than one, which can also be framed as an upper bound for the
momentum transfer Q in deep inelastic scattering (the inverse of this scale plays the role
of a spatial resolution in such a scattering), Q . Qs, where Qs is the so-called saturation
momentum. Qs depends both on the atomic number of the nuclei, and on the collision
energy via the momentum fraction x,

Q2
s ∼ A1/3x−λ, (1)

where the exponent λ has been determined phenomenologically from deep inelastic data
and estimated to be λ ≈ 0.25. The growth at small x follows from the growth of the gluon
density, while the factor A1/3 is a measure of the thickness of a nucleus in the direction of
the collision axis. The variations of the saturation momentum as a function of A and x
are shown in Figure 5. Recalling that the typical value of x scales as p⊥/

√
s where p⊥ is

Figure 5: Saturation domain. From [40].

the transverse momentum of produced particles and
√
s the energy in the center of mass

of a nucleon-nucleon collision, it appears that the bulk of particle production in heavy ion
collisions at the energy of the LHC is potentially affected by gluon saturation, which calls for
a theoretical framework going beyond the usual collinear factorization. Indeed, the standard
parton distribution are single-parton densities and do not contain the necessary information
about the multi-parton initial states that become important in the saturation regime.

Color Glass Condensate Extending the framework of collinear factorization by defining
multi-parton densities in the same way as the usual parton distributions is not practical.
Instead, one exploits the fact that gluon saturation is also a regime of large gluon occupation
number, which allows to treat the gluon field as classical in a first approximation [41, 42]. In
such a description, the relevant information about an incoming nucleus is the color current
it carries, that acts as a source for the color field. Moreover, this current is produced by the
partons that are comparatively fast (in the observer’s frame), which implies that it is nearly
time independent thanks to time dilation. The degrees of freedom in such a description are
thus color currents (one for each projectile) coupled to gluon fields, with an effective action

Seff ≡ −
1

4
Fµνa Fµν a + JµaAµa. (2)
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This setup, known as the Color Glass Condensate [43, 44, 45, 46, 47, 48] (CGC) is illustrated
in Figure 6. For a fast moving projectile in the +z direction, the color current has the form

Jµa (x) = δµ+ρa(x−,x⊥), (3)

where ρa(x−,x⊥) is a function that describes the spatial distribution of the color charges
in the object under consideration. In this expression, we have introduced the light-cone
coordinates, x± ≡ (t ± z)/

√
2 (the notation δµ+ means that the only non-zero component

of the current is J+ ∝ J− + J3). These coordinates are convenient when discussing the
kinematics of an object moving at the speed of light, since x+ acts as the time variable
for this object (the fact that the above current does not depend on x+ simply reflects the
fact that this object is time-independent) and x− as a longitudinal coordinate as measured
in the rest frame of the object. The support of the x− dependence of the current is very
narrow and centered around x− = 0, due to Lorentz contraction. Note also that the current
must be covariantly conserved, [Dµ, J

µ] = 0. Since the covariant derivative contains the
color field, the color current may be affected by its own radiated field (the light-cone gauge
A− = 0 mitigates this difficulty, since the current J+ can be altered only by the field
A−). The x⊥ dependence of ρa(x−,x⊥) reflects the positions in the transverse plane of
the color sources at the instant of the collision (the duration of the collision, controlled by
the thickness of the Lorentz contracted nuclei, is much shorter than the typical timescales
of the internal motions of the constituents of a hadron – thus Jµ needs only to provide a
snapshot of the hadron content). But of course, the configuration of these charges is not
known event-by-event, and the best we may hope to know is a statistical distribution of these
densities, encoded in a functional W [ρ]. This functional density is not something that we
can calculate perturbatively in QCD, since it depends on aspects such as confinement, the
nuclear wavefunction, etc... For a large nucleus, the McLerran-Venugopalan model [41, 42],
in which W [ρ] is a Gaussian,

W [ρ] = exp
(
−
∫
d2x⊥

ρa(x−,x⊥)ρa(x−,x⊥)

2µ2(x−,x⊥)

)
, (4)

is often employed due to its simplicity (in some cases, it even allows analytical calculations).
In this distribution, the mean value of the charge distribution at a point (x−,x⊥) is zero,
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and µ2(x−,x⊥) is a measure of its fluctuations. At lowest order in the CGC effective theory,
this parameter is a placeholder for the value of the saturation momentum,

Q2
s(x⊥) ∝ g2µ2(x⊥) ln

(µ2(x⊥)

Λ
QCD

)
, with µ2(x⊥) ≡

∫
dx− µ2(x−,x⊥). (5)

(This correspondence may be established by calculating the DIS cross-section in the McLerran-
Venugopalan model [49].) Although a possible heuristic justification for this Gaussian model
is the central limit theorem, thanks to the fact that a large nucleus has many constituents
per unit of transverse area, one should keep in mind that this distribution of ρa’s is not
derived from first principles in QCD (since doing so would require to control QCD in a
non-perturbative regime). Another reason why the Gaussian in eq. (4) does not have a
very fundamental standing is that this shape is not preserved when one includes one-loop
corrections: indeed, these corrections contain large logarithms of energy that turn W [ρ] into
a non-Gaussian energy-dependent distribution.

Power counting in the saturated regime Let us now describe how a typical CGC
calculation is organized. The color glass condensate may be viewed as a Yang-Mills theory
coupled to an external source [50, 51], which diagrammatically means that all graphs contain
only gluon propagators. Their endpoints can be attached to the sources, to gluon vertices,
or to the observable of interest. In the saturation regime, the power counting for these
graphs is a bit peculiar due to the large gluon occupation number. The 3-gluon and 4-gluon
vertices are respectively of order g and g2, while the external source can be as large as g−1

(this order of magnitude is reached when the occupation number reaches its maximal value,
of order g−2). Therefore, the order of magnitude of a generic connected graph G is

G ∼ g−nE g2n
L (gJ)nJ , (6)

where n
E

is the number of external gluons, n
L

the number of loops and n
J

the number
of sources J in the graph. We see from this formula that when J ∼ g−1, the order of the
graph does not depend on the number of sources, implying that there is an infinity of graphs
contributing at each order (for instance, the leading order is made of all the trees). The
saturation regime is therefore a strongly interacting non-perturbative situation, despite the
fact that the coupling constant may be small at high energy (the typical scale at which
the running strong coupling constant should be evaluated is governed by the saturation
momentum).

Leading order At leading order, the infinite series of tree diagrams that one needs to
sum can always (for inclusive observables) be expressed in terms of classical solutions of the
Yang-Mills equations, [

Dµ, F
µν
]

= Jν , (7)

with retarded boundary conditions (the retarded nature of the boundary condition follows
from the fact that inclusive measurements do not put any restriction on the final state).
Since in the CGC the incoming projectiles are completely encoded in the source Jµ, the
classical initial condition is simply to have a null field (or more generally a pure gauge) in
the remote past, before the collision has happened. By causality, space-time is naturally
divided into four domains shown in Figure 7. Domain 0 corresponds to space-time points
not yet reached by any of the nuclei. Domain 1 is causally connected with the right moving
nucleus, but not with the left moving one. For domain 2, it is the opposite. And finally the
domain 3 contains the outcome of the collision. Given a null initial condition in domain 0, the
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Figure 7: Decomposition of space-time in four domains, when solving the classical Yang-Mills
equations.

gauge field can be obtained analytically in the domains 1,2, and also at the lower boundary
of domain 3 (i.e., at a proper time τ = 0+). At later times in domain 3, no analytical
solution is known, but it is rather straightforward to solve the classical Yang-Mills equations
numerically [52, 53, 54, 55, 56, 57].

Next to Leading Order CGC calculations can in principle be pushed to next-to-leading
order, i.e., one-loop. The main difficulty in doing this is that, like with the leading order,
there is an infinite set of diagrams contributing at NLO. These are all the one-loop graphs
embedded in the external classical gauge field obtained at LO. For any inclusive observable,
there exists an exact relationship between the LO (tree level) and NLO (one loop) results,
that schematically reads [58, 59]

ONLO =
1

2

∫
d3k

(2π)32Ek

∫
x0=y0=−∞

d3xd3y
[
e+ik·x δ

δAini(x)

][
e−ik·y

δ

δAini(y)

]
O

LO
, (8)

where Aini is the initial condition for the classical field in the LO calculation. This relation-

c
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tu
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Figure 8: Left: typical one-loop graph contributing to an inclusive observable. Right:
interpretation of Eq. (8). In this graphical sketch, the horizontal direction represents space
and the vertical direction represents time. The red dots represent the external source J .

ship indicates that the NLO may be obtained from the LO simply by replacing at two points
x, y the classical initial condition by plane waves e+ik·xe−ik·y, integrated over all on-shell
momenta k (but the time evolution continues to be governed by the classical equation of
motion). This is consistent with the fact that the first quantum correction (order ~1) only
affects the initial state, and the first quantum effect that alters the evolution arises at the
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order ~2. In ordinary quantum mechanics, this is best seen in the phase-space formula-
tion (also known as Moyal-Groenewold formulation), in which each quantum operator A is
replaced by its Wigner transform,

A(X, p) ≡
∫
ds ei

p·s
~
〈
X + s

2

∣∣A∣∣X − s
2

〉
, (9)

defined on the classical phase-space variables (X, p). In this mapping, the commutator of
two such operators A,B becomes the Moyal bracket of their Wigner transforms:

{{A,B}}(X, p) ≡ 2

i~
A(X, p) sin

(
~
2

( ←
∂ p
→
∂X
−
←
∂X

→
∂ p
))
B(X, p). (10)

If we denote W the Wigner transform of the density operator ρ of a system, the von Neumann
equation i~∂tρ = [H, ρ] becomes

∂tW = {{H,W}} = {H,W}︸ ︷︷ ︸
Poisson bracket

+O(~2), (11)

where H is the Wigner transform of H (i.e., H is the classical Hamiltonian).

Large logarithms and JIMWLK evolution When calculating such one-loop correc-
tions, an aspect of the CGC degrees of freedom that we have ignored until now becomes
important, namely that one must introduce a cutoff to separate the color sources from the
gauge fields. For instance, such a cutoff should limit the range of integration over the momen-
tum k in Eq. (8). This separation is based on the longitudinal momentum (or equivalently,
the rapidity y ≡ 1

2 ln((k0 +kz)/(k0−kz))), and is mandatory when evaluating loops to avoid
double countings. In practice, the longitudinal component of the loop momentum must re-
main below the cutoff, because all the higher momentum modes are already included in the
color current. This leads to all one-loop correction to be sensitive (proportional to the loga-
rithm of the cutoff on longitudinal momentum) to the cutoff [60, 61, 43, 44, 45, 58, 59, 62].
However, since this cutoff is an ad-hoc parameter of the CGC effective theory rather than
a physical parameter, it should not enter in physical observables. This paradox is resolved
by the fact that the cutoff dependence is universal, in the sense that it depends on the
nature of the two colliding projectiles, but not on the inclusive observable one is measuring.
Therefore, it is possible to absorb the cutoff dependence into a redefinition of the distribu-
tions W [ρ] that define the color source content of the projectiles, turning them into cutoff
dependent objects. For this to be feasible, one should perform an average of the ρ-dependent
observable, weighted by the distributions of ρ’s of each projectile,〈

O
〉
≡
∫

[Dρ1Dρ2] W1[ρ1]W2[ρ2]O(ρ1, ρ2). (12)

The cutoff dependence of W [ρ] is controlled by the so-called JIMWLK equation, schemati-
cally of the form

∂W [ρ]

∂ log Λ
=

δ

δρa
χab

δ

δρa
W [ρ], (13)

where χab depends on the LO classical field created by the source ρ (the possibility to
transfer the cutoff dependence from the observable to the distribution W [ρ] is made possible
by the fact that the operator in the right hand side of the JIMWLK equation is self-adjoint,
via integration by parts). Thus, by evolving the distributions W [ρ] of each projectile to
values of the longitudinal momentum in the immediate vicinity of the scales relevant for
the observable of interest, one resums all the leading logarithms, i.e., the powers (g2 log Λ)n
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where each logarithm of the cutoff is accompanied by a factor g2. This is very similar in
spirit to collinear factorization, the unphysical cutoff Λ playing the role of a factorization
scale that should disappear from observables.

