N
N

N

HAL

open science

Energy trading marketplace using Ethereum private
network

Dongmin Son, Sawsan Al Zahr, Gerard Memmi

» To cite this version:

Dongmin Son, Sawsan Al Zahr, Gerard Memmi. Energy trading marketplace using Ethereum private
network. [Technical Report] Telecom Paris. 2020. hal-03157038

HAL Id: hal-03157038
https://hal.science/hal-03157038

Submitted on 2 Mar 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-03157038
https://hal.archives-ouvertes.fr

Energy trading marketplace using Ethereum private
network

Dongmin Son, Sawsan Al Zahr, Gerard Memmi
LTCI, Télécom Paris, Institut Polytechnique de Paris
19 Place Marguerite Perey 91120 Palaiseau, France
Email: {dongmin.son,sawsan.alzahr,gerard. memmi} @telecom-paris.fr

Abstract—In this paper, we evaluate and analyze the perfor-
mance of a local electricity market for energy trading that we
implemented on the Ethereum platform. The energy trading is
based on a double auction with multiple sellers and multiple
buyers, and the matched price and volume are determined by a
trade reduction mechanism. We benchmark the performance of
Ethereum using a systematic blockchain performance evaluation
method, and based on this, we propose and analyze an efficient
market operation method. In particular, we relate the limits
on the scalability and real-time performance of the market
to the throughput and latency of the Ethereum platform. We
also identify the minimum resources necessary to operate an
Ethereum client.

Index Terms—Local energy market, Blockchain, Performance
analysis, Ethereum, Proof-of-Work

I. INTRODUCTION

Residential solar panels and electric vehicles are being
deployed around the world to support the use of green energy.
The distributed electricity supply by solar panels is having a
negative impact on the centralized power supply. At the same
time, it is becoming difficult to meet the demand for electric
vehicles with only a centralized power source. In order to
balance such a distributed supply and increased demand, the
local energy market can improve this situation.

In the local energy market, there have been a lot of attempts
to use the blockchain due to the characteristic of trading
distributed energy between distributed individuals. 46 com-
panies and projects around the world have tried decentralized
energy trading using blockchain and 17 of which are based
on Ethereum [1]. LO3 Energy may very well be one of the
most representative Enterprise, they developed the Brooklyn
MicroGrid project [2]. They completed a pilot of a peer-to-
peer energy transaction between prosumers and consumers
with residential solar panels in Brooklyn, New York. Since
then, they have developed local energy markets on microgrids
in Germany, Australia, Texas, and the UK. They used smart
contracts based on Ethereum, but the consensus algorithm was
replaced by Tendermint. Power Ledger [3] is also based on
Ethereum, but uses Proof-of-Authority (PoA) consensus. They
have demonstrated energy trading platforms in Australia, New
Zealand, and Japan.

In this paper, we analyze the performance and cost of
implementing an energy market using the Ethereum private
network. We focus on the effect of input rate, network size,

and block gas limit on the performance such as throughput
and latency. We also show that those parameters can affect
blockchain operating costs such as CPU, memory, storage
usage, and network usage.

The rest of this paper is organized as follows. Section II
reviews the related works for evaluating blockchain perfor-
mance and the blockchain-based energy market. Section III
provides an overview of the blockchain platforms. The energy
market implementation is explained in Section IV. The test
environment is described in Section V and we discuss the
performance evaluation results in Section VI. The conclusion
is summarized in Section VII.

II. RELATED WORKS

As interest in blockchain increased and several blockchain
platforms appeared, the benchmark tool is designed for the
multiple blockchain platforms such as Ethereum, Parity, and
Hyperledger [4]. The performance was evaluated in terms of
throughput, latency, and scalability by changing the work-
load type, input rate, and number of nodes. As the work-
load, database-like applications such as Yahoo Cloud Serv-
ing Benchmark (YCSB) [5], Online Transaction Processing
(OLTP), and simple Ethereum applications are included, but
energy market application was not considered. The peak
performance of Ethereum is measured as the throughput of 284
Transaction Per Second (TPS) and the latency of 92 seconds
in the YCSB workload.

The blockchain can reduce market operating costs by
eliminating intermediaries and allows small consumers to
participate in the energy market. The performance of the
energy market depends on the scalability and speed that
the blockchain platform can support. [6] uses Ethermint to
implement the energy market and measure the performance
by bid transactions. When the number of nodes is small,
throughput increases with the input traffic and the latency is
constant, around 1 second. However, as the number of nodes
increases, the throughput decreases, and latency increases.
When the number of nodes increases to 28, the throughput
decreases to 1 TPS, and the latency increases to more than 2
minutes.

