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A stochastic physics scheme is tested in the AROME short range convection-permitting ensemble prediction system. It is an adaptation of ECMWF's stochastic perturbation of physics tendencies (SPPT) scheme. The probabilistic performance of the AROME ensemble is found to be significantly improved, when verified against observations over two two-week periods. The main improvement lies in the ensemble reliability and the spread/skill consistency. Probabilistic scores for several weather parameters are improved. The tendency perturbations have zero mean, but the stochastic perturbations have systematic effects on the model output, which explains much of the score improvement. Ensemble spread is an increasing function of the SPPT space and time correlations. A case study reveals that stochastic physics do not simply increase ensemble spread, they also tend to smooth out high spread areas over wider geographical areas. Although the ensemble design lacks surface perturbations, there is a significant end impact of SPPT on low-level fields through physical interactions in the atmospheric model.

Introduction

Ensemble prediction is an important tool for probabilistic numerical weather prediction (NWP). Following [START_REF] Leith | Theoretical skill of Monte Carlo forecasts[END_REF], the aim is to discretely sample the forecast probability density function (PDF) of the predicted atmospheric state. An ensemble prediction system should model all sources of forecast uncertainty: errors in the initial condition of the numerical model, in its boundary conditions, and in the forecast model. At synoptic scales and medium ranges, forecast errors are dominated by chaotic error growth, so that in early meteorological ensemble prediction systems, only the initial condition was perturbed [START_REF] Toth | Ensemble forecasting at NMC: The generation of perturbations[END_REF][START_REF] Molteni | The ECMWF ensemble predic-tion system: methodology and validation[END_REF]. In mesoscale ensemble prediction, the used to be given to the downscaling of large-scale ensembles [START_REF] Stensrud | Using ensembles for short-range forecasting[END_REF][START_REF] Marsigli | A strategy for high-resolution ensemble prediction. II: Limited-area experiments in four Alpine flood events[END_REF][START_REF] Frogner | High-resolution limited-area ensemble predictions based on low-resolution targeted singular vectors[END_REF]. More recently, it has been shown that ensemble forecast performance can benefit from a representation of model error, which can be achieved by roughly three approaches: the multimodel/multiensemble method, which mixes different models [START_REF] Hagedorn | The rationale behind the success of multimodel ensembles in seasonal forecasting. I: Basic concept[END_REF][START_REF] Candille | The multiensemble approach: The NAEFS example[END_REF][START_REF] Park | TIGGE: Preliminary results on comparing and combining ensembles[END_REF][START_REF] Clark | Probabilistic precipitation forecast skill as a function of ensemble size and spatial scale in a convection-allowing ensemble[END_REF]); the multiphysics method, which changes physical parameterizations (or some of their parameters) in a single prediction model [START_REF] Berner | Model uncertainty in a mesoscale ensemble prediction system: Stochastic versus multiphysics representations[END_REF][START_REF] Bright | Short-range ensemble forecasts of precipitation during the Southwest Monsoon[END_REF][START_REF] Gebhardt | Experimental ensemble forecasts of precipitation based on a convection-resolving model[END_REF][START_REF] Li | A regional ensemble prediction system based on moist targeted singular vectors and stochastic parameter perturbations[END_REF][START_REF] Bowler | The MOGREPS short-range ensemble prediction system[END_REF]; and stochastic physics methods, which introduce perturbations into the equations of a single numerical model (e.g. [START_REF] Palmer | A nonlinear dynamical perspective on model error: a proposal for non-local stochastic-dynamic parametrization in weather and climate prediction models[END_REF]. Nowadays, there is considerable interest in introducing stochastic physics into large-scale models, particularly for long range and seasonal forecasts, but their use in high resolution, short range models has been limited [START_REF] Berner | Model uncertainty in a mesoscale ensemble prediction system: Stochastic versus multiphysics representations[END_REF]. The purpose of this paper is to investigate the impact of a stochastic physics scheme in a convection-resolving ensemble, at a much higher resolution than in previous studies.

In data assimilation, the impact of model error has been studied using ensemble-based assimilation algorithms (e.g. [START_REF] Houtekamer | Model error representation in an opera-tional ensemble Kalman filter[END_REF][START_REF] Raynaud | An extended specification of flow-dependent background error variances in the Météo-France global 4D-Var system[END_REF][START_REF] Whitaker | Ensemble data assimilation without perturbed observations[END_REF], four-dimensional variational data assimilation (e.g. Tremolet, 2007), and particle filters [START_REF] Van Leeuwen | Particle filtering in geophysical systems[END_REF]. Model error in data assimilation is usually represented as an additive error covariance, or by inflation of ensemble spread i.e. perturbation rescaling. Model error representations developed for ensemble prediction systems can be beneficial for data assimilation, too.

Stochastic physics represent model errors by injecting random noise with spatial and temporal correlation into a model. A framework for deriving such schemes has been proposed whereby stochastic physics are assumed torepresent the effect of subgrid scale fluctuations, which can be estimated using a coarse-graining technique [START_REF] Shutts | Convective forcing fluctuations in a cloud-resolving model: Relevance to the stochastic parameterization problem[END_REF]. Subgrid errors can have a significant impact, or 'backscatter', on large scales. Unfortunately, it remains difficult to identify optimal correlation scales and noise amplitude in stochastic physics schemes, and to choose the perturbed variables. Suggested stochastic backscatter algorithms include the stochastic kinetic energy backscatter (SKEB), e.g. [START_REF] Shutts | A kinetic energy backscatter algorithm for use in ensemble prediction systems[END_REF], Bowler 2009a), stochastic convective vorticity (SCV), e.g. [START_REF] Bowler | The MOGREPS short-range ensemble prediction system[END_REF], and cellular automata, e.g. [START_REF] Palmer | A nonlinear dynamical perspective on model error: a proposal for non-local stochastic-dynamic parametrization in weather and climate prediction models[END_REF][START_REF] Shutts | A kinetic energy backscatter algorithm for use in ensemble prediction systems[END_REF][START_REF] Bengtsson | Large-scale dynamical response to subgrid-scale organization provided by cellular automata[END_REF]). These schemes usually relate noise amplitude to local numerical dissipation, gravity wave drag, and deep convection. Stochastic physics should ideally be more deeply integrated into the design of physical parameterizations, such as deep subgrid convection [START_REF] Lin | Influence of a stochastic moist convective parameterization on tropical climate variability[END_REF], Teixeira 2008, Plant08). A more pragmatic approach is adopted in the stochastic physics perturbations schemes, or SPPT [START_REF] Buizza | Stochastic representation of model uncertainties in the ECMWF ensemble prediction system[END_REF][START_REF] Palmer | Stochastic parametrization and model uncer-tainty[END_REF][START_REF] Charron | Toward random sampling of model error in the Canadian ensemble prediction system[END_REF], where random noise perturbs model tendencies. The noise is a random process with prescribed amplitude and correlations in space and time. One expects the SPPT tuning to depend on model resolution. Some physical arguments have been provided by [START_REF] Shutts | Convective forcing fluctuations in a cloud-resolving model: Relevance to the stochastic parameterization problem[END_REF] to support the use of SPPT in large-scale models, where processes such as deep convection or gravity wave drag have a substantial subgrid effect that needs to be represented. Convection-permitting models mostly resolve these processes, but others are still subgrid (e.g. turbulent eddies and shallow convection). Thus, the vision of SPPT as a representation of subgrid fluctuations is still valid in convection-permitting models. Because its formulation is general (i.e. not tied to a particular process), SPPT can also be used to represent errors in resolved processes. For instance, situation-dependent biases (e.g. arising from erroneous conversion rates be-tween various cloud water species), are known to generate errors in the model tendencies (e.g. latent heat release): one can use SPPT as a tool to model their statistical effect on an ensemble.