Since it is a functional equation, the JIMWLK equation is difficult to solve, even nu-
merically. The only known approach so far uses the fact that the JIMWLK equation acts
like a diffusion equation in the functional space of the ρ’s (in a treatment more rigorous
than this general discussion, one would use Wilson lines built from the ρ’s rather than the
ρ’s themselves), and therefore can be rewritten as a Langevin equation [63]. Then, after
discretization of the transverse plane, this stochastic equation is amenable to a numerical
treatment in order to obtain an ensemble of ρ’s evolved to the relevant value of the cut-
off [64, 65, 66]. Let us also mention recent improvements: a modification of the Langevin
equation has been proposed to include the effects of a running coupling [67], and the full
NLO corrections to the JIMWLK equation have also been evaluated [68, 69] (but not yet
implemented in a numerical code).

Balitsky-Kovchegov equation To avoid this computationally heavy approach, it is also
possible to truncate the JIMWLK equation. The first thing to note is that the functional
form of the JIMWLK equation is equivalent to an infinite sequence of equations for the
correlation functions of Wilson lines constructed from the ρ’s

U(x⊥) ≡ T exp ig

∫
dx− 1

∇2
⊥
ρ(x−,x⊥). (14)

These equations are nested: the equation that drives the cutoff dependence of the 2-point
correlation function depends on a 4-point function, etc... A possible approximation (that
may be justified in the limit of a large number of colors) consists in factorizing this 4-point
function as a product of two 2-point functions, which has the effect of closing the evolution
equation of the latter. The resulting equation, known as the Balitsky-Kovchegov equation
[70, 71], reads

∂Txy
∂ log Λ

=
αsNc
2π2

∫
d2z⊥

(x⊥ − y⊥)2

(x⊥ − z⊥)2(y⊥ − z⊥)2

{
Txz + Tzy − Txy − TxzTzy

}
, (15)

where

Txy ≡ 1−N−1 tr
〈
U(x⊥)U†(y⊥)

〉
(16)

(with Wilson lines taken in the fundamental representation of su(N)). Txy is also propor-
tional to the scattering amplitude of a quark-antiquark dipole (at the transverse coordinates
x⊥ and y⊥, respectively) off a high energy nucleus. In this equation, the first three terms,
linear, correspond to the BFKL equation, and the last term, non-linear, is a correction
due to gluon saturation, that becomes sizeable when the scattering amplitude approaches
the unitarity limit T = 1. Since it is an equation for an ordinary function, the BK equa-
tion is much easier to solve numerically. Note also that the previous equation has now
been improved by running coupling corrections [72, 73], by the full next-lo-leading log cor-
rections [74], and by a resummation of collinear logarithms [75, 76]. These improvement
has allowed a successful phenomenology of small-x phenomena in deep-inelastic scattering
and forward proton-proton or proton-nucleus collisions based on the BK evolution equation
[77, 78, 79, 80].

3 Pre-equilibrium evolution just after the collision

Energy-momentum tensor at Leading Order As we have seen in the previous section,
large nuclei at high energy may be described by using the CGC framework, in which the
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large momentum degrees of freedom are treated as random color currents coupled to the
color field. At leading order in the strong coupling constant, all expectation values are
given by tree diagrams, whose sum is the classical solution of Yang-Mills equations with a
null retarded boundary condition. Having in mind a description of the subsequent stages
of the collision in terms of relativistic hydrodynamics, it is therefore natural to calculate
the components of the energy momentum tensor. In the CGC framework, the dominant
contribution comes from the gluons (the valence quarks have a very small contribution at
small x, and the sea quark distribution is suppressed by a power of αs compared to that of
the gluons). In a classical field, they are given by the following formulas

T 00
LO

=
1

2

[
E2 + B2︸ ︷︷ ︸
class. fields

]
, T 0i

LO
=
[
E ×B

]i
,

T ij
LO

=
δij

2

[
E2 + B2

]
−
[
EiEj + BiBj

]
, (17)

in terms of the chromo-electric and chromo-magnetic fields (note that this tensor is traceless
in classical Yang-Mills theory – a non-zero trace would arise from loop corrections via the
β-function, and from explicit quark masses when quarks are taken into account). Let us
first mention the very special configuration of the E and B fields just after the collision:
at τ = 0+, these two fields are both parallel to the collision axis [81], which leads to the
following form of Tµν

LO
(τ = 0+),

T 0i
LO

= 0, T 11
LO

= T 22
LO

= T 00
LO
, T 33

LO
= −T 00

LO
. (18)

In other words, the matter is produced at rest, with a negative longitudinal pressure (i.e.,
the system resists longitudinal expansion). Such a negative pressure means that this system
should not be viewed as a collection of on-shell particles, but rather as fields. At later times
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Figure 9: Time evolution at Leading Order of the ratios T 11/T 00 and T 33/T 00.

(see Figure 9), the longitudinal pressure progressively builds up to become positive at a
time around Qsτ ∼ 1, which is indeed the time at which the color fields may be interpreted
as nearly on-shell gluons [82]. However, it is also clear from this plot that the ratio of
longitudinal to transverse pressure remains very small. In fact, at leading order, this ratio
decreases as τ−2, which is characteristic of a free streaming system (i.e., a system whose
self-interactions are too weak to compete with the longitudinal expansion).

Next to Leading Order, Instabilities Such a behavior of the longitudinal pressure
is not consistent with hydrodynamical evolution, where the ratio P

L
/P

T
would instead
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increase to eventually approach unity. For an underlying QCD description to allow a smooth
matching to a subsequent hydrodynamical expansion, there should be a range of times where
the two descriptions lead to similar behaviors. It turns out that higher order corrections
in the CGC description are potentially more important than the power counting suggests.
Indeed, the power counting correctly states that loop corrections (i.e. corrections beyond the
classical field approximation) are suppressed by additional powers of the coupling constant,
but it implicitly assumes that the coefficients in this power expansion remain of order one at
all times. It is this assumption that turns out to be incorrect, because the classical solutions
of Yang-Mills equations are subject to instabilities that make them exponentially sensitive
to their initial conditions [83, 84, 85, 86], combined with the fact that one-loop corrections
can be expressed in terms of small perturbations to the initial condition of the LO classical
field.

Figure 10: Graphs that have the leading time behavior in the presence of instabilities.

Resummation, Classical Statistical Approximation By a more careful power count-
ing that keeps track of these terms that have an exponential growth with time [87], it
is possible to determine the set of graphs that provide the leading contributions at large
time. These graphs are shown in the Figure 10 (and in the left part of Figure 8, we show
for comparison a typical next-to-leading order contribution). It turns out that the sum of
this infinite set of higher-loop order graphs can be obtained by letting the initial value of
the gluon field fluctuate around its classical value, with a Gaussian distribution which is
completely determined by the one-loop result. Schematically, this resummed result reads:

Oresummed =

∫ [
Da
]

exp
[
− 1

2 ~

∫
x,y

a(x)Γ−1
2 (x,y)a(y)

]
OLO [Ain + a]. (19)

Such a resummation is of course only a part of the full answer (with an appropriate choice of
the variance Γ2, one may obtain the complete LO and NLO results, but only a subset of the
higher orders), known in the literature as the Classical Statistical Approximation (CSA).
We have written the explicit dependence of the Gaussian distribution with respect to ~ to
emphasize the quantum nature of these fluctuations of the field. In the special case of heavy
ion collisions, the variance of the Gaussian fluctuations, Γ2, can be determined analytically
at the time τ = 0+, i.e., just after the collision [88]. Note that in the vacuum, this variance
reads (this is just a sketch, that ignores the complications due to gauge fields)

〈
a(x)a(y)

〉
= Γ2(x, y) =

∫
d3k

(2π)3Ek

1

2
eik·(x−y). (20)

The factor 1/2 in the integrand can be interpreted as the zero point occupation of the
vacuum (at one-loop, one may show that the only quantum effect is the fact that the ground
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state is not empty but subject to zero point fluctuations – the resummation considered here
is an approximation in which this is extended to higher-loop orders).

Once the variance Γ2 is known, Eq. (19) can be evaluated numerically on a lattice in
a straightforward way, since it simply amounts to reproducing the leading order classical
CGC computation with a fluctuating initial condition. The Gaussian integral in Eq. (19)
can be estimated by Monte-Carlo sampling. These simulations, with the variance given in
Eq. (20), lead to an increase of the ratio of longitudinal to transverse pressure [89]. However,
the interpretation of this result is obscured by the fact that this setup has no continuum
limit when the lattice spacing goes to zero. This can be understood easily from the fact that
Eq. (20) corresponds to a flat momentum distribution of gluons, that extends to arbitrarily
large momenta (only cut-off by the inverse lattice spacing).

CSA with a compact fluctuation spectrum An alternative to the variance given in
Eq. (20) that does not have this ultraviolet problem would be to replace the factor 1/2 by
another gluon distribution that has a fast enough fall-off at large momentum,〈

a(x)a(y)
〉

alt
=

∫
d3k

(2π)3Ek
f0(k) eik·(x−y). (21)

Although such a distribution cannot be derived from first principles, unlike Eq. (20), a
handwaving argument in favor of it is that after a time of order Q−1

s the gluons produced in
a collision are nearly on-shell with a compact distribution that extends up to momenta
k ∼ Qs (with an occupation number of order g−2 within this support). With such a
spectrum of initial field fluctuations, the behavior of the ratio of pressures P

L
/P

T
is at

odds with what was obtained with Eq. (20), everything else being equal: with Eq. (21),
one has P

L
/P

T
∼ τ−2/3, showing no sign of isotropization [90, 91]. In this scenario, it is

argued that isotropization is delayed until the gluon occupation number becomes of order

one, which would happen eventually at a time Qsτ ∼ α−3/2
s .

Going beyond the classical statistical approximation in a field theoretical framework is
possible with the two-particle irreducible formalism [92, 93, 94]. This formalism amounts to a
self-consistent determination of the propagator (which in a many-body context also contains
the information about the particle distribution) by resumming a self-energy –itself a function
of the propagator– on the propagator. The 2PI framework can be renormalized [95, 96],
thereby avoiding the issues with the CSA and zero point vacuum fluctuations, and can thus
be used to track the real-time evolution of a system starting from any quantum state. The
main drawback of this approach is that it is very demanding in terms of computational
resources, especially in the case of an expanding system like the one formed in a heavy
ion collision. At the time of this writing, there has only been one “proof of concept”
implementation for an expanding system [97], in which the questions related to isotropization
were not investigated.

Kinetic theory and Boltzmann equation A less costly alternative is kinetic theory,
that one may obtain from the 2PI approach provided one makes two additional approxima-
tions:

• Quasi-particle approximation: this amounts to assuming that the propagator describes
on-shell infinitely long lived particles. With this assumption (that can only be valid in
a system where the mean free path is much larger than the De Broglie wavelength of
the particles), the only unknown in the propagator is the particle distribution f(x,p).

• Gradient approximation: this amounts to assuming that the spatial variations of the
system due to its off-equilibriumness occur only on time and distance scales much
larger than the De Broglie wavelength of the particles.
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With these two approximations, the Kadanoff-Baym equation of motion of the 2PI formalism
reduces to a much simpler Boltzmann equation, schematically of the form(

∂t + vp1
·∇x) f1 = Cp1

[f ] (22)

=

∫
p2,3,4

|M(12→ 34)|2 δ(p1 + p2 − p3 − p4)

×
{
f3f4(1 + f1)(1 + f2)− f1f2(1 + f3)(1 + f4)

}
. (23)

The first line is the generic Boltzmann equation obtained when using these two approxi-
mations, with a collision term local in x that can a priori contain arbitrary orders in the
distribution f . In the second line, we have written specifically the Boltzmann equation that
includes only 2 → 2 elastic reactions (but this truncation is an extra approximation that
goes beyond the quasi-particle and gradient approximations).

Testing semi-classical approximations via kinetic theory Besides being a tool to
study the evolution of the particle distribution, the Boltzmann equation can also provide
some insights about the limitations of the classical statistical approximation, because identi-
cal classical approximations may be applied to the right hand side of the Boltzmann equation.
To that effect, the correspondence is the following [98, 99]

1. CSA with Eq. (21) ⇐⇒ keep only the terms cubic in f ,

2. CSA with Eq. (20) ⇐⇒ replace f → f + 1
2 in the previous approximation (note that

in this approximation, the collision integral has the correct cubic and quadratic terms,
and also some spurious linear terms not present in the exact collision term).