Similarly, [7] and [8] designed a local energy market on
Ethereum. The former research used the Proof-of-Authority
(PoA) based Ethereum private network, and later used the

Proof-of-Work (PoW) based Ropsten test network. Both pieces
of research measured gas cost, not throughput and latency.
[7] implements the average mechanism of the double auction
as a clearing mechanism and consumes 24 million gas to
clear 1,000 bids. [8] also used a slightly modified version
of the average mechanism. However, since there were only
9 market participants, the gas cost can be measured only for
9 bids, and 2,792,870 gas was consumed to clearing the 9
bids. In both results, the clearing function is a fairly complex
contract considering that the gas required to transfer Ether
is 21,000 and the block gas limit of the Ethereum public
network is 12 million gas as of 2020. The average mechanism
is simple but not strategy-proof. In our study, we use a trade
reduction mechanism, which is a more complex but strategy-
proof clearing method to ensure truthful participants to win
regardless of the bidding strategy.

III. BLOCKCHAIN PLATFORM

Ethereum [9] is the first smart contract platform designed to
overcome Bitcoin’s Turing incompleteness. Ethereum supports
the notion of smart contracts as well as data in blocks. A smart
contract is described in the Solidity specific programming
language and executed in Ethereum Virtual Machine (EVM).

Each time the smart contract is executed, a fee called gas
is required, and the gas is limited to avoid infinite loops. The
gas is the basic unit of work to execute a smart contract, and
all transactions in Ethereum must include gas limit and gas
price. The gas limit is an estimated maximum workload and
the gas price is the price for the unit operation.

Miners of the Ethereum network prioritize transaction val-
idation along with gas prices and ensure that the gas limits
of the requested transaction do not exceed the block gas
limit. The mining process, named Ethash, is designed to be
ASIC-resistant via the memory-hardness process of writing
a Directed Acyclic Graph (DAG). Creating the DAG takes
about 10 minutes and requires more than 1 GB of RAM. In
the meantime, Ethereum is changing the consensus algorithm
from the current PoW to PoS named Casper.

Another implementation of the PoS consensus algorithm is
Ethermint, which implements Ethereum on Tendermint [10].
Tendermint is a blockchain consensus algorithm of Cosmos,
which was born in 2014 to solve the problems of speed,
scalability, and excessive energy consumption of the PoW
consensus algorithm. Tendermint is a Byzantine fault tolerance
(BFT) based protocol in the PoS consensus mechanism.

Unlike a public blockchain such as Bitcoin and Ethereum,
Hyperledger Fabric [11] is a permissioned blockchain that can
be accessed only by authorized organizations. It is possible to
construct a faster and more scalable network than the public
blockchain. Hyperledger Fabric selects Kafka which is not
strictly a blockchain consensus algorithm but a distributed
messaging system developed by LinkedIn. Kafka utilizes the
Certificate Authority (CA) and endorsement policy for Crash
Fault Tolerance (CFT).

IV. ENERGY MARKET IMPLEMENTATION

The market is based on a discrete-time Multi-unit Double
Auction (MDA). In general, the double auction has several
mechanisms to determine the trading price. The average mech-
anism sets the trading price as the average of the lowest
bid and highest ask price at the clearing point where the
aggregated volumes are met. This mechanism is not strategy-
proof because the last buyer and seller can have an incentive
to offer a lower or higher price. In the VCG mechanism, the
lowest ask price at the critical point is taken for buyers and
the highest bid price is taken for sellers. This mechanism is
strategy-proof because changing prices doesn’t affect their own
trading price. However, it causes the budget balance problem
because the seller’s price is higher than the buyer’s price
so someone has to pay a subsidiary for the gap between
the matched bid price and matched ask price. To solve this
problem, the trade reduction mechanism is used in [12]. In
this mechanism, the matched price is determined as the lowest
bid price and highest ask price at the clearing point, but
bidders at those prices are excluded from the matching result
for strategy-proofness. This mechanism has the disadvantage
of being inefficient when there are few market participants,
however, it becomes efficient as the number of participants
increases.