The expected impact of stochastic physics on a given ensemble is an improvement of ensemble spread, a representation of forecast fluctuations arising from unresolved scales, and a physically consistent translation of these fluctuations into probability distributions of model output parameters. Recently, [START_REF] Berner | Model uncertainty in a mesoscale ensemble prediction system: Stochastic versus multiphysics representations[END_REF] have reported a beneficial impact of stochastic physics in a regional model of horizontal resolution 45km, so one can expect similar benefits at even higher resolutions.

In this study, an SPPT scheme is tested in a preoperational ensemble system, which uses the Météo-France AROME model, at 2.5km horizontal resolution. Although the test is carried out over a too short sample for the conclusions to be fully general, they should be relevant for other systems with comparable resolution, such as the 2.8km COSMO-DE ensemble [START_REF] Gebhardt | Experimental ensemble forecasts of precipitation based on a convection-resolving model[END_REF], the Hazardous Weather Testbed and CAPS/SSEF systems at up to 4km resolution [START_REF] Clark | Probabilistic precipitation forecast skill as a function of ensemble size and spatial scale in a convection-allowing ensemble[END_REF], and the 1.5km Met Office Unified Model experimental system [START_REF] Migliorini | Ensemble prediction for now-casting with a convection-permitting model. I: description of the system and the impact of radar-derived surface precipitation rates[END_REF]. A key objective of these systems is the short-range forecast quality of precipitation, clouds and low-level weather parameters.

In the following, Section 2 describes the AROME experimental framework. Section 3 documents the implementation of the SPPT scheme in AROME. Section 4 presents results from a baseline implementation of SPPT. A case study is discussed in section 5, before the final summary and discussion.

The AROME experimental ensemble prediction system

The PEARP, and AROME model system have been upgraded since [START_REF] Vié | Cloud-resolving ensemble simulations of Mediterranean heavy precipitating events: Uncertainty on initial conditions and lateral boundary conditions[END_REF], the main changes are explained below.

The PEARP global ensemble

The PEARP system (Prévision d'ensemble Arpège, [START_REF] Nicolau | Short-range ensemble forecasting at Météo-France -a preliminary study[END_REF] provides lateral boundary conditions to the AROME ensemble experiments described in this paper. PEARP is a 35-member global operational ensemble prediction system used at Météo-France. It uses the ARPEGE [START_REF] Courtier | The ARPEGE project at Météo-France[END_REF] model with 15.5km resolution over Western Europe (T538 stretched spectral resolution and 65 levels). Initial perturbations combine singular vectors targeted over several regions, with analysis differences from a 6-member global 4D-Var ARPEGE ensemble data assimilation [START_REF] Desroziers | A posteriori diagnostics in an ensemble of perturbed analyses[END_REF]. Model uncertainties are simulated by randomly selecting one out of ten physical parameterization packages in each PEARP run. The packages differ in their representation of PBL turbulence (vertical Louis-type exchange coefficient approach vs prognostic TKE scheme), subgrid precipitating convection (Kain-Fritsch vs Bougeault scheme, closure using CAPE vs humidity convergence), and sea surface fluxes.

PEARP contributes to the international TIGGE database [START_REF] Park | TIGGE: Preliminary results on comparing and combining ensembles[END_REF][START_REF] Bougeault | The THORPEX interactive grand global ensemble[END_REF]. Although early versions of PEARP had relatively modest performance, the version used here (operational in 2011) has state-of-the-art upper-air probabilistic performance according to verification statistics over Europe.

The AROME model system

The AROME model and its data assimilation are extensively documented in [START_REF] Seity | The AROME-France convective scale operational model[END_REF]Brousseau (2011). AROME is a spectral, compressible non-hydrostatic limited area model with a TKE-based 1D turbulence scheme, a bulk microphysics scheme with five 3D advected water species (cloud liquid water and ice, precipitating rain, snow and graupel), a subgrid shallow convection scheme, a detailed surface scheme (with tiles for soil, vegetation, lakes, towns, sea, sea ice and snow layer), and a simplified version of the ECMWF radiation scheme. The AROME data assimilation is a three-hourly 3D variational analysis (3D-Var) using screen-level observations, aircraft, radiosondes, ground-based GPS delays, radar radial winds and reflectivities, and a broad variety of satellite data including geostationary radiances.

The configuration used here is similar to the 2011 operational Météo-France AROME version, with 2.5km horizontal resolution, 60 atmospheric vertical levels, and a geographical domain about 60% larger than the one in Fig. 6 of [START_REF] Seity | The AROME-France convective scale operational model[END_REF]. The domain is 1800×1700km wide, extending from Ireland to Berlin, Northern Portugal and Sicilia.