With the approximation 2 of the collision integral, one can for instance reproduce quantita-
tively the ultraviolet sensitivity (i.e., the lack of continuum limit) of the CSA when zero point
fluctuations are included [100]. With the approximation 1, the Boltzmann equation (for an
expanding system) leads to the behavior P

L
/P

T
∼ τ−2/3. It is also possible to understand

by kinetic arguments why this approximation misses important physics for a longitudinally
expanding system [101]. In such a system, isotropization results from a competition between
the expansion of the system, that drives the particles towards a more a more anisotropic
distribution, and collisions that tend to redistribute the directions of the velocities (for col-
lisions that are sufficiently isotropic, which is the case for a dense system due to a strong
Debye screening). However, as shown in Figure 11, when two particles (labeled 1 and 2)
from a very anisotropic distribution scatter out-of-plane, momentum conservation implies
that the two final state particles (labeled 3 and 4) end in the empty region of phase-space.
Such a scattering is forbidden when one keeps only the cubic terms in the collision integral,
because these terms correspond to stimulated emission, that can only happen when one
of the produced particles goes in an already populated region. The large-angle scattering
process of Figure 11 is allowed only by the terms quadratic in f , that are not present in
the approximation of Eq. (21). The difference between a semi-classical approximation such
as Eq. (21) and one that includes the zero-point fluctuations can then be seen on the time
evolution of the ratio P

L
/P

T
, as shown in Figure 12 in the case of a scalar theory (see [101]

for details): in this figure, we see that the classical approximation leads to a decrease of this
ratio as τ−2/3, while with the full collision term it first decreases (while the expansion out-
paces the scatterings) and then increases (when the expansion rate has become low enough)
to approach unity. It is only for very small couplings (i.e., unrealistically large values of
the ratio of the shear viscosity to entropy, η/s – see the next section for a discussion of the
range of values of this ratio expected in heavy ion collisions) that this classical approxima-
tion agrees with the evolution driven by the full collision term long enough to reach the
asymptotic scaling regime.
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Figure 11: Typical 2→ 2 scattering in a highly anisotropic system.
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Figure 12: Comparison of the classical and full evolution of P
L
/P

T
in kinetic theory for a

longitudinally expanding system. The dark purple curve is the kinetic theory analogue of
the classical statistical approximation based on eq. (21).

Kinetic approach in Yang-Mills theory A similar computation has also been per-
formed in the more realistic setting of Yang-Mills theory [102, 103], with similar results as
shown in Figure 13. There also, one sees the classical approximation depart from the full
evolution fairly quickly. For instance, the curve λ = 0.5, i.e. αs = 0.02 for Nc = 2, deviates
from the classical approximation around Qsτ ≈ 2. Moreover, this happens much earlier

than the presumed range of validity Qsτ . α
−3/2
s ≈ 350 predicted within the classical ap-

proximation itself (in fact, we see from this plot that the point Qsτ = 350 on the classical
evolution is orders of magnitude off the correct trajectory). In addition, this computation
has shown a very good agreement with second order hydrodynamics already at times where
isotropization is still far from being achieved, thereby providing a justification for the appli-
cability of hydrodynamics as early as τ ≈ 0.6 fm/c (compare the red and solid black curves
in Figure 14).

Fixed points of kinetic evolution Kinetic theory has also been used to obtain results
about the fate of a system that undergoes longitudinal expansion [104, 105, 106, 107], with
only generic assumptions about the strength of the collisions. The starting point of this
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study is the Boltzmann equation in the relaxation time approximation,(
∂τ −

pz
τ

)
f(τ,p) = −f − feq

τ
R

. (24)

In this equation, τ
R

is a relaxation time that controls how fast the particle distribution
relaxes to its local equilibrium value. This parameter may be chosen in various ways:

• τ
R

=∞ : for a collisionless system,

• τ
R
∼ ε−1/4 : for a “conformal” system, i.e., a system where the collision rate scales

as the inverse temperature,

• τ
R

= const : for a fixed collision rate (although this is not very realistic with
expansion).

Then, one may define the following moments,

Ln ≡
∫
p

p2 P2n(pz/p) f(τ,p), gn ≡ τ∂τ lnLn. (25)
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(In this definition, P2n(z) is the order-2n Legendre polynomial. Note that L0 = ε = P
L

+2P
T

,
L1 = P

L
− P

T
.) The quantity gn gives the exponent in the power law behavior of the

corresponding moment. The Boltzmann equation can then be transformed into an infinite
set of linear equations that govern the evolution of the moments Ln, Ln+1 and Ln−1, in
which all but one coefficients depend only on the left hand side of the Boltzmann equation.
Then, it was observed that these coupled equations admit two (and only two) fixed points:

• A free-streaming fixed point, obtained for τ
R

= ∞, where all the Ln behave as τ−1

(i.e., all the gn go to −1), with fixed ratios among them. In particular, one has
L1/L0 → − 1

2 , and P
L
/P

T
decreases like τ−2.

• An interacting fixed point, obtained for τ
R
∼ ε−1/4, where g0 → − 4

3 , g1 → −2. At
this fixed point, the system has a locally isotropic particle distribution, and an energy
density that decreases like τ−4/3.

Note that in a scaleless system where the collision rate scales as ε−1/4 (this is the conformal
case mentioned above), the ratio τ/τ

R
always goes to infinity as τ → ∞, and the system

therefore always converges to the interacting fixed point. The figure 15 shows the evolution
of the first three gn’s for an ensemble of initial conditions, as a function of τ/τ

R
. After a short

transient evolution, all these evolutions coalesce on a universal “attractor” (indicated by the
thick black curve), on which the exponents are the free streaming ones or the interacting
ones depending on the value of the ratio τ/τ

R
.
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4 Hydrodynamical evolution; Late stages

The next, and in fact main, stage of the bulk evolution of the system formed in the collision
of two heavy ions is a rather long period of relativistic hydrodynamical expansion. Hydro-
dynamics [108, 109, 110, 111, 112] is a coarse grained description whose starting point is
the local conservation laws, for energy and momentum and for any other conserved charge
(such as baryon number),

∂µT
µν = 0, ∂µJ

µ
B

= 0, · · · (26)

However, these equations are too general to constrain uniquely the evolution of the system.
For this, it is necessary to express the energy-momentum tensor and the other conserved
currents in terms of a small number of quantities.

Perfect fluid The simplest case is that of a perfect, i.e., non dissipative, fluid. In this
case, the energy-momentum tensor depends only on the local energy density ε, pressure p
and fluid 4-velocity vector uµ,

Tµν =
perfect

(ε+ p)uµuν − p gµν

= ε uµuν + p∆µν with ∆µν ≡ uµuν − gµν , (27)

where gµν is the Minkowski metric tensor with (+,− − −) signature. The tensor ∆µν is a
projector on the local rest frame of the fluid, ∆µνuν = 0, in terms of which one may define
time and spatial derivatives, D ≡ uµ∂µ and ∇µ ≡ ∆µν∂ν , in the fluid rest frame. The
equations of ideal hydrodynamics therefore read

Dε = −(ε+ p)∇µuµ, Duµ = −(ε+ p)−1∇µp. (28)

These equations are the relativistic analogue of Euler fluid equations. The first equation
indicates that the local variation of the energy density is proportional to the variation of the
volume of fluid cells, since dV/V = dt∇µuµ. The second equation relates the acceleration
of the fluid to the gradient of its pressure. Note that the first equation implies that entropy
is conserved (indeed this equation is equivalent to d(εV ) + pdV = TdS = 0).

Boost invariant ideal flow In heavy ion collisions at ultrarelativistic energies, the lon-
gitudinal momenta of the produced particles are typically much larger than their transverse
momenta. This leads to a strong correlation between the longitudinal momentum of a
particle and its longitudinal position in coordinate space. More precisely, one has

y ≡ 1

2
ln
(p0 + p3

p0 − p3

)
≈ ηs ≡

1

2
ln
(x0 + x3

x0 − x3

)
. (29)

If the energy density of the fluid at some initial proper time τ0 is independent of the spatial
rapidity ηs (this is approximately the case in the Color Glass Condensate framework, since
the rapidity dependence comes from the JIMWLK evolution of the distributions of color
sources, which is significant only on scales δηs ∼ α−1

s ), the subsequent hydrodynamical
evolution of the fluid is boost invariant. In this case, the evolution of a perfect fluid is
governed by a single equation,

dε

dτ
= −ε+ p

τ
. (30)
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(If the fluid is not locally isotropic, the pressure in the right hand side should be replaced by
the longitudinal pressure.) In a conformal theory (i.e., a theory with only massless particles
and no running coupling), the energy-momentum tensor is traceless and one has p = ε/3 in
equilibrium. Therefore, this leads to

ε, p ∼ τ−4/3,

T ∼ ε1/4 ∼ τ−1/3,

s ∼ T 3 ∼ τ,
sV ∼ sτ ∼ const, (31)

where s is the entropy density. Recall that the assumption of boost invariance, and therefore
these scaling laws, are only true as long as the longitudinal expansion dominates over the
transverse one (this is hidden in the assumption that V ∼ τ), and are therefore expected to
change when the proper time becomes comparable to the diameter of the colliding nuclei.
Note also an important fact, equally valid for solving Eq. (30) or the general hydrodynamical
equations: in order to close the system of equations and obtain a solution, it is necessary to
use an equation of state that relates for instance the pressure to the energy density.

Viscous corrections In order to go beyond the simple description in terms of a perfect
fluid, one should first alter Eq. (27) by writing

Tµν = Tµνperfect + πµν + Π ∆µν , (32)

where we have split the deviation from the perfect fluid into a traceless tensor πµν and a
term Π∆µν that has a non-zero trace. The equations of motion are ∂µT

µν = 0, combined
with an equation of state and constituent equations that express πµν and Π in terms of
gradients. In a system which is not too far from local equilibrium, these expressions may be
expanded in powers of the gradients2, and at lowest order one may write

πµν = −η σµν with σµν ≡ ∇µuν +∇νuµ − 2

3
∆µν (∇ρuρ),

Π = −ζ (∇ρuρ). (33)

The coefficients η and ζ (respectively, the shear and bulk viscosities) describe how the stress
tensor responds to a small gradient of the fluid velocity. The resulting hydrodynamical
equations are the relativistic analogue of the Navier-Stokes equations.

When applied to a boost invariant system, the resulting hydrodynamical equations lead
to

dε

dτ
= −ε+ p− 4

3
η
τ

τ
, (34)

resulting in a slower decrease of the energy density compared to the case of a perfect fluid.
This equation indicates that the first order gradient expansion it was obtained from is
legitimate as long as η � τ(ε + p). Using the thermodynamic relation ε + p = sT , this
condition can be turned into

η

s
� τT, (35)

where the left hand side of the inequality is a local property of the fluid while the right hand
side is a property of the flow itself. From kinetic theory, the ratio η/s may be estimated

2This expansion should be regarded as rather formal, as it may not lead to a convergent series [113].
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to be of the order of λT where λ is the mean free path. Thus, the inequality also reads
λ � τ , implying that the system cannot be described by hydrodynamics at times that
are smaller than the time between two successive scatterings of a particle. Conversely, the
hydrodynamical description improves as τ increases. In a scale invariant system, we may
estimate the relative magnitude of the first viscous correction in the right hand side of
Eq. (34) as follows,

η

τ(ε+ p)
∼ T 3

τT 4
∼ τ−2/3, (36)

where in the last step we use the behavior of T from ideal hydrodynamics.

Causality, Second order hydrodynamics The first order gradient expansion in Eq. (33)
leads to some pathologies in a relativistic context, because the correction to the stress ten-
sor follows instantaneously any modification to the velocity field. This causality violating
behavior eventually leads to numerical instabilities when solving the corresponding hydro-
dynamical equations. A possible practical strategy to fix this problem is to modify Eqs. (33)
into relaxation equations, in order to introduce a delay between changes of the gradients
and the resulting variation of the stress tensor. There is no unique way of doing this, but on
timescales longer that the ad-hoc relaxation time, all these models lead to identical physical
predictions.