Algorithm 1: Open

Input: timestamp
1 timeslot < timestamp;
2 emit Opened(timeslot);

Algorithm 2: Buy
Input: price, volume
1 bids[address] «+— Offer(price, volume);
2 if asks[address] then
3 | delete asks[address];
4 end

Algorithm 3: Sell
Input: price, volume
1 asks[address] < Offer(price, volume);
2 if bids[address] then
3 ‘ delete bids[address];
4 end

We implemented the trade reduction mechanism as a smart
contract on Ethereum. The smart contract consists of open,
buy, sell, and close functions. When the market is opened, the
Opened event is triggered and market participants who detect
the event send the desired price and volume by calling the
buy and sell functions. As shown in Algorithm 2, the buy
function stores the price and volume in the Offer structure
and uses a mapping type that takes the participant’s wallet

Algorithm 4: Trade reduction mechanism

Input: bids and asks
1 heapsort bids;
2 heapsort asks;
3 last bid volume « 0;
4 last ask volume <+ O;
s while number of bids and asks do

6 if bid price < ask price then
7 break;
8 else
9 matched ask price < ask price;
10 matched bid price < bid price;
1 if bid volume >= ask volume then
12 matched ask volume < last ask volume;
13 last ask volume < ask volume;
14 end
15 if bid volume <= ask volume then
16 matched bid volume <« last bid volume;
17 last bid volume < bid volume;
18 end
19 end
20 end

address as the key and the Offer structure as the value. To
allow market participants to change their bids while the market
is open, it is required to check the opposite offer (line 2-4).
The mapping type has the time complexity of O(1) and the
space complexity of O(n), while the array type has the time
complexity of O(n) and the space complexity of O(n) [13].
Therefore there is an advantage in terms of time complexity
when the market contract is deployed on Ethereum, and the
trend of the gas cost is constant in this function.

At the market closing time, the market operator calls the
close function. In the close function, bids with high prices
and asks with lower prices are matched first until the bid price
becomes smaller than the ask price or there is no more volume
to match. As shown in Algorithm 4, the close function uses the
heap to sort the prices (line 1-2) and determines the matched
price and volume according to the trade reduction mechanism
(line 3-20). Heapsort has a time complexity of O(nlogn) and
a space complexity of O(n). The trade reduction mechanism
compares bid and ask prices as the number of participants
to find the clearing point, so the time complexity is O(n).
Therefore, the gas cost of the close function follows the log-
linear trend.

V. TEST ENVIRONMENT

Among many blockchain platforms, Ethereum does not
offer the best performance, but it is the most mature. In the
case of the public blockchain, the parameters such as the
number of mining nodes or block gas limit cannot be adjusted.
Therefore we have established a separate private network. In
this section, we introduce the test environment to evaluate the
fundamental performance of the Ethereum private network and

the performance and cost of implementing the energy market
on top of it.

TABLE 1
TEST ENVIRONMENT
CPU 32 vCPUs @ 2.60GHz
Memory 110 GB RAM
Storage 650 GB SSD
Network linked via 1 Virtual Linux Bridge
etwo connected in 36.4 Gbits/s links

To set up the private network, we used the docker image of
Ethereum client, geth v1.9.5 on the Openstack virtual machine
having the resources described in TABLE I. The module that
injects transactions to the Ethereum client was implemented
using node.js v10.17.0 and web3 v1.2.1.

B ~> Ethereum Network

Docker Network

@ Ethereum Client
0 Docker Container
W Virtual Bridge

Fig. 1. Network Topology in Virtual Machine

As shown in Fig. 1, all nodes in the Docker network
are connected via a virtual bridge that supports 36.4 Gbit/s.
However, Ethereum clients are logically connected to 1 node
to form a star topology and inject all transactions to that
central node. The centralized traffic causes the overflow issue
in txpool and the limitation of the test duration. Therefore, in
the future, we plan to apply the mesh topology to compare the
performance according to the network topology and test the
distributed traffic model for a longer test period.

The test workflow is shown in Fig. 2. The shell script is
used to control the number of nodes and collect the state
of computing resources such as CPU, RAM, storage, and
network. The number of nodes is tested up to 30 nodes.
Docker provides a virtual environment to operate multiple
Ethereum clients independently. The block gas limit can be
changed while the Ethereum client is running, but it is not
applied immediately and is gradually changed. Therefore,
when creating a Docker container, the block gas limit must
be set in advance. The Node.js module controls the input rate
from 1 to 100 TPS and generates transactions. The latency
is measured as the difference in timestamp between send and
receipt. Transactions can be injected up to 5 minutes or up

:Shell Script ‘Docker :Node.js :CSV file
Start
Hthereum Nodes
Get
Docker Status
CPU, RAM,
Storage, Network
Execute Warkload
Send Tx
Receipt
——————— >
Send Tx
Receipt
——————— >
Ayerage Latency,
Block Time,
Output TPS

Fig. 2. Test Workflow for default contract.

to 1,000 transactions. If more than 1,000 transactions are
injected, the Ethereum client is overloaded due to the size
limit of the txpool. The output TPS is calculated based on
the duration and number of transactions. The results such as
output TPS, average latency, and block time are stored in CSV
format. The test was repeated 10 times and the result is the
average of 10 iterations.