The AROME ensemble data assimilation

The sampling algorithm for the AROME initial state uncertainties is a work in progress. Here, a simple ensemble data assimilation system (the AROME EDA) uses the same ideas as the ARPEGE EDA [START_REF] Desroziers | A posteriori diagnostics in an ensemble of perturbed analyses[END_REF], Brousseau 2011). Six instances of the AROME 3D-Var data assimilation run in parallel, with observation values perturbed according to Gaussian distributions. The perturbation variances are consistent with observation error statistics for each instrument type. Besides 3D-Var, the AROME EDA has a surface analysis component where observations are similarly perturbed, which introduces some dispersion into the analyses of soil moisture and temperature, sea surface temperature, and snow cover. The AROME EDA boundary conditions are provided by the ARPEGE EDA.

AROME EDA perturbations are linearly rescaled, so that ensemble background and analysis perturbation variances are consistent with error diagnostics in observation space [START_REF] Desroziers | A posteriori diagnostics in an ensemble of perturbed analyses[END_REF]. This rescaling step can be seen as a representation of model uncertainties (there is no stochastic physics scheme in this version of the AROME EDA).

The AROME ensemble prediction system

In this study, 12-member AROME ensemble predictions are run once per day, starting at 18UTC. The model configuration and physics are the same in all runs. The hourly boundary conditions and upperlevel spectral coupling are provided by the first 12 PEARP members, which is similar to randomly picking members from the full PEARP ensemble. A separate study will address the issue of selecting better PEARP members.

The 12 AROME initial conditions are built from the 6-member AROME EDA by picking each EDA member twice. The advantage of this procedure is that each run starts from a genuine 3DVar data assimilation, which produces minimal forecast spin-up. The drawback is that differences between the AROME ensemble members and their mean are mutually correlated: the initial ensemble variance is slightly smaller than the sample variance of the 6-member AROME EDA. This procedure was nevertheless deemed acceptable for this study, because (1) it was not affordable to run more than six AROME EDA members, (2) after a few hours, much of the ensemble forecast behavior is determined by the lateral boundaries which do not have this correlation issue, (3) this aspect of the definition of initial state perturbations is not expected to change much the score impact that is reported in this paper. Several ideas exist for improving lateral boundary conditions [START_REF] Marsigli | A strategy for high-resolution ensemble prediction. II: Limited-area experiments in four Alpine flood events[END_REF] and ensemble initial perturbations [START_REF] Toth | Ensemble forecasting at NMC: The generation of perturbations[END_REF][START_REF] Molteni | The ECMWF ensemble predic-tion system: methodology and validation[END_REF], Bowler 2009b), they will be implemented later. The work of Vie (2011) has shown that both PEARP and EDA perturbations were needed to obtain a well-behaved ensemble at short ranges (between zero and 24 hours).

The enhanced SPPT algorithm documented in [START_REF] Palmer | Stochastic parametrization and model uncer-tainty[END_REF] has been adapted as follows. The spectral representation of noise patterns has been changed from spherical harmonics to the bi-Fourier functions that are used in the AROME model. The SPPT scheme uses a two-dimensional noise generator made of uncorrelated AR(1) processes on each spectral coefficient, with a prescribed noise variance spectrum. The correspondence between the variance spectrum and the bi-Fourier representation follows the [START_REF] Berre | Estimation of synoptic and mesoscale forecast error covariances in a limited area model[END_REF] formulation of the ALADIN/AROME background error covariance formulation. The variance spectrum is such that, in gridpoint space, the resulting random patterns r have zero average, a uniform standard deviation σ = 0.5 and an homogeneous and isotropic horizontal autocorrelation. At each grid point, r follows a normal distribution with values bounded to the interval [-2σ, 2σ]. The autocorrelations have a single length-scale of 500km, and a characteristic timescale of 8 hours. These (arbitrary) values have been chosen in order to represent large and slow error patterns, while still fitting inside the time and space domain of the AROME forecasts; the sensitivity of the results to these settings is discussed in section 4.

During each model integration, an independent sequence of 2D random patterns r is produced, and applied to the model equations as follows: physical tendencies of wind, temperature and water vapour content are multiplied at each timestep by f = 1 + αr. Parameter α is a level-dependent constant discussed below, α = 1 at most atmospheric levels. The same factor f multiplies the tendencies of all prognostic model variables at each gridpoint, so that the scheme is univariate in the sense of [START_REF] Palmer | Stochastic parametrization and model uncer-tainty[END_REF]. This choice amounts to relying on the AROME parameterizations to define a kind of balance between model variables.

In the SPPT formulation used here, the AROME condensed water species are not directly perturbed, they are adjusted by the fast microphysics step [START_REF] Seity | The AROME-France convective scale operational model[END_REF], which corrects them at each timestep depending on temperature and humidity. It was found unnecessary to perturb the prognostic turbulent kinetic energy variable of AROME, because it adapts quickly to the evolution of wind, temperature and humidity.

As in [START_REF] Palmer | Stochastic parametrization and model uncer-tainty[END_REF], the SPPT perturbation patterns have little vertical structure: the same multiplicative factor f is applied at all levels, with α = 1 throughout except near the surface (below about 2000m above ground) and near the model top (above 100hPa), where α is smoothly relaxed to zero in order to avoid problems in these areas, as explained in page 4 of [START_REF] Palmer | Stochastic parametrization and model uncer-tainty[END_REF]. The AROME lateral boundary formulation is such that physical tendencies are smoothly relaxed to zero near the model edges, so that the SPPT scheme has no impact there. Since there are approximations in the design of lateral, upper and lower boundaries of the models, they should ideally be perturbed. Here, low levels and surface fields are perturbed in the analyses (only) by the AROME EDA procedure. In the future, a more explicit representation of model errors will be developed for the surface and the boundary layer physics, as in other ensemble prediction groups (e.g. [START_REF] Charron | Toward random sampling of model error in the Canadian ensemble prediction system[END_REF].