At a more fundamental level, the modifications introduced by turning Eqs. (33) into
relaxation equations can be motivated from the study of second order terms in the gradient
expansion [114, 115]. For instance, the second gradient order in πµν contains a term of the
form ητπDσ

µν , where τπ has the dimension of a time. If we take this second order expansion
as is, it displays similar causality issues as the first order one. These problems may be
avoided by replacing σµν in the time derivatives that appear at second order by the first order
relationship between σµν and πµν , thereby producing a term in −τπDπµν . By doing this, the
second order constituent relation becomes a differential equation in time, with a relaxation
time τπ. The benefit of this point of view compared to the more phenomenological one
described before is that it allows to relate the relaxation time to the underlying microscopic
theory in an unambiguous fashion.

Equation of state A key ingredient in order to turn the equations of hydrodynamics
into a closed set of equations is an equation of state that relates for instance the en-
tropy density to the temperature, or equivalently the pressure and the energy density.
Perturbation theory, improved by the resummation of hard thermal loops[117], allows to
obtain robust results for temperatures only a couple of times above the critical temper-
ature [118, 119, 120, 121, 122, 123, 124, 125], but becomes less and less reliable as Tc is
approached from above. A non-perturbative first-principles alternative is lattice QCD [126].
At null baryon chemical potential, the advances in computing hardware and algorithms are
by now allowing to perform unquenched (i.e., with virtual quark loops) simulations with re-
alistic quark masses. At low temperatures compared to the deconfinement transition, these
computations may be continued by an equation of state based on a gas of hadron resonances.

This approach works well only at zero baryon chemical potential, where it has shown that
the deconfinement transition is a continuous crossover rather than a discontinuity for realistic
quark masses. At µB > 0, the determinant resulting from integrating out the fermion fields
is complex valued, leading to a sign problem that precludes any direct approach based on
a Monte-Carlo sampling. When µB/T is small enough, various workarounds are possible:
reweighting, analytic continuation from calculations at imaginary µB (for which there is
no sign problem), that allow to make an incursion into the territory of positive chemical
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Figure 16: Top: equation of state obtained from lattice QCD at zero baryon chemical
potential. Bottom: speed of sound as a function of temperature. Boxes: extraction from
LHC data (see text). From [116].

potentials [127, 128]. It is expected that the crossover at small µB becomes a first order
phase transition at larger µB , the beginning of the transition line being a second order
critical point (the red dot in Figure 2). However, the quest in lattice simulations for such a
second order critical point has remained rather inconclusive until now.

There has been a recent attempt to extract directly some information about the equation
of state from LHC heavy ion data [116]. In this work, the authors used a hydrodynamical
simulation to estimate the effective temperature Teff and effective volume Veff of a hypothet-
ical homogeneous fluid that would evolve into a system with the same energy and entropy
as the QGP at the time where the particles decouple (see the discussion of freeze-out later
in this section). They observed that this effective temperature is related to the mean trans-
verse momentum

〈
p⊥
〉

of the final state particles by Teff ≈ 3.07
〈
p⊥
〉

(with a proportionality
coefficient roughly independent of the equation of state and transport coefficients). Given
ALICE data in the bin of centrality [0, 5]%, one gets Teff = 222± 9 MeV. The total entropy
is inferred from the number of produced charged particles, S ≈ 6.7Nch, while the effec-
tive volume Veff also comes from the hydrodynamical simulation, giving an entropy density
s = 20± 5 fm−3, and s/T 3

eff = 14± 3.5, in agreement with the lattice equation of state. In
particular, this is much higher than the value ∼ 3-4 expected in the confined phase, sug-
gesting a large number of degrees of freedom consistent with deconfinement. By repeating
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this analysis at two collision energies (2.76 and 5.02 TeV), one may also estimate the speed
of sound via

c2s(Teff) =
sdT

Tds

∣∣∣
Teff

=
d ln

〈
p⊥
〉

d ln(dNch/dη)
= 0.24± 0.04,

again in agreement with lattice computations.

Transport coefficients Among the transport coefficients that enter in hydrodynamics,
the one that has received most interest is the shear viscosity η. As we mentioned earlier,
the ratio η/s is the ratio of the mean free path to the quantum wavelength of the particles.
This allows to make some simple estimates in several limits. Firstly, in the perturbative
limit (weak coupling, and low enough particle density), this leads to [129, 130, 131, 132]

η

s
∼ 1

α2
s ln(α−1

s )
� 1. (37)

(Although we do not write the prefactor here, it can be determined in the weak coupling
limit.) Another limit is that of a strongly coupled plasma. Although this limit is not
accessible in QCD, this calculation is possible in a supersymmetric cousin of QCD thanks
to the AdS/CFT correspondence, leading the following result [133]

η

s
=

1

4π
. (38)

Note that such a constant value, independent of the coupling, is consistent with the fact that
quantum mechanics prevents this ratio from becoming arbitrarily small since the quantum
wavelength is a lower value for the mean free path (but such an argument does not give the
value of the constant ratio one would reach).

Out of equilibrium, there is another interesting situation, where the coupling constant is
weak but the gluon occupation number is large, possibly as large as α−1

s . In this case, the
scattering rate should contain a factor f(1 + f) where f is the occupation number of the
scattering centers (when the occupation number is small, only a factor f is necessary, leading
to the usual formula λ−1 ∼ nσ). Although the scattering cross-section is proportional to α2

s

(up to logarithms), the factor f(1 + f) leads to a mean free path that does not contain any
power of the coupling constant. This situation of weak coupling but high density, which is
relevant in the very early stages of a heavy ion collision, illustrates the fact that a strong
coupling is not the only possibility for having a small ratio η/s: more generally, the system
should be strongly interacting for this to be true.

Outside of the above limiting cases, one may also consider lattice QCD. Unlike the
equation of state, the transport coefficients remain very difficult to even estimate in lattice
QCD. Thanks to Green-Kubo’s formulas, transport coefficients may be expressed in terms
of the Fourier transform of a retarded current-current (the current should be the one that
couples to the quantity whose transport one is interested in, e.g., a charge current for an
electrical conductivity) correlation function at zero momentum,

σ ∝ lim
ω→0

ρ(ω,k = 0)

ω
(39)

This formula expresses the transport coefficient in terms of the slope at zero energy of the
corresponding spectral function ρ(ω,k). However, on the lattice, one has only a direct access
to the imaginary time version of these correlation functions. This imaginary time correlator
admits a spectral representation involving the relevant spectral function,

G(τ,k) =

∫
dω K

T
(τ, ω) ρ(ω,k), (40)
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where K
T

(τ, ω) is a known temperature-dependent kernel. In a lattice approach, the left
hand side of this equation would be obtained (with statistical errors, and a finite number of
values of τ and k) from numerical simulations, and one would then try to invert this integral
relationship to obtain the spectral function ρ(ω,k). The difficulty with this is that it is a
very ill-posed problem when the left hand side is only imperfectly known, implying that a
direct inversion is unfeasible. Attempts at constraining the spectral function in this way
have been made by using Bayes theorem in order to find the most likely spectral function
compatible with Eq. (40) and with a set of prior assumptions about its shape (a minimal
assumption would be that it is positive) [134, 135, 136, 137, 138].

More recently, a hybrid approach was proposed [139], that combines a skeleton loop
expansion for the correlator

〈
[πij(x), πij(0)]

〉
that enters in Green-Kubo’s formula, truncated

at two loops, and a non-perturbative input for the couplings and the propagator that enters
in this expansion obtained from the Euclidean functional renormalization group [140]. The
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Figure 17: Theoretical evaluations of the viscosity to entropy ratio as a function of temper-
ature. From [139].

results obtained with this approach are shown in Fig. 17, for a pure Yang-Mills theory (the
result shown for QCD with quarks is an estimate based on the pure YM result, not an ab
initio calculation). Interestingly, this calculation suggests that η/s has a rather pronounced
temperature dependence, with a minimum around 1.25Tc (the location of this minimum
in units of the critical temperature is almost identical in Yang-Mills theory and in QCD).
Moreover, the value of η/s at this minimum is only slightly above the value 1/(4π) obtained
in the strong coupling limit in the AdS/CFT approach for N = 4 super-Yang-Mills theory.

Freeze-out Since at the end of the day experiments observe particles, it is necessary to
convert the objects (the fluid energy density and its velocity) evolved by the hydrodynamical
equations into distributions of particles. In fact, the need for a description in terms of
particles arises much earlier than the time at which particles are detected because the density
decreases as the system expands, and therefore the mean free path increases, leading to a
situation where the conditions of applicability of hydrodynamics are not met anymore.

On should distinguish between a chemical freeze-out, at which the inelastic collisions
become rare (after that, the chemical composition of the system is frozen), and a kinetic
freeze-out where the elastic collisions also stop and the momentum distributions freeze.
Experimentally, the temperature and chemical potential at the chemical freeze-out are well
constrained from the ratios of abundances of various species of particles, as shown in the
figure 18 [141, 142, 143, 144] (see also [145, 146] for a somewhat related approach to hadron
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formation). In the simplest version of this model, one assumes that all particle distributions
are the equilibrium ones at a common temperature and chemical potential. A volume is also
necessary to obtain absolute yields, but this parameter drops out in ratios of the yields of
various particle species.

The conversion from a fluid to free particles should be done at the kinetic freeze-out, by
choosing a locally space-like “surface” Σ, and by using the Cooper-Frye formula,

Ep
dN

d3p
=

1

(2π)3

∫
Σ

d3Sµ P
µ f(P · u), (41)

where f is the local distribution function. For a fluid in local thermal equilibrium, f is
the Bose-Einstein of the Fermi-Dirac distribution, evaluated at the local fluid temperature.
However, when the fluid is viscous, there should also be deviations from local thermal
distributions,

f(p) = feq(p) + δf(p). (42)

The form of the deviation δf(p) is related to the transport coefficients (such as the shear
viscosity) and therefore depends on the microscopic interactions in the fluid.

In this approach, the freeze-out conditions (temperature and chemical potential) are a
priori free parameters that may be adjusted to best fit the spectra of produced particles. A
more sophisticated alternative would be to convert the fluid into particles at an earlier time,
and continue the evolution with kinetic equations [147, 148, 149]. In this fancier approach,
the freeze-out temperature is controlled by the values of the various cross-sections used in the
kinetic description (this would even allow different species to decouple at different times),
and is no longer an ad hoc input of the model.

Flow anisotropies Experimentally, several predictions of hydrodynamical models may
be compared with data. One of them is the transverse momentum spectra of the produced
particles, that are sensitive to the temperature at which the freeze-out occurs (and to whether
the particle distributions are the equilibrium ones or not).

Another main class of observables directly related to the hydrodynamical expansion of the
quark gluon plasma consists in measuring angular correlations among the detected particles
[150, 151, 152, 153, 154, 155, 156, 157, 158, 159]. The quantities used to express these corre-
lations are the so-called vn, defined as the Fourier coefficients of the azimuthal distribution
of particles. These flow coefficients may be measured as a function of transverse momentum,
of the centrality of the collisions, of the species of particles. The hydrodynamical expansion
provides a one-to-one mapping between the spatial anisotropy of the initial distribution of
energy density (and possibly its initial flow) and the final momentum anisotropy, that may
be understood as an effect of pressure gradients (the fluid is accelerated in the direction of
the pressure gradient). Moreover, the conversion of spatial inhomogeneities into momentum
space anisotropies depends quite sensitively on the transport coefficients, mostly the shear
viscosity: if the ratio η/s is too large, this conversion is very ineffective and hydrodynamics
cannot explain the rather large values of the measured vns.

Recently, the JETSCAPE collaboration has used a Bayesian approach in order to extract
the most likely values of the shear and bulk viscosities as a function of temperature [161, 162],
as shown in Figure 20. One can see that the constraints provided by the data restricts the
range of values of the viscosities, down to fairly low values after normalization by the entropy
density, compared to the prior distribution used in this analysis. Although these results are
very promising, one should keep in mind that, besides the transport coefficients one wants
to extract, the model has other unknowns, especially in the modelling of the initial condition
and in the details of the implementation of the freeze-out.
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Figure 19: Second Fourier coefficient of the azimuthal distribution for identified particles.
From [160].

Figure 20: Bayesian extraction of the shear and bulk viscosities from Pb-Pb collisions at
2.76 TeV. Gray: 90% confidence interval for the prior. Red, Green, Blue, Orange: 90%
confidence intervals for the posteriors in three models, and their average. From [161].