VI. PERFORMANCE EVALUATION
A. Ethereum private network

In this section, the fundamental performance of the private
network is evaluated using the default contract, Ether transfer.
We transfer 1 Wei, the smallest unit from one account to
another. The complexity of this contract is O(1) and 21,000
gas is consumed per transaction. In Ethereum, the factors that
can affect the throughput and latency are block gas limits,
number of nodes, and input rate. The input rate is the number
of transactions sent to the Ethereum network per second, and
the throughput is the number of transactions mined on the
Ethereum network per second.

First, to analyze the effect of the block gas limit on through-
put, we fixed the number of nodes at 1, changed the block gas
limit from 1 million to 100 million gas, and measured the
throughput by varying the block gas limit. The transactions
were injected up to 1,000 with an input rate of 100 TPS.

100

I I I

90| |1 Node]
2 0|)
)
5 70)
< 60 .
=
e 50 |
= . *
E 40 [... ° ° ° ° [|
E 30 oiv® ° .
5ol ° |
E [X J

10(® 8

| | | | | | | | |
10 20 30 40 50 60 70 80 90 100
Block Gas Limit [10°]

Fig. 3. Maximum throughput against block gas limit with 1 node, for the
input rate of 100 TPS.

Fig. 3 shows how the maximum throughput changes with
different block gas limits. We observe that the throughput
increases as the block gas limit increases when the block
gas limit is small, but after 20 million gas the throughput is
not increased more than 50. The bottleneck can be explained
by the limit of the transaction pool of Ethereum clients. The
mining process in Ethereum can be modeled as a dual-queue
model, with a memory pool using M/M/1 and a mining
pool using the M /M /c queue [14]. The theoretical maximum
throughput E(T') can be calculated using:

. min(NB,Np)

B(T) =

1

where Np is the number of transactions per block, Np is
the size of the memory pool, and ¢z is block time. Ethereum
has a block gas limit, which is the limit of the gas cost that can
be contained in a block. The miners select a limited number
of transactions from the memory pool so that the accumulated
gas cost is below the block gas limit.

In the public network, the block gas limit is about 12 million
gas and the default complexity is 21,000 gas. In the private
network, we established, the block gas limit is set from 1
million to 100 million gas, which determines the number of
transactions that can fit in a block. Therefore, the number of
transactions per block is determined by the block gas limit
[Gp] and gas cost per transaction G, as below:

[GE]
G
In Geth v1.9.5, Np is 1,024 for non-executable transactions
and the target tp is 10-20 seconds and G is 21,000. There-

fore, the theoretical maximum throughput is 50 TPS when
[Gg] is increased enough and the block time is 20 seconds.

Np = 2

=
)

I I I [
—— Ideal Case
—eo— 1 Node
—m— 5 Nodes
| —e— 10 Nodes N
| | —=— 20 Nodes 3
—— 30 Nodes

Throughput [TPS]
= N W A Ul O 1 0 ©
I
|

1 2 3 4 5 6 7 8 9 10
Input Rate [TPS]

Fig. 4. Average throughput according to the input rate and the number of

nodes for the block gas limit of 60 million gas.

100 T T I T
9 |— Ideal Case
—e— 10 Nodes

80
70 + 1
60
50 1
40 + 1
30
20 + 1
10

Throughput [TPS]

| | | | | | | | |
10 20 30 40 50 60 70 80 90 100
Input Rate [TPS]

Fig. 5. Average throughput trend with 10 nodes at input rates higher than 10
TPS.

In order to analyze the impact of the number of nodes on
the throughput, we adjusted the number of nodes from 1 to 30
and measured the throughput according to the input rate. In the
ideal case, the transaction is mined as soon as the transaction
occurs, so the input rate and throughput are the same. The
block gas limit is set to 60 million gas and the difficulty is set
to 0x20000 in all tests.