4 Average impact of the SPPT scheme

Experimental setup

In this section, two versions of the AROME ensemble prediction system are compared over a limited period. One, called the reference experiment (REF), uses the setup described in section 2 and no stochastic physics. The other, called the SPPT experiment, uses the same setup, except that the SPPT stochastic physics scheme is activated in the forecasts. Both REF and SPPT ensembles are run once per day for two continuous periods (30 April to 15 May and 20 October to 2 November 2011) so that there are 30 ensemble forecasts over which the scores are averaged. All forecasts start at 18UTC. The first experimental period was dominated by diurnal convection with thunderstorms, forced by weak synoptic low pressure systems travelling from the Atlantic to France and to Germany. There were a few warm and dry days, as well as several cases of strong supercells and squall lines, so that Table 1: values chosen for the representation of observation error and the definition of binary events. The standard error of precipitation depends linearly upon the observed precipitation value.

parameter obs standard error event threshold T2m

1.1K 10C RH2m 10% 50% ff10m 1.2 m s -1 3.6m s -1 ffgust 3 m s -1 8.3m s -1 prec 0.5 + 0.3 rr3h 6mm cloud 15% 85%
the experiment encompasses many independent small-scale weather events (several per day). In the second period, there was strong precipitation over the Mediterranean sea.

The statistical significance of the averaged score differences was tested using a bootstrap confidence test as follows: the score on each day is treated as a data point. Since the meteorological phenomena considered here are rather short-lived, it is assumed that serial correlation of forecast errors does not reduce the effective sample size. An empirical distribution of score differences is constructed by drawing, with replacement, several hundred samples from the original set of scores, and recomputing each time the time-averaged score difference. A score difference is deemed significant if its sign is not contradicted by more than 5% of the draws, even if the difference is very small. Except where indicated, all score differences mentioned in this work are significant in this sense, which means that the score differences are unlikely to be mere sampling artifacts [START_REF] Jolliffe | Uncertainty and inference for verification measures[END_REF] is a good introduction to bootstrap confidence testing). Given the rather short length of the experiment, we do not claim, either, that our results would hold in other meteorological contexts: this work should only be regarded as a set of case studies, not as a fully general impact study.

The scores have been computed against observations from regional networks of ground-based weather stations, with several hundreds of reports available every hour for screen-level temperature, relative humidity (converted from dewpoint), 10-minute average of 10-meter wind speed, 10-meter gusts (maximum wind speed over the past hour), 3-hourly precipitation totals, and cloud cover reports (respectively denoted by T2m, RH2m, ff10m, ffgust, prec and cloud). These observations are compared with the AROME output at full model resolution by computing the model equivalents as follows: fields are interpolated to observation locations using a bilinear interpolation, except rain which is compared to the nearest neighbor; T2m is corrected for orography discrepancy between model surface and reported station height; cloud cover is derived from the model cloud field by integration over a disk of radius 20km; dubious reports are discarded; stations closer than 200km from the AROME model edge are discarded; for all observed parameters, we discard the 1% of reporting stations with the highest departure variance (of model minus observations) over the whole period (this selection is applied symmetrically for the REF and SPPT experiments).

In the verification of short-range forecasts done here, observation errors are not negligible, and their impact on the ensemble scores can be significant. Accounting for observation errors in ensemble prediction scores has been the topic of several recent papers, and it is not yet the norm for ensemble verification in the community. Here, observation errors have been represented in some scores as uncorrelated Gaussian distributions with zero mean and prescribed standard deviations, as indicated in Table 1. These values are consistent with the recent literature on convective-scale data analysis systems.

Some probabilistic scores rely on the definition of binary forecast events. Here, binary events are defined for each parameter as the exceedance of one threshold value per parameter, e.g. T2m>10C, 1, have been chosen so that there are enough cases where the event occurs (and does not occur), in order to obtain statistically meaningful scores. They represent events that have a practical meaning to many users, the objective being to evaluate ensemble performance from the user point of view. The experiments were too short to use thresholds that reflect high impact events, such as heavy precipitation. Specially designed ensemble experiments would be needed to study these phenomena, using a carefully built sample of relevant weather events.

Impact on average model behavior

Since the SPPT scheme perturbs the model equations, we first check whether it degrades the deterministic forecast quality. Previous studies about the effect of stochastic parametrization include e.g. [START_REF] Palmer | A nonlinear dynamical perspective on model error: a proposal for non-local stochastic-dynamic parametrization in weather and climate prediction models[END_REF] and [START_REF] Tompkins | Stochastic convective input based on subgrid humidity distributions[END_REF]. Here, two metrics are used to compare the average distributions of observed values with the forecast distributions from both experiments. One metric is the cumulative density function (CDF), the other is the model bias (the average of model minus observation values). Both are consistently modified by SPPT. A third score, the rms average of the (model minus observation) departures, measures the distance between forecasts and observations, which is a measure of deterministic forecast skill.

• the SPPT scheme reduces the diurnal cycle of the temperature bias. The rms temperature scores are improved, because the SPPT impact on the bias tends to compensate for biases of the unperturbed AROME model. This benefit of SPPT is rather accidental and it would probably disappear if one had bias-corrected the AROME temperature forecasts beforehand using historical data.

• relative humidity is systematically decreased by SPPT, which improves the daytime rms scores, but slightly degrades them at night, because there is a diurnal cycle of the humidity bias in the unperturbed AROME model. The model drying cannot be explained by an increase in temperature, it reflects a decrease in specific humidity.

• average wind speed and gust speed increase with SPPT, which degrades the rms scores, particularly in the afternoon.

• cloud cover is decreased by SPPT, which is consistent with a drying of the atmosphere. Unlike the previous parameters for which the average CDF was rather well distributed by AROME, forecast cloud cover is too binary (there are too many clear and overcast gridpoints), which is a known weakness of the AROME cloud scheme. SPPT does not significantly change this aspect of the model. Cloud rms score differences are dominated by the changes in model bias.

• the frequency distribution of precipitation is modified by SPPT. It improves the rms scores and it reduces the wet bias of the reference AROME model (which is again consistent with a drying effect of SPPT). An inspection of the precipitation CDF curves (Fig. 1) reveals that SPPT reduces the frequency of points with non-zero rain from 7% to 6%, whereas it should be 5% according to the observations. The frequency of high rain events does seem to be significantly affected by SPPT, a bigger sample with more heavy rain cases would be needed to reliably assess this aspect of SPPT.

In summary, there is not much impact of the SPPT scheme on the forecast quality in a deterministic sense. It is not clear why SPPT produces a drying of the lower atmosphere. SPPT perturbations may produce supersaturation, the impact of which needs to be clarified in relation with the observed drying.