Hydrodynamics from kinetic theory In local thermal equilibrium, the hydrodynamical
description has six unknowns (the local baryon density n

B
, energy density ε and pressure

P , plus the three independent components of the fluid velocity uµ), and the conservation
equations for the baryonic current and the energy-momentum tensor provide five equations.
The system is closed by the equation of state that relates n

B
, ε and P .

Away from this ideal situation, there are nine additional unknowns (Π, five independent
components of πµν , and three components of the mismatch between the energy flow vector
and the baryon number flow vector). In addition to the equation of state, we thus need 14
equations to close the system, that are made by the conservation equations (5 equations),
and by 9 constitutive equations relating the stresses to the gradients. But these equations
can also be obtained from the underlying microscopic dynamics, in the form of a Boltzmann
equation pµ∂µf = Cp[f ]. Indeed, by weighting the Boltzmann equation by 1, pν , pνpλ and
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integrating over p, we get

∂µ

∫
p

pµ f =

∫
p

Cp[f ] = 0, (43)

∂µ

∫
p

pµpν f =

∫
p

pν Cp[f ] = 0, (44)

∂µ

∫
p

pµpνpλ f =

∫
p

pνpλ Cp[f ]. (45)

The right hand side of the first two equations is identically zero given the symmetry prop-
erties of the collision integral, for any distribution f . This set of 5 equations is in fact
the five conservation equations. The last equation forms a set of 10 independent equations
(given the symmetry of pνpλ). Note that by summing over ν = λ, one recovers the conser-
vation equation of particle number. Therefore, this set of equations contains only 9 novel
equations, i.e., precisely the number needed to close our macroscopic description. This ap-
proach, supplemented by an expansion of f around the equilibrium distribution f0, is known
as Grad’s 14-moment method. It allows to relate the hydrodynamical description (in partic-
ular the transport coefficients [115, 163, 164, 165, 166, 167]) to the underlying microscopic
interactions encoded in the collision integral.

Hydrodynamics far from equilibrium For a long time, it has been thought that the
hydrodynamical description is a near-equilibrium effective description (this point of view
stems in part from the fact that one may obtain hydrodynamics from a truncated gradient
expansion). However, it was realized recently that this gradient expansion may be a non-
convergent series with a null radius of convergence [168, 113]. This observation suggests to
reconsider the conditions of applicability of the hydrodynamical description (indeed, if the
radius of convergence is zero, it cannot serve as a parameter that defines what “close enough
to equilibrium” means). Another, observational, reason for reassessing the applicability of
hydrodynamics as an effective macroscopic description is that in heavy ion collisions it
appears to perform much better than what one may naively expect by viewing it as the
result of an expansion around equilibrium.

A step towards a better understanding of these questions has been the discovery (so far,
in simple cases, where the dynamics and the flow are sufficiently symmetric) of attractors
towards which hydrodynamical solutions evolve, even while gradients are still sizeable [169,
170, 171, 172]. In other words, these solutions quickly reach a universal behavior independent
of the details of their initial conditions, long before the system is in a state of isotropic local
equilibrium. On these attractors, the dissipative currents behave in a universal way in terms
of the (possibly still large) gradients, which shed another light on the constitutive relations,
indicating that their validity may not be conditioned by a gradient expansion.

Hydrodynamics in small systems Another pressing question, closely related to the
previous point, is to determine what is the “minimal size” of a system that may be described
by hydrodynamics. Indeed, as the system becomes smaller, the collectivity (that may be
quantified by the ratio of the system size by the mean free path, a gross measure of the
number of collisions per particle) is expected to decrease, leading to a situation less favorable
for the applicability of hydrodynamics.

Experimentally, this question was put forward by the observation that certain correla-
tion patterns (e.g., the “ridge” long range rapidity correlation observed in the two-particle
spectrum) are seen in nucleus-nucleus collisions [173], proton-nucleus [30] and even proton-
proton collisions [34] (provided one triggers on high multiplicity final states in the latter
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cases). In nucleus-nucleus collisions, the ridge is interpreted as the result of the collective
radial motion of the produced matter [174, 175, 176], i.e., as flow. Moreover, in this case,
there is only a modest contribution to the correlation provided by the CGC initial condition.

In smaller systems (see Figure 21 for some recent data), the interpretation of the ridge
correlation has been the subject of intense debates between two extreme positions: that the
correlation can be entirely explained by collective flow [177, 178] (i.e., final state interac-
tions), or entirely due to initial state correlations [179, 180, 181, 182]. By now, it seems that
a consistent description of the flow observables in systems for which dNch/dη ≥ 10 calls for a
dominance of the final state interactions over the initial state correlations. At low multiplic-
ity, the observed flow is probably the result of the combination of initial state correlations
and final state interactions [183] (it has been observed in a realistic hydrodynamical model
that the final state flow is less correlated with the initial geometry but more correlated with
the initial momentum anisotropy at low multiplicity, and that this trend is reversed at high
multiplicity).
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Figure 21: Points: v2 and v3 flow coefficients in collisions of nuclei of various sizes, down to
proton-proton collisions (ALICE collaboration). Bands: hydrodynamical model predictions.
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5 Tomography and hard probes

Until now, we have discussed mostly the bulk properties of the matter produced in heavy
ion collisions, from its formation to its subsequent evolution. There, the quark-gluon-plasma
or its precursor was the core subject of the study, with flow observables a tool for accessing
(almost) directly some of their properties. Now, we turn to a class of observables in which
this matter plays the role of a substrate that modifies them compared to a situation where
the final state would be mostly empty. Here, the strategy is to measure these observables
both in nucleus-nucleus collisions and in collisions of smaller projectiles –such as proton-
proton collisions– where the formation of a quark-gluon plasma is not expected, and where
the observables are supposedly well understood. The comparison between the two (with
an appropriate rescaling to account for the different sizes of the two systems) provides
informations on the properties of the matter produced in heavy ion collisions. A better
control is provided by observables that are perturbative (meaning that they are characterized
by a hard scale, allowing to use QCD in a regime of weak coupling), so that they can at
least be computed with some degree of accuracy in proton-proton collisions. However, even
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in this case, one should keep in mind that their modifications by the surrounding medium
may involve much smaller momentum scales that render a perturbative treatment difficult
or even impossible in nucleus-nucleus collisions.

Basics of QCD radiation The most important feature of QCD in this context is the
fact that gluons are massless, and that three flavors of quarks (u,d, and s) have masses
lower or comparable to the non-perturbative scale ΛQCD. For this reason, gluon radiation
is enhanced for soft gluons and for gluons emitted collinearly to their parent. For instance,
the emission probability of a gluon off a parton goes like

dP ∝ αs
d2k⊥
k2
⊥

dz

z
, (46)

where k⊥ is the transverse momentum of the gluon (relative to the direction of the mo-
mentum of its parent) and z is the fraction of its longitudinal momentum relative to that
of its parent. The unwritten prefactor contains a color factor that depends on whether the
emitter is a quark or a gluon. This probability diverges at small k⊥ and at small z. For
radiation in vacuum (e.g., in the final state of a proton-proton collision), the consequences
of these divergences are well understood:

• After one resums the soft radiation, the probabilities for partonic final states with a
prescribed number of (massless) gluons is actually zero. This is of course largely irrel-
evant, since because of confinement the gluons are not the objects that are eventually
detected.

• The observables that match the most closely the concept of perturbative parton are
the so-called jets. Loosely speaking, a jet is a collimated beam of particles produced
by the splitting of a common ancestor (quark or gluon). At a more operational level,
defining jet cross-sections requires that one defines a procedure for deciding when
two distinct partonic final states correspond to the same configuration of jets. For
instance, two graphs that differ by a loop correction, or by an extra soft or collinear
gluon, should contribute to the same jet final state. The jet definition is not unique (in
particular, because there is no unique way of defining “soft” or “collinear”), but they
all share a crucial property: they lead to finite cross-sections when all mass scales are
sent to zero (observables that have this property are said to be infrared and collinear
safe) – in other words, all the logarithms that one would get by integrating eq. (46)
down to k⊥ = 0 or z = 0 cancel in these observables. The theoretical definition of
what one means by a jet in turn defines the procedure (the so-called “jet algorithm”)
for extracting jet cross-sections from experimental data: given a final state made of
detected particles, the jet algorithm defines how they should be clustered into jets.

• Jet cross-sections are calculable without any non-perturbative input, but the price to
pay for this is to give up on the idea of saying something about individual particles
in the final state. It is also possible to consider cross-sections for producing a certain
hadron with a given momentum, but their calculation requires to introduce fragmen-
tation functions, that may be viewed as the inclusive probability that a certain quark
or gluon turns into this hadron (plus any number of additional particles that we do
not care about). This time, the collinear logarithms from eq. (46) do not cancel and
they must be resummed, which introduces a scale dependence into the fragmentation
function. This scale dependence is perturbative (governed by the DGLAP evolution
equation [187, 188, 189], now known up to three-loop accuracy [190, 191, 192]), but
the initial condition of this evolution is non-perturbative and must be extracted from
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experimental input. The hadron production cross-section is obtained as the convolu-
tion of a partonic cross-section with the fragmentation function, evaluated at a certain
scale (called the factorization scale). This scale is not a physical parameter, but rather
a remnant of the truncation of the perturbative series at a finite order (the residual
scale dependence decreases by going to higher loop order, and a fully non-perturbative
calculation would have no such scale at all).

Production of hard probes in nucleus-nucleus collisions When extending these
ideas to nucleus-nucleus collisions, a generic assumption is that the production of the hard
object proceeds in the same perturbative way as in proton-proton collisions, the only change
being a change of the parton distribution functions that describe the initial state. In the
light of the earlier discussion of gluon saturation, it is clear that for this to be true the
observable of interest should probe these distributions away from the non-linear saturation
regime, in order to be dominated by processes that probe a single parton in each projectile.
This is a reasonable assumption at high virtuality Q2, since the non-linear corrections are
typically suppressed as powers of Q2

s/Q
2. Another thing to keep in mind is that the direct

measurements of nuclear parton distributions are scarce. An approximate treatment consists
in viewing a nucleus as an incoherent superposition of protons and neutrons. The parton
distributions of protons are very well known. For the neutrons, one usually treats the
neutron (udd) as the isospin partner of the proton (uud). This implies for instance that the
u-quark distribution in a neutron is the same as the d-quark distribution in a proton, etc...
But note that the measurement of the structure function F2 in deep inelastic scattering off
a proton does not allow to disentangle the u and d quark distributions. To separate them,
one also needs DIS measurements with deuteron (plus the assumption that the binding of
the deuteron is weak enough compared to the relevant virtuality scales so that its parton
distributions are just the sum of the proton and neutron ones).

Gluon formation time The discussion of parton and jet energy loss requires to introduce
the concept of formation time of a radiated gluon. Consider the emission of a gluon of
momentum k off a colored particle (quark or gluon) of momentum p+ k. According to the
uncertainty principle, the virtuality of the line of momentum p + k just before the gluon
emission vertex defines the gluon “formation time”

t−1
f ≡ Ep + Ek − Ep+k ≈

k�p

(p+ k)2

2Ep
= Ek(1− cos θ) ≈

θ�1

1
2Ekθ

2. (47)

This time can also be interpreted as the time necessary for the wave-packet of the new gluon
to separate sufficiently from that of the emitter. Indeed, the transverse separation between
the emitter and the gluon grows with time according to ∆r⊥ ≈ θt. On the other hand, the
wavelength of the gluon, projected on the plane orthogonal to the emitter, reads

λ⊥ =
1

Ek sin θ
≈
θ�1

1

Ekθ
. (48)

We see that the formation time is also given by the condition ∆r⊥

∣∣∣
tf

= λ⊥.