As shown in the Fig. 4, the throughput gets closer to the
ideal case as the number of nodes increases. This is due to
the higher the number of nodes, the higher the hash rate, and
the higher the mining probability in the same difficulty. If the
hash rate is not sufficient for the difficulty, the block time will
increase. Longer block time cause more pending transactions
and consequently reduce throughput.

In Ethereum, the difficulty is automatically adjusted to keep

200

150

100

Latency [Sec]

50

| |
00 5 10 15 20 25 30

Number of Nodes

Fig. 6. Average latency according to the number of nodes for the input rate
of 10 TPS. Range bars show the standard deviation of the latency.

100 T \ \
90 | [9= 10 Nodes |
80 B
70 B
60 B
50 8
40 + 1
30
20
10

Latency [Sec]

| | | | | | | | |
10 20 30 40 50 60 70 80 90 100
Input Rate [TPS]

Fig. 7. Average latency according to input rates at 10 nodes.

the block time within 10-20 seconds by the Ethash algorithm.
However, if the block time is outside the target time of 10-20
seconds, only 0.05% of the current difficulty can be changed,
so it takes time to reach the appropriate difficulty level. In the
future, we plan to study how the change of difficulty according
to the change in the hash rate and number of nodes affects the
performance in the long term.

No matter how large the number of nodes, if the input rate
increases excessively, Ethereum cannot handle all the traffic.
To measure the peak throughput, the number of nodes is fixed
at 10 and the input rate is increased up to 100 TPS. Other
parameters such as block gas limit, number of transactions,
test time, number of tests are the same as in the previous test.

Fig. 5 shows that Ethereum can handle up to 40 TPS. This
result is much lower throughput than the [4], which can handle
up to 284 TPS. One of the reasons is the limit on the number

of input transactions. Since the txpool has a size of 1,024, only
1,000 transactions are injected to avoid missing transactions.
If the input rate is 100 TPS, the 1,000 transactions can be
injected within 10 seconds and the block time is typically 10 to
20 seconds. If the block time takes 20 seconds, the throughput
drops to 50 TPS. In the worst case, the first mining took 20
seconds, and if 999 transactions are included in the first block
but 1 transaction was not included, then the total mining time
can be delayed to 40 seconds and the throughput would be
further reduced to 25 TPS.

To test the effect of the number of nodes on latency, we
fixed the input rate as 10 TPS and increased the number of
nodes from 1 to 30. We observe that the latency decreases
and stabilizes as the number of nodes increases as shown in
Fig. 6. For example, with 1 node, the average latency is about
2 minutes, but the latency is decreased to 6 seconds when
the number of nodes is 30. In particular, the latency becomes
stable after 5 nodes and, in Fig. 4, the throughput is also stable
when the number of nodes is more than 5. These results can
be explained by the increasing probability of mining as the
number of nodes increases. Conversely, in Ethermint which is
based on PoS [6], the latency is less than 1 second with 1 node
but it is increased to 2 minutes when the number of nodes is
20. The main cause is due to the communication overhead for
consensus.

Fig. 7 shows that the latency increases with the input
rate. The latency is 10 seconds at a low input rate, however
increases to 30 seconds as the input rate increases. This
means that the Ethereum network is overloaded when the input
rate exceeds the maximum throughput which is 40 TPS. In
Ethermint, latency is not affected by the input rate, but in
the case of Hyperledger Fabric [11], the more input rate, the
shorter the block time, and the latency was reduced.

120 — ‘
@®average
n
100" M - :
E min
o
é 80 - L g 0 N
o o,]
g\ 607 -
@)
o} °
EREUS 'SR I GO S R P O T
E ®
20 Ll [® s & & |
O | |
0 200 400 600 800 1,000

Number of Offers

Fig. 8. Market cycle according to the number of bids. Average, maximum
and minimum values are measured by testing 20 iterations for each number
of offers.

I
40 | | —o— Latency ' 40
—o— QGas
3 :
2 E
§ 20 20 o
& 8
]
0 | | | | 0
0 200 400 600 800 1,000

Number of Offers

Fig. 9. Latency and gas consumption of close function according to the
number of bids

B. Energy Market Performance

In this section, we evaluated the minimum market cycle,
latency, and gas consumption to find out how fast the market
can operate and how many participants the market can ac-
commodate. The energy market we implemented was tested
by increasing the number of bids from 10 to 1,000 in 100
units as the complexity increases with the number of market
participants.