Perhaps the stochastic perturbations disturb the vertical structure of humidity in precipitating columns, which leads to more evaporation of precipitation in the PBL before it reaches the ground. Fig. 3 shows vertical daytime profiles averaged in space and time, for temperature and specific water vapor: they confirm that the drying is confined to the lower atmosphere, and is not trivially linked to temperature variations. The vertical temperature profile suggests that SPPT has an impact on boundary layer mixing and deep convection, which should be more thoroughly investigated in a future study.

Impact on ensemble spread

The main motivation for introducing stochastic physics is to generate ensemble spread where random model errors are thought to occur. Two metrics are commonly used in the community to assess the correctness of ensemble dispersion. One is the spread/skill relationship, which is a comparison between the ensemble internal spread (its standard deviation), and its 'skill', or rms error of the average forecast produced by the ensemble. A necessary condition for an ensemble to be statistically consistent is that the ensemble spread, plus the observation standard error, should be equal to its skill. The diagnostic can be summarized by the spread/skill ratio, which should be as close to one as possible. In this work, no attempt is made to bias-correct the forecast, because model bias, being situation-dependent, is usually not known in advance. Another useful metric is the rank diagram, which measures the consistency between the probability density function (PDF) predicted by an ensemble, and the observations; in the absence of observation error, a necessary condition for an ensemble to be statistically consistent is that the observed value should fall with equal frequency between the corresponding predicted values [START_REF] Candille | Evaluation of probabilistic prediction systems for a scalar variable[END_REF]. In this work, the effect of observation errors has been accounted for by randomly perturbing the ensemble values with the PDF of observation errors [START_REF] Migliorini | Ensemble prediction for now-casting with a convection-permitting model. I: description of the system and the impact of radar-derived surface precipitation rates[END_REF]. The rank histograms convey more information than the spread/skill metric, which only assesses ensemble variance. Nevertheless, it was found in this work that both metrics yield similar clues about the SPPT impact on the ensembles. In this section we investigate two questions: (1) does SPPT effectively enhance the ensemble spread, and (2) does it make the spread more realistic.

Since the spread/skill ratio is sensitive to the (rather approximate) specification of observation error, it is instructive to inspect the ensemble spread and skill separately as shown in Fig. 2. There are strong variations with respect to forecast range. Since all forecasts start at the same time of the day, and there is a marked diurnal cycle during the experiment, the curve variations could be a consequence of either the forecast length, or local solar time. One would need to rerun the forcecasts at other times of the day in order to clarify this. SPPT being a process that continuously acts on the forecasts, one would expects the spread it adds to grow as a function of forecast range. This is what is usually observed. On all parameters except precipitation, SPPT significantly increases spread, by 10 to 20% after 24 hours (relative to the standard deviation of the reference ensemble). Spread generally grows all over the forecast ranges covered by the experiment, which suggests that the ensemble would become overdispersive if it were run for ranges much longer than 24 hours. Fig. 3 shows (on a 16-day period only) that SPPT increases the average ensemble spread of temperature and humidity throughout the troposphere, and this effect is strongest near the surface.

For all parameters except precipitation, SPPT degrades the average ensemble skill, particularly at longer ranges (the temperature degradation has a negligible amplitude at short range). Some some authors have reported cases where stochastic physics improve model realism (e.g. [START_REF] Palmer | A nonlinear dynamical perspective on model error: a proposal for non-local stochastic-dynamic parametrization in weather and climate prediction models[END_REF], [START_REF] Berner | A spectral stochastic kinetic energy backscatter scheme and its impact on flowdependent predictability in the ECMWF ensemble prediction system[END_REF]). It is possible, however, that increasing the spread of an ensemble leads to better probabilistic scores at the expense of degrading the realism of the ensemble members. Here, the skill degradation is very small at ranges 3-9 hours for temperature, humidity, and cloudiness. It increases at longer ranges (i.e. during daytime). There seems to be some compensation with the diurnal cycle of model biases, as mentioned in the previous section. Despite the degradation in skill, the spread/skill ratio increases for most parameters and ranges. It is an improvement because the ensemble spread/skill ratio is smaller than its ideal value of one, even when observation error is taken into account.

The behavior of precipitation spread and skill can be explained by the changes in its frequency distribution: SPPT tends to reduce rain, so that the precipitation PDF becomes more concentrated near the zero value, which shows up as a reduction of the ensemble standard deviation. It improves the precipitation bias, which seems to explain why the SPPT ensemble skill is better. Since our experimental period contains many light rain events, the spread/skill metric is mostly influenced by changes in the light rain predictions; it is not informative about the SPPT impact on users concerned with heavy rain. Inspection of the rank histogram (not shown) reveals that both reference and SPPT experiments are overdispersive with respect to precipitation, and that the SPPT rank diagram is slightly better (less overdispersive). Precipitation is both under-and overdispersive depending on whether one looks at the spread/skill, or at the rank histogram, because these are different metrics, and as shown in Fig. 1) the model precipitation is biased. There is no significant impact of SPPT on the upper outlier frequency (i.e. the frequency of precipitation observations that are higher than all values predicted by the ensemble).

The spread/skill ratios for all parameters are indicated in Table 2. They have been averaged between ranges from 3 to 24 hours, across all days of the experiments. SPPT improves the spread/skill ratio for all parameters, except for precipitation which shows no significant impact. The spread/skill ratio steadily increases with range (not shown), with 24-range values in the SPPT experiment between 55% and 80%. It suggests that the SPPT ensemble would become overdispersive (with respect to the spread/skill metric) beyond range 36h.

Impact on Brier scores and on reliability

The Brier score measures the performance of the ensemble at predicting probabilities. Here, only binary events are considered, and observation errors are neglected. There is some arbitrariness in the choice of thresholds that define the events; the ones used here provide enough sampling to assess the reliability and resolution aspects of the Brier score, which would not be possible if rarer events had been chosen. It was checked that the results mentioned here still hold when other (non-extreme) thresholds are chosen, i.e. that the benefits of SPPT noted are not overly sensitive to threshold choice. Following [START_REF] Candille | Evaluation of probabilistic prediction systems for a scalar variable[END_REF], we define the Brier score B for a particular event, date, and range as

B = 1 M M j=1 (p j -o j ) 2 (1)
where, taking the event T>20C as an example, M is the number of realizations (the number of valid temperature observations), p is the predicted event probability (the fraction of members that predicted T>20C), and o is the event observation flag (1 if T>20C was observed, 0 otherwise). The Brier score can be decomposed into three positive terms, the reliability B rel , the resolution B res , and the uncertainty B unc (see e.g. [START_REF] Candille | Evaluation of probabilistic prediction systems for a scalar variable[END_REF]:

B = B rel -B res + B unc (2)
The ensemble is better when its Brier score is smaller, which can be achieved by decreasing its reliability term, or by increasing its resolution term.