Parton energy loss The simplest of the observables sensitive to the medium modification
of parton splitting consist in comparing inclusive hadron spectra measured in nucleus-nucleus
collisions with the same spectra measured in proton-proton collisions at the same energy.
However, a direct comparison of these two spectra is no meaningful because these yields come
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from system of vastly different volumes. In order to account for this trivial geometrical effect,
it is customary to define the so-called “nuclear modification factor”,

RAA ≡
dN
d3p

∣∣∣
AA

Ncoll × dN
d3p

∣∣∣
pp

, (49)

where Ncoll is the number of binary nucleon-nucleon collisions. For hard objects whose
production is obtained as an incoherent sum of nucleon-nucleon collisions, scaling by this
factor effectively eliminates the trivial volume dependence (in other words, the ratio RAA
should be equal to one in the absence of final state medium effects). Note that Ncoll is not
a directly measurable quantity, since its determination requires a modelling of the nucleon
distribution inside the nucleus of interest. The ratio RAA, called the nuclear modification
factor, is displayed in the case of charged hadrons in the figure 22, for central lead-lead
collisions at the LHC. The most obvious feature of the ratio RAA is that it is below unity

Figure 22: Suppression factor of charged hadrons in nucleus-nucleus collisions. See [193, 194].

over a large momentum range, and slowly reaches one at large momenta. This means that
the spectra of charged hadrons (at high momentum compared to the QCD scale ΛQCD) are
depleted in nucleus-nucleus collisions compared to proton-proton collisions, which can be
explained by an increased fragmentation in the presence of a surrounding medium. Following
Baier-Dokshitzer-Mueller-Peigné-Schiff [195, 196, 197] and Zakharov [198, 199, 200, 201,
202], this medium-induced radiation can be understood semi-quantitatively as follows. The
formation time of a gluon of energy Ek and transverse momentum k⊥ is tf ≈ Ek/k

2
⊥ (this was

derived in eq. (47)). The main difference in the presence of a medium is that the transverse
momentum of the emitted gluon is altered by the scatterings that occur within its formation
time. Assuming that these scatterings act as random and independent kicks, the increase of
the transverse momentum is a diffusion process in transverse momentum space. Therefore,
the transverse momentum accumulated during the time tf is given by k2

⊥ ≈ q̂ tf , where q̂ is
a constant that quantifies the mean ∆k2

⊥ per unit length (it is a quantity that depends on
the properties of the medium: density/temperature, Debye screening). Consistency between
these two relations implies that tf ≈

√
Ek/q̂. Based on this, the induced emissions can be

divided into three regimes, depending on the energy of the radiated gluon

• Ek < ωBH , with ωBH ≡ q̂λ2 (λ is the mean free path of the emitter in the medium). In
this regime, the radiation occurs coherently over path lengths shorter than the mean
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free path. Successive collisions, separated by λ (therefore there are L/λ of them),
contribute incoherently to the total radiation spectrum. In this regime, known as the
Bethe-Heitler regime, the emission spectrum behaves as dI/dE ∼ E−1.

• ωBH < Ek < ωc, with ωc ≡ q̂L2 (L is the length traveled by the emitter before exiting
the medium). In this energy range, the formation time is larger than the mean free
path, and shorter than the medium size. Several scatterings must happen in order
to produce one emission, which reduces the total yield compared to the Bethe-Heitler
regime (this relative suppression is known as the Landau-Pomeranchuk-Migdal effect).
In this regime, the emission spectrum behaves as

dI

dE
≈ dI

dE

∣∣∣∣∣
single︸ ︷︷ ︸

αs E−1

× L

tf︸︷︷︸√
ωc/E

∼ E−3/2. (50)

(For Ek < ωBH , the factor L/tf was replaced by the constant L/λ.)

• ωc < Ek. In this regime, the formation time of the gluon is larger than the size of the
medium, and induced radiation is effectively suppressed. One may thus view ωc as an
upper limit of the energy of a radiated gluon (for instance, for q̂ = 2 GeV/fm2 and
L = 5 fm, this cutoff is ωc = 50 GeV). By combining the emission spectra in the three
regimes, we can obtain the mean radiated energy by a parton:

〈
Ek

〉
∝ αsωc. In other

words, energy loss is most often due to a single emission (occurring with probability
∼ αs) close to the upper limit. Note that a more dilute (or cooler) medium has a
smaller q̂ and therefore a smaller cutoff energy ωc, and a smaller mean energy loss.

Note that two approaches have been used in the literature for implementing the scattering-
induced radiation of a hard parton. One option is to perform an opacity expansion, starting
from a dilute medium [203, 204, 205, 206, 207]. In this approach, a very small number of
scatterings are considered, but treated with exact kinematics. Another option is to resum
multiple scatterings, in an approximation where the momentum transfer in these scatterings
is soft compared to the parton momentum, more in line with the BDMPS-Z approach (see
for instance [208, 209]).

Concrete implementations in the context of heavy ion collisions are of course more com-
plex than this qualitative discussion suggests. Firstly, one needs a realistic modeling of the
medium and its evolution, usually taken from hydrodynamics. Another source of difficulty
lies in the fact that the momentum scales characteristic of the medium (for instance, the
Debye screening mass) can be rather soft at the temperatures reached in heavy ion collisions
at present energies, and in particular not large enough to confidently apply perturbative
QCD at those scales. This has motivated hybrid approaches [211] that combine perturba-
tive techniques for the hard scales and holography-inspired inputs for the softer medium
scales (note that a pure strong coupling approach leads to an energy loss proportional to L3

instead of L2, and is ruled out by data).

Let us close this subsection by mentioning that heavy quarks such as charm are also
suppressed in heavy ion collisions, as one can see on the figure 23. One can see that D
mesons are as suppressed as the charged pions, suggesting that the fragmentation of c quarks
(at the temperature scales relevant in the LHC experimental conditions) is comparable to
that of light quarks and gluons. The quark mass starts playing a visible role for b quarks,
since the medium suppression of mesons containing b quarks is significantly less important.
This is consistent with the dead cone effect [212], a kinematical effect that prevents gluon
radiation inside a cone of opening m/E centered on the emitting quark of mass m. Note
that, since the radiative losses are suppressed by the dead cone effect for heavy quarks,
their energy loss through elastic scatterings (collisional energy loss) become relatively more
important and must be included.
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Figure 23: Open charm and non-prompt J/Ψ nuclear suppression factor, compared to that
of pions. From [210].

Vacuum antenna pattern Until this point, we have discussed the medium modification
of the spectra of single hadrons. Another possibility is to consider similar observables for
jets instead of individual hadrons. One advantage of jets is that jet cross-sections are in
principle perturbative since they do not rely on the details of the hadronization process.
Moreover, jets provide another handle to probe the loss of energy due to the surrounding
medium, since their opening angle may be chosen at will in their definition.

Before we discuss jet modifications in heavy ion collisions, let us recall the main feature
of gluon radiation from a jet in vacuum. Compared to radiation by a single parton, the
radiation from a jet is obtained by first considering a parton splitting process a→ bc (where
a, b, c could be quarks, antiquarks, gluons, photons). Since the partons b, c are produced
from a common ancestor a, their colors are correlated, and so is the soft radiation they
produce. In particular, the emission of an additional soft gluon after the splitting a → bc
depends crucially on whether the new gluon is emitted inside or outside of the cone formed
by the partons b and c. This effect can be understood semi-quantitatively as follows in the
case where the angular opening θbc between b and c is small. As we have seen earlier, the
formation time of an additional gluon of energy Ek at an angle θ is given by t−1

f ≈ Ekθ
2.

By this time, the pair bc has grown to a transverse size

r⊥ = tfθbc. (51)

Moreover, the gluon wavelength (E−1
k ), projected on the plane orthogonal to the pair mo-

mentum, is λ⊥ ≈ (Ekθ)
−1. When the transverse wavelength of the emitted gluon is smaller

than the size of the pair, the gluon resolves the individual constituents b and c of the pair
and the emission is the sum of the separate emissions from b and c. Otherwise, the gluon
cannot resolve the pair, and sees only its total charge, which is the charge of the parent a.
This condition reads

1

Ekθ
. r⊥ ⇔ θ . θbc. (52)

In other words, inside the cone, the emission is the incoherent sum of the emissions from b
and c, while the emission outside the cone is equal to that of the total charge, i.e., a. In
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particular, if the ancestor is a color neutral object (a virtual photon), then there is no soft
radiation outside the cone of the pair. This property is known as angular ordering in the
context of QCD. It can be used in order to formulate gluon emission in the form of “parton
cascades” in which each quark, antiquark or gluon has a certain probability of emitting a
new gluon. The effect of quantum interferences, that would in principle preclude such a
probabilistic description, is taken into account by vetoing emissions at large angles.

In-medium jet energy loss A striking observation regarding jets is that there are events
with very imbalanced pairs of jets in heavy ion collisions, as shown in the figure 24. In proton-

Figure 24: Event display of a very asymmetrical two-jet event. From [35].

proton collisions, events with two jets in the final states have jets with nearly balanced
transverse momenta, as imposed by momentum conservation. In the above event display,
one jet has almost three times the energy of the second jet (or, put differently, about 130 GeV
appear to have been “lost”), and it is not possible to see directly on this histogram where
the energy has gone (the only conclusion one may draw by eye is that this energy has
been degraded in the form of soft enough fragments that are lost in the background of this
calorimetric display).

A first medium effect affecting jets is the fact that each parton in the jet may suffer
from medium-induced radiation, in the way discussed earlier for single particle spectra. The
only modification imposed by the jet definition is that only the radiation that goes outside
of the jet cone must be counted as a loss (thus, this effect is more pronounced for narrow
jets than for wider jets). We have seen in the previous part that the mean radiative energy
loss of a parton is due to emissions close to the maximum ωc = q̂L2. For those, the typical
gluon emission angle is θ ≈ k⊥/Ek ≈ (Lωc)

−1/2 � 1. The consequence of this observation
is that these rather hard induced emissions do not alter the energy of a jet for typical jet
opening angles (usually 0.3 ≤ R ≤ 0.8), since the radiated gluon stays within this cone
(the jet substructure is altered, but this is not picked by the jet reconstruction algorithm).
Therefore, the observed asymmetry between the energy of the pair of jets can be explained
by softer gluons emitted at large angles.

Another important effect affecting a jet as it propagates through a medium is that the
multiple scatterings of the constituents of a pair of partons eventually lead to the loss of
their color coherence [213, 214, 215, 216, 217, 218, 219]. Thanks to this decoherence, the
vacuum-like emissions are no longer forbidden outside of the jet cone. This happens when the
two partons scatter off external color fields that are uncorrelated, i.e., when the transverse
separation r⊥ between them is larger than the coherence length of the color field. Since r⊥
is proportional to the opening angle of the pair, the decoherence time is shorter for a pair
with a larger opening angle. The conclusion of this qualitative argument is that small jets
are more robust against in-medium vacuum-like energy loss than wider jets.
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Moreover, it has been shown that the energy emitted outside of the jet cone is rapidly
degraded into partons whose typical energy is close to the temperature of the surrounding
medium [220, 221, 215, 222]. Experimentally, this has been qualitatively confirmed, since
one recovers the missing jet energy in the form of many softer particles outside of the jet
cone.

γ,W±, Z-jet correlations Because of momentum conservation, jets are dominantly pro-
duced in pairs in hard processes, and more rarely (with a suppression of order αs) in a
3-jet configuration. After their initial production, the fate of these jets in the surrounding
medium depends crucially on the location of the production point with respect to the bulk,
and on the direction of motion of the jets. Loosely speaking, a jet that goes inward looses
more energy than a jet that travels outwards, because it must travel a longer route through
the medium. Except when the production point is very close to the outer boundary of the
medium, both jets loose energy to some degree, making it difficult to infer event-by-event
how much energy was lost by each of them.

A more direct access to the jet energy loss is possible in situations where a single jet is
production in conjunction with another object that interacts only via electroweak interac-
tions, such as a photon, a W± or a Z0 boson (for instance, in a process such as qg → qγ).
These events are less frequent because of the electroweak coupling involved at the produc-
tion vertex, but they offer the advantage that the weakly interacting object can escape from
the medium without further interactions. Thus, its measurement provides an unaltered
reference for the initial energy of the partner jet.

6 Thermometric probes

In this last section, we consider observables that are sensitive to the local temperature of
the medium. In principle, these quantities could tell if the temperature reached in a heavy
ion collision is above the deconfinement temperature. The actual situation is of course a bit
more complicated, since the temperature of the medium is not spatially homogeneous, and
because the measured quantities result from the entire history of the system, through which
the temperature is not constant.

6.1 Electromagnetic radiation from the quark-gluon plasma

General considerations A first quantity which is quite sensitive to the plasma temper-
ature is the spectrum of photons emitted by the plasma. Let us clarify here a possible
paradox: in a large medium (larger than the photon mean free path), the electromagnetic
radiation would be in thermal equilibrium with the quarks and the gluons, with a spectrum
given by a Bose-Einstein distribution at the local temperature (but only photons emitted
within one mean free path of the surface would escape). However, this is not the case in
heavy ion collisions, where the size of the medium is considerably smaller than the mean
free path of the photons. In this case, there is a net production of photons, and they escape
from the medium without further interactions.

Experimentally, the interpretation of photon measurements is quite challenging, because
the detected photons can come from several sources. It is customary to divide the observed
photons into decay photons (produced from the decay of light hadrons, predominantly neu-
tral pions) and direct photons (produced directly from partonic interactions). Direct photons
themselves have several sources: some are produced in hard partonic collisions at the time
of the impact of the two nuclei, some are produced by the pre-equilibrium medium, some
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are produced by the interaction of a hard parton and the medium it traverses [223], some
are produced by the QGP and some are produced by the hot hadron gas after the confine-
ment transition. Among all these sources, the photons produced by the QGP and by the hot
hadron gas are the most directly sensitive to the properties of the medium produced in heavy
ion collisions, but disentangling them unambiguously from the overall spectrum is nearly
impossible. In the region of low to intermediate photon energies, the observed spectrum has
an exponential shape in exp(−p⊥/Teff), suggestive of emissions by a thermalized medium.
However, as we shall see, the parameter Teff does not have the direct interpretation of the
temperature of the producing medium.

Figure 25: Direct photon spectrum observed by the ALICE experiment, compared to pQCD
NLO predictions. Red: exponential fit of the excess. From [224].

Note also that the produced photons can either be real or virtual. In the latter case,
they can subsequently decay into a lepton pair (this may be their only decay channel for low
invariant masses). Although the decay into a lepton pair requires another electromagnetic
coupling and thus reduces the yield, the invariant mass of the pair provides another handle,
that may be used to better constrain their possible source (in particular, a non-zero invariant
mass may be used to select a region where backgrounds are lower).

Thermal radiation from the QGP The lowest order processes (qg → qγ, qq → gγ
[225, 226, 227] and qq̄ → γ∗ [228]) have been calculated long ago in an equilibrated quark-
gluon plasma. For real photons, the processes with a quark or antiquark exchanged in the
t-channel have a logarithmic singularity, which is cured by resumming the appropriate quark
hard thermal loop [229, 230]. However, it was soon realized that bremsstrahlung processes,
formally of higher order in αs, suffer from a more severe soft singularity when the photon
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has a small invariant mass [231, 232, 233, 234]. This singularity is regularized by the quark
in-medium effective mass, but this leads to an enhancement that promotes bremsstrahlung
to the same order in αs as the leading processes.

Q

λ

t
F

Figure 26: Top left: Leading Order processes for the production of virtual and real photons.
Top right: Enhanced Next-to-Leading Order bremsstrahlung processes. Bottom: multiple
scatterings that contribute coherently to the emission of a photon.

This enhancement also occurs for multiple scattering corrections to bremsstrahlung [235].
Like in the discussion of medium induced gluon radiation by a parton, the emission of a
photon by a quark or antiquark is affected by the Landau-Pomeranchuk-Migdal effect. The
relevant criterion is the comparison between the photon formation time (i.e., how much time
is necessary for the photon wave-packet to be sufficiently separated from that of the emitter,
which can be estimated to be t−1

f = Ek(k2
⊥ + m2)/E2

p where k is the photon momentum,
p the quark momentum and m its in-medium effective mass) and the mean free path λ
between two soft (this is sufficient to induce the emission of a photon) scatterings of a quark
in the medium. When tf & λ, several scatterings are necessary to induce one emission,
which effectively reduces the photon yield. Note that, in the weak coupling regime, we have
m ∼ gT and λ−1 ∼ g2T (up to logarithms). Therefore, the LPM effect plays a role in
two cases: for the production of hard photons emitted at small angle with respect to the
quark, or for the production of soft photons. The resummation of these multiple scattering
diagrams gives the photon yield at leading order [236, 237, 238, 239]. The next-to-leading
order correction has also been calculated more recently [240, 241].

There have also been attempts to extract the photon production rate of a quark-gluon
plasma in thermal equilibrium from lattice QCD computations [242, 243, 244, 245, 246, 247],
which would in principle be applicable in regimes where the coupling constant may not
be small enough for perturbation theory to be reliable. However, since this amounts to
computing a spectral function for real energies, there is no direct way to obtain it from
an Euclidean lattice formulation. Instead, one can reach it indirectly by unfolding (this is
an ill-posed problem, that may be attacked with Bayesian approaches such as the maximal
entropy method) the spectral representation of imaginary time correlation functions.

In the context of an actual heavy ion collision, one has also to face the fact that the
system may not be in local thermal equilibrium. This is especially true at early times.
Firstly, the CGC predicts at the beginning that there are very few quarks compared to the
gluons, implying that the system is not yet in chemical equilibrium [248]. It is possible to
handle approximately this situation by introducing fugacities for the quark and antiquark
distributions, in order to obtain the local photon production rates for a system where the
quarks are underpopulated [249]. Moreover, even when quarks and gluons are present in
the right proportions, the existence of viscous hydrodynamical corrections implies that their
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distributions cannot be the equilibrium ones [250, 251, 252]. These deviations should in
principle be taken into account in order to be consistent with the hydrodynamical framework
used to describe the bulk evolution of the system.

Thermal radiation from a hot hadron gas Thermal radiation from a hot hadron gas
is also obtained from the current-current correlation function, but now it is not accessible to
a calculation in terms of the QCD Lagrangian that has quark and gluon degrees of freedom.
One may instead use an effective Lagrangian that describes the dynamics and interactions
among hadrons at low energy (Such a Lagrangian in general contains some parameters that
are constrained by empirical data on lifetimes, cross-sections, etc...) [253, 254, 255, 256, 257,
258, 259]. For dileptons of low mass, the spectral function in the vector channel is dominated
by light vector mesons, and is therefore particularly sensitive to thermal modifications of the
ρ meson. The main thermal effect is a broadening of the ρ peak (while the center of the peak
does not change appreciably), which is even more pronounced when baryons are taken into
account. Such a broadening seems in quite good agreement with dilepton measurements in
the CERES and NA60 experiments (see Figure 27).
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Figure 27: Left: dilepton mass spectrum in the ρ region from the NA60 experiment. Right:
invariant mass spectrum of the excess dimuons, integrated over pT . From [260].

Let us also mention that, besides effective field theories, a more ab initio approach has
been used recently in order to extract in-medium spectral functions [261, 262, 263, 264, 265],
based on the functional renormalization group (FRG) [140]. The FRG is a functional equa-
tion that tracks the evolution of the quantum effective action of a theory as one integrates
out the quantum fluctuations in successive layers of momentum, the starting point being the
classical action of the theory (i.e., with no quantum fluctuations included). In other words,
the FRG is an explicit realization of the renormalization group “a la Wilson”, where a theory
is coarse-grained to eliminate its details on short distance scales. In its exact form, there
is no practical way to solve the FRG equation, but it is amenable to tractable equations
(at least numerically) after some kind of truncation has been performed. When applied
to the study of the chiral transition, one observes a temperature dependence of the chiral
condensate in quite good agreement with lattice QCD computations, and that the ρ and a1

mesons become degenerate at high temperature.
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Figure 28: Left: FRG computation of the chiral condensate as a function of temperature,
compared to a lattice QCD calculation (From [264]). Right: temperature dependence of the
masses of the ρ and a1 mesons, computed in the FRG framework (From [262]).

Folding with the medium evolution The calculations described above provide a local
photon production rate (i.e., the number of photons produced per unit of time and volume,
given the local temperature of the plasma). To go from there to a photon spectrum that
one may compare with experimental data, this local rate must be integrated over the entire
space-time history of the collision (in addition, at each space-time point, one must boost
the local spectrum by the 4-velocity of the plasma at this point). The important point to
keep in mind is that, even if a fit of the resulting spectrum by an exponential of the form
exp(−p⊥/Teff) appears to work, the parameter Teff does not have a direct interpretation as
the temperature of the plasma. In particular, this effective temperature is blue-shifted by
the radial flow of the medium. Moreover, the integration over time is also more sensitive
to the stages of the evolution where the system spends more time. With dileptons, one
may avoid this blue-shifting effect when looking at the spectrum as a function of the pair
invariant mass since the mass is not affected by the flow, but the extracted temperature still
reflects a spacetime average rather than an instantaneous temperature. With this caveat
in mind, an exponential mass dependence exp(−M/Teff) of the dilepton spectrum has been
reported by the NA60 experiment, with an effective temperature Teff ≈ 205± 12 MeV [260].

6.2 Heavy quarkonia in a hot medium

Qualitative aspects Bound states made of heavy quarks can also be viewed as potential
“thermometers” [266]. On the theory side, the advantage of considering sufficiently heavy
quarks is that they provide a large mass scale (much larger than the QCD non-perturbative
scale ΛQCD), and this separation of scales allow the use of effective field theory descriptions
such as non-relativistic QCD. In such a non-relativistic framework, one may use the concept
of interaction potential between a pair of heavy quarks, in conjunction with a non-relativistic
Schrödinger equation. Another theoretical simplification regarding heavy quarks is that their
production happens at very early times (of the order of the inverse of their mass), and involve
parton distributions at reasonably large momentum fractions, where saturation effects are
not important (this assertion should be contrasted in the case of charm quarks at the LHC
energy – see [267, 268] for a recent study of J/Ψ production in proton-nucleus collisions; a
similar computation in nucleus-nucleus collisions could be done by solving the Dirac equation
in the glasma color fields, but is considerably more challenging [269, 270, 271]). Thus,
in heavy ion collisions, one is mostly interested in the subsequent fate of the produced
heavy quarks, rather than the production itself. As far as experimental measurements are
concerned, heavy quarkonia also offer clean signals via their dilepton decay channel.
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Consider for instance a heavy meson QQ. Loosely speaking, when the thermal excitation
energy (i.e., the energy gain provided by the absorption of a gluon from the surrounding
thermal bath) is equal or larger to the binding energy of the quark-antiquark pair, the meson
may be dissociated. An alternate way of describing this phenomenon is by noting that the
interaction potential of the QQ is affected by Debye screening in the presence of a dense
medium. When the Debye screening length becomes shorter than the size of the would-
be bound state, its dissociation occurs. Afterwards, the quark and the antiquark evolve
independently in the medium, and the most likely outcome is that –when the temperature
has decreased below the confinement temperature– they bind with one of the light quarks
or antiquarks from the surrounding medium, in order to form heavy-light mesons (D and B
mesons). Therefore, in the extreme version of this scenario, the yield of QQ mesons would
be almost completely suppressed and the produced heavy quarks would all be recovered in
the form of open-flavour mesons. Note that in the case of charm quarks, whose production
is quite abundant in heavy ion collisions at high energy, the dissociated c and c may have a
high enough density for accidental recombinations in J/Ψ’s to be important.

Experimentally, a particularly clear observation of this phenomenon has been performed
at the LHC for bb mesons, as shown in the figure 29. There, one sees a suppression of the
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Figure 29: Muon-antimuon invariant mass spectrum in the upsilon region. From [272]. See
also [273, 274].

yields of the Υ′′ and Υ′ mesons, while the ground state Υ has an almost unmodified yield.
Given the above discussion, the interpretation of this result is that the gluon thermal energy
at the temperatures reached in the collision is sufficient to dissociate the excited states
(because they are more weakly bound) but not enough to alter the more tightly bound
fundamental state.

In-medium singlet heavy quark bound states In the vacuum (i.e., at zero tempera-
ture), the spectrum of color singlet QQ states is typically made of a few (meta)stable states
–defined as poles of the propagator in the energy complex plane– occupying the low energy
region, and a continuum at higher energies. In the presence of a high temperature medium,
several effects may occur:
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• Some bound states (starting from the high lying ones) may disappear,

• The lower bound of the continuum of free states may move to a lower energy,

• The surrounding thermal medium can induce transitions between various QQ states,
including transitions between singlet and octet states.