Figure 4 presents the Brier scores of four parameters as a function of range, with their decomposition into reliability B rel and resolution B res components (the uncertainty B unc depends on observation values only, so it is not modified by SPPT). Although the score differences look small, some are statistically significant. The Brier score is generally improved beyond range 9 for temperature, relative humidity, wind speed, and cloudiness. The improvement is not statistically significant at all ranges. For temperature, the improvement is statistically significant, but it does not seem physically meaningful because its amplitude is tiny. The Brier score for precipitation is improved at ranges from 3 to 6, but not significantly from 9 to 15, which correspond to local solar times 3 to 9 hours. At these times, deep convection is least active, which suggests that the SPPT impact on precipitation depends on the cloud type.

The improvement of the Brier score by SPPT can usually be traced to an improvement in the reliability term B rel . The behavior of the resolution term B res is more complex: resolution improves for temperature, humidity, and wind speed, but the impact of SPPT on cloudiness resolution is ambiguous. Changes in resolution B res tend to be small and rarely significant. The resolution term for precipitation seems to be degraded by SPPT, although this result has little statistical significance. The reliability of precipitation is more thoroughly discussed in the next paragraph.

The impact of SPPT on precipitation probabilities has been investigated using the reliability diagram, which graphically decomposes the Brier reliability term according to the forecast probability values. This diagnostic gives insight into systematic changes of probabilities predicted by the ensemble. When building a reliability diagram, if a too high precipitation threshold is used, diagram values for high probabilities may be meaningless if the experiment contains too few high precipitation events. The precipitation event rr3h>2mm is used here because it the highest threshold with enough sampling to study the reliability diagram, which is shown in Fig. 5. The diagram was constructed following recommendations of [START_REF] Bröcker | Increasing the reliability of reliability diagrams[END_REF]; observation errors are neglected. The sampling size is adequate for all points, except perhaps the ending points on the right (they assess events where rr3h>2mm was predicted with probability >95%). The diagram indicates that SPPT predicts fewer precipitating events with high confidence (which is consistent with a decrease in average precipitation, and with reduced Brier score resolution). The conditional observation frequency, however, is improved, as can be seen from the SPPT curve being higher and closer to the diagonal: SPPT helps to discard spurious forecasts of high precipitation probabilities. In other words, SPPT reduces false alarms of precipitation occurence.

In summary, the introduction of SPPT significantly improves the Brier score, usually in the second half of the forecasts, although the improvement is usually small. The Brier score improves because its reliability term is better. The reliability of precipitation improves in situations where a high probability of precipitation is predicted.

Impact on the CRPS and ROC scores

The continuous ranked probability score (CRPS) is a global measure of the accuracy of the PDF prediction by an ensemble. It is not tied to any particular event definition, nor to any user utility function, which means that the CRPS is a quite general metric. In this work, the CRPS is computed for each observation as the integral of the squared difference between a forecast CDF (the discrete distribution of the ensemble values, assumed to be equally likely), and an observation CDF (that has an average equal to the observed data, and a standard deviation as given in Table 1). The lower the CRPS, the better. The CRPS average values, as a function of forecast range, are shown for four parameters in Fig. 6. SPPT brings a statistically significant improvement of the CRPS of temperature, wind speed and cloudiness, except at the longest ranges. The exception is the precipitation CRPS, which is significantly improved at ranges 18 to 21, but the robustness of this result is dubious because the precipitation CRPS curves are rather noisy with respect to range. The temperature improvement is very small. In conclusion, the CRPS generally confirms the Brier score results. The precipitation Brier score improvement should probably be interpreted with caution, since it is only weakly confirmed by the CRPS.

The last score type examined here is the relative operating characteristic (or ROC), which is related to user economic value [START_REF] Richardson | Skill and relative economic value of the ECMWF ensemble prediction system[END_REF]; the ROC diagram can be summarized by the ROC area, the area between the ROC curve and the diagonal [START_REF] Clark | Probabilistic precipitation forecast skill as a function of ensemble size and spatial scale in a convection-allowing ensemble[END_REF]. ROCA area values for both experiments are presented in Fig. 7. For most parameters (including relative humidity, not shown), the impact of SPPT on the ROC area is positive, although few differences are statistically significant. The exception is cloudiness, for which SPPT impact is significantly detrimental at range 21, and precipitation, for which no impact is significant (it mostly looks like some small degradation). In conclusion, the impact of SPPT on ROC is more mixed than for the other scores, and it looks less statistically significant. Since ROC tends to be sensitive to ensemble statistical resolution rather than to reliability, this result is consistent with the above discussion on the Brier decomposition.

SPPT tuning experiments

The impact of changing some SPPT settings has been checked using the above diagnostics. The AROME ensemble experiment has been rerun with modified settings. The results are the following:

• when the space or time correlation length of the random patterns is reduced, the qualitative impact of SPPT on the scores remains the same, but it is weaker. It suggests that the AROME model error is not limited to small scales: even if the processes responsible for model error are of a subgrid nature, the net effect of these errors on the model grid appears to have a relatively large scale, as suggested in previous studies on stochastic atmospheric physics [START_REF] Shutts | Convective forcing fluctuations in a cloud-resolving model: Relevance to the stochastic parameterization problem[END_REF].

• the scores are more sensitive to a doubling of the time correlation, than to a doubling of the space correlation; further work is needed to better understand how the ratio between the space and the time correlation of model error depends on atmospheric conditions. In our experiments, the apparent dependency of scores with respect to the diurnal cycle suggests that the tuning of the SPPT scheme should depend on local time. • the impact of SPPT on ensemble spread is a nearly linear function of the SPPT standard deviation parameter. The value used in the previous section is rather large, and there are indications that the ensemble it produces is slightly overdispersive, at least on the longer ranges. An improved version of SPPT should probably include other sources of model error (surface error in particular), and a somewhat reduced noise amplitude in order to keep the spread to a reasonable value.

The evolution of the model spread has also been checked for a longer range (36 hours) for a single day, using the SPPT tunings of the previous section, and no LBC perturbation. The standard deviation of model temperature, humidity and wind at all levels (not just the ones where observations are available) appears to grow homogeneously over the whole troposphere, down to the ground. Spread appears to saturate only after the 36-hour range. It suggests that the SPPT version used here is somewhat too active, since extrapolation of the spread/skill diagnostics have shown that, at this range, the SPPT ensemble would be overdispersive.

Case studies

In this section, some maps are presented for the ensemble prediction that starts on 18UTC on May 1st, 2011. The day was chosen because it exhibits both rain and fog events, and the SPPT impact on ensemble scores seems to be typical of what is seen in the 30-day averages presented in section 4.

Figure 8 shows the impact of SPPT on the ensemble spread of 2m temperature at range 24h, i.e. at 18h local solar time. At that time there is a cold front over western France in a weak southerly flow, which triggers widespread convective rain with small cumulonimbi embedded into stratiform rain systems. This leads to a spotty rain field in both model output and radar observations (not shown). One expects SPPT to enhance ensemble spread, which visibly happens in the spread maxima (the darker areas) over southwestern France and northern Spain: these are plains, where clouds are caused by isolated thunderstorms that move around depending on the ensemble perturbations. Clouds perturb the daytime surface heating. In these areas, wind is low and visual inspection of the ensemble member maps reveals a close relationship between cloud cover and low-level temperature. The AROME ensemble dispersion thus appears to be primarily caused by a shifting in space and time of the con- vective systems, rather than a modulation of their amplitude. Over the mountains (the Pyrenees and the Alps), T2m spread remains small because all members of both ensembles predict orographically forced convection over the same area and with similar strength. Over northern France (between 48N and 50N, near the middle of the map), SPPT decreases spread, because it has moved the T2m spread maximum southward, by (correctly, as suggested by observations) slowing down the northward progression of the cold front. SPPT does not appear to produce unphysical features in the distribution of spread.

Figure 9 shows the impact of SPPT on the ensemble spread of 3-hourly rain, at the same time as above. For clarity, the impact of SPPT is shown as a difference field with respect to the reference ensemble. The fields are noisy because the rain field was very spotty. Although SPPT perturbations are rather large-scale, they yield realistically looking small scale changes to the rain field. Indeed, one does not expect the small-scale features of the AROME precipitation field to be predictable in such a case, because they consist of unstructured, weakly forced convective cells.

An interesting feature of SPPT is the increase of rain spread in areas that were dry (with no spread) in the reference ensemble. This effect shows up as dark grey areas around the edges of the REF spread maxima (e.g. near Paris and Toulouse, and in the Spanish Ebro valley). It suggests that SPPT should provide a better detection of precipitation, because it helps the model to extend precipitation beyond geographical limits that could be too strictly imposed with unperturbed model physics (indeed, in the case shown, the ROC area for precipitation is improved by about 1% by SPPT, because the detection rate increases). This smoothing effect is akin to precipitation post-processing methods that aggregate model precipitation over geographical neighborhoods in order to derive rain probabilities. It would be interesting to combine this effect with rain calibration techniques as in [START_REF] Clark | Probabilistic precipitation forecast skill as a function of ensemble size and spatial scale in a convection-allowing ensemble[END_REF], to better investigate the value of the AROME ensemble for predicting rain probabilities.

Fog scores were not feasible in this study, because observations of this weather event are rare. Nevertheless, one can inspect the predicted fog spread, as shown in Fig. 10, which is on the same day as in previous paragraphs, but at 6h local solar time. For clarity, a zoom has been applied to the main fog event on that day, which is over French Brittany and the nearby Atlantic. Like rain, fog spread is nonzero if and only if the ensemble predicts the event with significant probability. Fog spread is not much changed by SPPT, in the area where the event already had a significant chance to occur in the REF ensemble (i.e. the tip of Brittany): there, the spread of the fog index (which is between 0 and 1) is of the order of 40 to 50%. The main effect of SPPT is to enlarge the area where fog spread is non-zero, above and below the middle of the maps: there, the reference ensemble predicts zero fog probability, and the SPPT ensemble shows the possibility of fog occurring over a wider area if there are regional modelling errors. It is interesting to see that SPPT has a significant impact on local fog prediction, despite not perturbing the model tendencies near the surface (note there is no probability of upper-level cloud forming in this case, so this fog is really driven by low-level ensemble perturbations).

Summary and discussion

In this work the impact of model error representation by the SPPT stochastic physics has been tested over a short period in a convection-permitting ensemble system. As expected, SPPT enhances ensemble spread, and although it slightly degrades the deterministic forecast skill of the ensemble members, SPPT generally improves the ensemble performance as measured by the spread/skill relationship and various probabilistic scores. The main improvement is on the ensemble reliability. There is some indication that SPPT improves user value, e.g. as measured by the ROC area, but this needs to be confirmed using longer experiments. Examination of the forecast maps indicates that SPPT perturbations are propagated by the model in a physical manner, and their effect is significant on model output fields such as fog, despite the lack of direct surface perturbations in the ensemble. SPPT increases the geographical extent of areas where precipitation or fog is likely to occur: it can be seen as an advantage in the context of high resolution ensembles, where the very small affordable ensemble size is expected to cause sampling issues when predicting event probabilities.

The physical mechanism by which SPPT alters the ensemble behavior is complex. An important result of this work is that, even with a large amplitude, and despite its lack of physical sophistication, SPPT does not introduce grossly unrealistic features in the forecasts. Although the tendency perturbations have zero mean, SPPT adds a bias to some model parameters, which can be summarized as a drying of the troposphere. Some of the SPPT impact on probabilistic scores can be explained as a compensation between these systematic changes, and preexisting biases of the AROME model. The score changes depend a lot on forecast range (or local solar time), which can be explained, among other reasons, by the diurnal cycle of the model biases, and by the fact that the SPPT effect seems to accumulate during the 24-hour forecasts used here. In other words, since there is no SPPT scheme in the data assimilation, and the prescribed SPPT strength is relatively large, the effect of SPPT in the experiments is negligible at very short ranges, and it grows quickly during the forecasts. If the forecasts had been longer, it would probably lead to unrealistic ensemble perturbations. In order to have a satisfactory impact of SPPT throughout the forecast range, one should probably reduce the SPPT strength during the forecast itself, and apply it during the data assimilation itself. It may be useful to ensure that perturbations are consistent between the data assimilation and the ensemble prediction steps.