The ab initio approach for studying the in-medium modifications of heavy quark states
consists in calculating the spectral function in the appropriate channel at non-zero tempera-
ture. However, this is not doable in perturbation theory due to the non-perturbative nature
of bound states. Although lattice QCD is by construction a non-perturbative approach,
spectral functions cannot be computed directly. Instead, one can calculate an Euclidean
propagator G(τ,p) which is related to the corresponding spectral function ρ(ω,p) as fol-
lows:

G(τ,p) =

∫
dω ρ(ω,p)

cosh(ω(τ − 1/2T ))

sinh(ω/2T )
. (53)

A first obvious difficulty for inverting this relationship is that the propagator is computed
only at the finite set of Euclidean times τ that exist in the employed lattice setup, while the
expected spectral function depends on a continuous energy ω. But even if the propagator
was known at all the real τ ’s in the range [0, 1/T ], this inversion is a mathematically ill-posed
problem, because the linear mapping from ρ to G has zero modes (i.e., functions ρ that give
zero when inserted in the integral in the previous equation). Thus, even in the ideal situation
where the propagator would be known exactly, the inversion can only be performed up to a
linear combination of these zero modes.

A possible strategy is to remove this ambiguity by imposing additional (but generic
enough so that they do not bias the outcome in unphysical directions) constraints on the
expected spectral function. A minimal constraint that helps disambiguate the answer is
to request the positivity of the spectral function. In practice, this can be implemented by
using the maximal entropy method, which is a Bayesian method for finding the most likely
spectral function consistent with the computed values of the propagator and the additional
constraints. When using this approach, it is necessary to have very accurate lattice data for
a robust extraction of the spectral function (otherwise, the extracted spectral function may
be dominated by the additional constraints imposed on the solution). Another limitation
is that it is practically impossible to be sensitive to excited states, as this would require an
exponentially large statistics. With these caveats in mind, the general trend observed for
heavy bound states is a sequential melting of states, starting with the high lying ones, and
a trend towards negative medium-induced mass shifts [275, 276, 277, 278].

An alternative to Bayesian methods is to model the spectral functions ρ(ω,p) with a
few free parameters and to perform a standard fit to adjust these parameters in order to
reproduce the computed propagator G(τ,p). Besides the location and width of the lowest
lying peak, the model may contain parameters that describe the transport properties of
heavy quarks, or excited states. However, one should keep in mind that the propagator
may be very weakly sensitive to these additional features of the spectral function [279], and
that an unrealistic modeling may introduce a strong model dependence on the outcome.
A model of the spectral function may be obtained from effective field theory descriptions,
such as non-relativistic QCD (NRQCD – obtained from QCD by integrating out the heavy
quark mass scale m

Q
) or even potential non-relativistic QCD (pNRQCD – obtained from

NRQCD by further integrating out the softer scale m
Q
v, where v is the heavy quark velocity)

[280, 281, 282], that rely on the heavy mass of the quarks, both compared to the QCD non-
perturbative scale ΛQCD and to the typical energy scale of the surrounding medium.
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In fact, the pNRQCD effective theory also provides a proper connection between QCD
and the non-relativistic Schrödinder equation used in order to study the QQ bound states
(see for instance [283, 284]). Indeed, one of the parameters in pNRQCD is the QQ interaction
potential (that should in principle be obtained by a matching to the underlying field theory),
and its equation of motion in the singlet sector is a Schrödinder equation whose discrete
energy levels correspond to the QQ singlet bound states. The singlet potential Vs(r) can be
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Figure 30: Real and imaginary parts of the singlet QQ potential at various temperatures.
From [285]. See also [286].

obtained as

Vs(r) = lim
t→∞

∂tW (r, t)

W (r, t)
, (54)

where W (r, t) is a rectangular Wilson loop of spatial extent r and temporal extent t. Note
however that t is here the Minkowski time, and a direct evaluation of this quantity in lattice
QCD is therefore not possible. A possible strategy is to start from an Euclidean rectangular
Wilson loop, whose associated spectral function can be used to express Vs(r), thus allowing
to constrain the potential via Bayesian methods as shown in Figure 30. Note that the
real part of this potential behaves similarly but is not identical to the potential sometimes
inferred from the logarithm of the free energy of a singlet QQ pair [287]. (The imaginary
part, due to Landau damping and transitions from singlet to octet states, is not present in
the potential defined from the free energy.)

In-medium dynamical evolution In the presence of a high temperature medium, not
only the spectrum of singlet quarkonia states is modified, but the surrounding medium can
also induce transitions between various singlet states, and between singlet and octet states.
In equilibrium, there are as many transitions in either direction, and the density matrix of the
system is time independent. The situation is far more complicated out-of-equilibrium, since
the density matrix is now time dependent. Various forms of kinetic or stochastic equations
have been employed to describe the evolution of heavy quarks and quarkonia embedded in
a medium [288, 289, 290].

The main physical effect one would like to study here is the possible recombination of the
heavy quarks and antiquarks, that may have a sizeable probability of close encounter when
their density is large enough (which appears to be the case for charm quarks). When this is
the case, the final yield of quarkonia bound states is enhanced compared to what one would
get with the assumption that all the bound states that are dissociated go into open-heavy
flavor mesons [291, 292, 293, 294, 295]. This phenomenon can be seen for charm quarks
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by comparing the nuclear modification factor of J/ψ at RHIC and LHC energies, as shown
in Figure 31. On this plot, one sees that J/ψ’s are less suppressed in central collisions at
higher energy, which can be explained by the more abundant production of c and c quarks
at the LHC, which favors their recombination into charmonium.

More recently, there has been an effort to derive these description from a more fun-
damental starting point, shedding some light on the sequence of approximations neces-
sary to obtain them. The strategy, based on the framework of open quantum systems
[297, 298, 299, 300, 301, 302], consists in starting from the system made of the QQ pairs
and their environment. This system is closed and evolves unitarily, with a density matrix ρ
that obeys the von Neumann equation (also known as the quantum Liouville equation),

dρ

dt
= −i [H, ρ]. (55)

The density matrix ρ contains a lot of information regarding the surrounding medium in
which the heavy quarks are embedded. A reduced density matrix describing specifically
the heavy quark degrees of freedom can be obtained by performing a partial trace over
environment degrees of freedom, ρ

Q
≡ trenv(ρ). However, after doing this, the evolution

equation for the reduced matrix density is no longer a von Neumann equation, and is in
general dissipative and non unitary (this is just a consequence of the fact that the subsystem
made of the heavy quarks is an open system). With the assumption that the environment
relaxes more quickly than the heavy quarks, it has been shown that ρ

Q
obeys a Lindblad

equation. Under the additional assumption that the transitions between the various QQ
states are faster than their adjustment to changes of the environment, this Lindblad equation
can lead to a Boltzmann equation (and a rate equation is the momenta are integrated out).

7 Conclusions, open questions for the future

What should first come to mind after this brief survey of the theoretical aspects of heavy
ion collisions is the difficulty of describing a large, time-dependent, non-equilibrated system
in terms of a (rather complicated) underlying microscopic theory (QCD). Since an ab-initio
description in terms of QCD of these collisions is not practically feasible, most approaches
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are based on effective descriptions that capture the relevant dynamics at scales larger than
the typical QCD scales. Thus, instead of a unique theory from which everything would be
derived, theoretical works in this field use instead a large variety of tools that are more or
less connected to QCD:

Lattice QCD Perturbative QCD CGC

Hydrodynamics
QCD

L = − 1
4F

2 + ψ(i/D −m)ψ

vv

hh

''

77

//

OO

oo

��

NRQCD

Kin. Theory AdS/CFT χPT

Although we have not spent much time discussing this, we should also stress the fact that
many observables in heavy ion collisions depend on a number of mundane aspects of low
energy nuclear physics, namely the shape and size of the nuclei, and the distribution of the
nucleons inside a nucleus and the fluctuations thereof. These properties, that are not the
main targets of the heavy-ion collision program, play nevertheless an important role when
trying to uncover some property of QCD from experimental data.

By a combination of experimental and theoretical efforts, many properties of the quark-
gluon plasma have been uncovered:

• the QGP is a nearly perfect fluid,

• its shear viscosity to entropy ratio is in the range [1, 2.5] (in units of ~/4π), making it
the substance with the smallest ratio so far,

• its equation of state is consistent with lattice QCD expectations, and with the decon-
finement of the color degrees of freedom,

• the yield of “light” partons, including charm quarks, is significantly suppressed com-
pared to rescaled proton-proton collisions,

• the suppression of bottom quarks is less pronounced, in agreement with theoretical
expectations (dead-cone effect due to the mass of the emitter),

• the studies of energy loss can now be supplemented by direct observations of recon-
structed jets. This has allowed to determine that a large amount of energy is radiated
by soft emissions at large angle,

• a sequential pattern has been observed in the disappearance of bb bound states, con-
sistent with the theoretical understanding of the dissociation phenomenon,

• at the highest energies, the production of charm quarks is copious enough to lead
to the formation of J/ψ bound states by recombination of uncorrelated quarks and
antiquarks.

The picture that emerges from these observations is that the matter produced in heavy
ion collisions is a very “opaque”, strongly interacting, fluid, in rather sharp contrast with
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the ethereal quark-gluon plasma that was the common point of view before the RHIC ex-
periment. Despite many progresses, it is also clear that extracting the underlying QCD
properties from the outcome of heavy ion collisions is extremely difficult, since in several
instances the comparisons with QCD have remained rather qualitative although the exper-
imental measurements were quite detailed. Another source of complication is that some of
these studies are done by comparing the outcome of nucleus-nucleus collisions with that of
rescaled proton-nucleus or proton-proton collisions. However, high energy proton-nucleus
and proton-proton collisions have turned out to display some features close to those observed
in nucleus-nucleus collisions, casting some doubts on their use as “references” to compare
with in order to pinpoint effects specific to the quark-gluon plasma. If flow is confirmed to
occur even in proton-proton collisions, one will have to learn to live without such a reference
for certain observables.

It is of course hard to predict where the next advances will happen, but given the areas
that have received most attention in the past years, some improvements are probably within
reach in a reasonable future in the following directions:

• Determine the temperature dependence of the shear viscosity,

• Obtain a better determination of the bulk viscosity,

• Better disentangle the mechanisms of energy loss, especially in the case of jets,

• Characterize when heavy quark bound states are formed,

• estimate the initial temperature from thermal photons and the melting of quarkonia,

• Clarify to what extent the concept of flow applies to the system formed in proton-
proton collisions. This entails a more robust control over the state of the system
immediately after the collision, in order to disentangle initial flow from the flow hy-
drodynamically generated later on.

For this to be possible, besides some improvements to the calculation of the elementary rel-
evant phenomena, an important aspect (and difficulty) is to merge as seamlessly as possible
tools that have originally been developed independently. This is especially true for observ-
ables that depend on the interactions between some probe and the surrounding medium, for
which it is crucial to use a modeling of the background and its evolution which is as realistic
as possible.
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and Krishna Rajagopal. A Hybrid Strong/Weak Coupling Approach to Jet Quenching.
JHEP, 10:019, 2014. [Erratum: JHEP 09, 175 (2015)].

[212] Yuri L. Dokshitzer and D.E. Kharzeev. Heavy quark colorimetry of QCD matter.
Phys. Lett. B, 519:199–206, 2001.

[213] Jorge Casalderrey-Solana, Yacine Mehtar-Tani, Carlos A. Salgado, and Konrad Ty-
woniuk. New picture of jet quenching dictated by color coherence. Phys. Lett. B,
725:357–360, 2013.

[214] Yacine Mehtar-Tani, Jose Guilherme Milhano, and Konrad Tywoniuk. Jet physics in
heavy-ion collisions. Int. J. Mod. Phys. A, 28:1340013, 2013.

[215] Jean-Paul Blaizot, Fabio Dominguez, Edmond Iancu, and Yacine Mehtar-Tani. Prob-
abilistic picture for medium-induced jet evolution. JHEP, 06:075, 2014.

[216] Jean-Paul Blaizot and Yacine Mehtar-Tani. Jet Structure in Heavy Ion Collisions. Int.
J. Mod. Phys. E, 24(11):1530012, 2015.

[217] Guang-You Qin and Xin-Nian Wang. Jet quenching in high-energy heavy-ion collisions,
volume 24, page 1530014. 10 2015.
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