A notable weakness of the SPPT scheme used here is the absence of explicit surface and low-level perturbations, where significant model errors are known to occur: the beneficial low-level scores may be obtained in our experiments at the expense of excessive perturbations aloft. It would be necessary to compute upper level scores to clarify this question, which would require longer experiments because there are fewer observations available at upper levels than near the surface. The plan is to use aircraft observations and 3D radar measurements in order to characterize the vertical profiles of model spread vs model perturbation (radiosondes are too sparse and infrequent for this purpose over western Europe). By separating statistics according to local weather conditions (e.g. local solar time, surface type, stability, cloud type), it should be possible to improve the SPPT tuning parameters (its standard deviation and correlation lengths), since it is unlikely that a single SPPT tuning is optimal for all weather conditions. One needs to understand how to combine SPPT with other representations of model error, such as modifications of the surface fluxes and of the boundary layer physics. In the planetary boundary layer, tendencies may be the result of large compensanting fluxes, so that perturbing tendencies may not be an optimal strategy. Ideally, one would like to identify the physical (and numerical) processes for which model error is the most significant, and to avoid perturbing the more accurate ones.

Precipitation is a parameter of particular interest in convection-permitting ensembles. Our SPPT scheme does not directly perturb condensed water species, but it has a significant impact on rain forecasts. No-rain frequencies are increased at the expense of light rain prediction, which appears to compensate for some systematic weaknesses of the AROME model. The proposed mechanism is that SPPT, by disturbing the local physical balance of the convective cells resolved by the model, and in particular the vertical structure of precipitating towers, enhances rain evaporation at low levels, where wind, temperature and humidity are not consistently perturbed by SPPT. Of course, it could have led to a degradation of model performance if, for instance, the reference model has been underpredicting light rain for independent reasons: stochastic physics schemes of the kind used here should mostly be regarded as an a posteriori correction of model behavior, rather than a representation of natural physical processes, so some tuning of SPPT seems to be unavoidable. The methodology for tuning stochastic physics with respect to relatively rare weather events, such as high impact precipitation, needs to be further developed by paying attention to the needed length of experiments, and the availability of observations to compute meaningful probabilistic scores. [START_REF] Clark | Probabilistic precipitation forecast skill as a function of ensemble size and spatial scale in a convection-allowing ensemble[END_REF] is an example of a carefully designed testbed for convection-permitting ensembles. Arguably, the experiment presented here is too short to conclude that SPPT brings significant value to ensemble users.

In conclusion, it has been demonstrated that SPPT is a relatively simple and effective technique for enhancing spread in convection-permitting ensembles. If the ensemble tends to be underdispersive, as is the case of the AROME ensemble used here, the SPPT scheme can be justified as a simple stochastic physics scheme to account for model error. Spread could be enhanced by modifying the initial or lateral boundary perturbations, too, but the way to achieve this is in a physically sound way is not always clear. The evolution of the SPPT random tendency perturbations appears to be well handled by the model, which produces convincing forecast maps, and improves the probabilistic performance of the ensemble, mainly by improving its reliability. It is planned to continue this work by extending the SPPT algorithm to the surface and lower boundary layer, and by developing an observation-based methodology for tuning the ensemble perturbations.

Figure 1 :

 1 Figure 1: Zoom on the cumulative density function of 3-hourly precipitation. The experiment values have been averaged over all dates, ranges and ensemble members. Solid black: observations, gray dashed: REF experiment, black dot-dashed: SPPT experiment

Figure 2 :

 2 Figure 2: Ensemble spread and rms error of the ensemble mean forecast for temperature, cloudiness, wind speed and 3-hourly precipitation, as a function of forecast range, for both experiments REF (gray curves) and SPPT (black curves). The dots indicate data points for which the difference between the REF and SPPT values is statistically significant according to the bootstrap test.

Figure 3 :

 3 Figure 3: Average vertical profiles for temperature T and specific water vapor Q in the 24-hour range forecasts from 30 April to 15 May 2011. The curves show the bias i.e. the average difference between experiments REF and SPPT, and the spread, i.e. the ensemble standard deviation for each experiment.

Figure 4 :

 4 Figure 4: As in Fig.2 for the Brier score, its reliability and resolution components.

Figure 5 :

 5 Figure 5: Reliability diagram for precipitation. Probability classes are indicated by dots. All of them have a sample size larger than 80.

Figure 6 :

 6 Figure 6: As in Fig.2 for the CRPS score.

Figure 7 :

 7 Figure 7: As in Fig.2 for the ROC area (area of the ROC curve above the diagonal, times two).

Figure 8 :

 8 Figure 8: Maps of 24h-range forecast standard deviation for T2m (K) valid on 2 May 2011, 18UTC, without (left) and with the SPPT scheme (right).

Figure 9 :

 9 Figure 9: As in Fig.8 for 3-hourly rain (mm) without SPPT (left), and the rain difference due to activating SPPT (right) i.e. it is the SPPT-REF forecast difference

Figure 10 :

 10 Figure 10: As in Fig.8 for fog index, without (left) and with SPPT (right). The fog index is the maximum of the model cloud fraction at the two lowest AROME model levels.

Table 2 :

 2 average spread/skill ratios (with observation error included) for all parameters for both experiments (REF: reference, SPPT: ensemble with SPPT scheme active). All differences are significant, except for precipitation rr3h.

		REF SPPT
	T2m 0.35 0.38
	RH2m 0.42 0.45
	ff10m 0.42 0.45
	ffgust 0.43 0.47
	prec	0.66 0.66
	cloud 0.61 0.64

The AROME SPPT stochastic physics scheme ECMWF's SPPT scheme[START_REF] Palmer | Stochastic parametrization and model uncer-tainty[END_REF] has been chosen as the basis for the AROME stochastic physics scheme. The backscatter schemes were not considered because they are based on balance assumptions that work at synoptic scales, but may not apply to the smaller scales studied here.
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