For testing the minimum market cycle, all bids are sent
as soon as the market is opened and the market is closed as
soon as all the bids are successfully recorded on Ethereum.
The market cycle is the difference between the time when
the market is requested to open and the time the market
close is recorded on Ethereum. The result is shown in Fig. 8
and the average value of 20 repeated experiments. As a
result, the market cycle could not be reduced to less than 10
seconds, the lower bound of the block time. On average, it was
possible to perform a market cycle of 1 minute, but considering
exceptional cases, it is safe to have a market cycle of 2 minutes
or more.

Fig. 9 shows the latency and gas consumption for the close
function, which accounts for most of the complexity of the
market contract. Gas consumption is shown to increase linearly
with the number of bids. This means that the complexity of
the closing function follows a logarithmic linear trend with the
number of bids as mentioned in section I'V. On the other hand,
latency is affected by the block time rather than the number
of bids and is measured randomly between 10 and 15 seconds
which is the range of the target block time in Ethereum.

C. Cost

To measure the minimum requirements for Ethereum client,
we captured CPU, memory, disk, and network utilization
when injecting 10 TPS of traffic across 10 nodes in the test
environment described in Section V. For the first 3 minutes,
the Ethereum client starts up and initializes, and unlocks the
accounts for preparing transaction transfer. After the initializa-
tion is complete, the Ethereum client is limited to allocating

TABLE II
RESOURCE UTILIZATION.

Average | Average Total Total | Total | Total

CPU Memory | Receive | Send | Write | Read

(%) (GB) MB) | MB) | (MB) | (MB)

Node 0 136.5 8.4 10.0 30.0 0.0 0.0
Node 1 106.2 1.7 1.0 0.4 0.0 1.0
Node 2 111.8 1.8 1.0 0.3 0.0 1.0
Node 3 111.6 1.9 1.0 0.3 0.0 0.0
Node 4 106.9 1.9 2.0 0.3 0.0 1.0
Node 5 109.9 1.5 1.0 0.3 0.0 0.0
Node 6 107.8 2.0 1.0 0.4 0.0 0.0
Node 7 109.2 2.0 1.2 0.3 0.0 0.0
Node 8 117.5 2.0 1.1 0.3 0.0 0.0
Node 9 108.8 2.0 1.2 0.3 0.0 0.0

1 CPU through the docker environment setting, and 100% of
the allocated CPU is used during the transaction.

Looking at the results in TABLE 1I, it can be seen that
Node 0 uses significantly more CPU and memory compared
to other nodes using 100% CPU and 2 GB of memory. This
is because all transactions are being injected through Node 0.
We tested 1,000 transactions of transferring Ether from 1,000
accounts to each other. The accounts need to be unlocked to
trigger the transactions, and the account unlocking uses a lot
of memory because the private key is decrypted and stored
in memory. It takes about 1 second and several MB of RAM
to decrypt one private key. In our tests, 1,000 accounts are
unlocked, thus several GB of RAM is consumed. The 2 GB
memory, which is common across all nodes, was used for the
Ethash algorithm. The Ethash is a memory-hard mechanism,
and stores several GB of Directed Acyclic Graph (DAG) in
memory. The part of the DAG is used for mining.

On the other hand, the Ethereum client consumes very little
network communication and disk resources. Node O used 30
MB to share the injected transactions to other nodes, and most
nodes used 1-2 MB to share mining-related information. For
disk resources, the test time is as short as 5 minutes, so it
utilizes memory rather than storing most of the information
on the disk.

VII. CONCLUSION

We implemented and evaluated the energy trading mar-
ketplace on Ethereum private network. The take-away of
this study is to present the reachable performance and min-
imum cost when operating the energy market based on the
blockchain and to help building a cost-effective energy market.

The evaluation provides insight into design tradeoffs and
performance bottlenecks in the energy market. For example,
in this paper, we found that on the Ethereum private network
consisting of 10 nodes, the native application shows a through-
put of 40 TPS with a latency of 10 seconds.

In case of the energy marketplace application based on the
double auction using trade reduction mechanism, the longest
market cycle is measured up to 2 minutes and 40 million
gas is required to process 1,000 bids. In general, the intraday
wholesale energy market in the EU and US operates on a

5- and 15-minute cycle market and the average number of
households supplied by a distribution transformer in residential
areas range from 40 to hundreds. Therefore, the performance
is sufficient to meet those key requirements of the local energy
market in terms of market cycle and number of participants.
The cost such as CPU and memory usage measurements
confirms that the minimum requirement to run an Ethereum
client is 1 core of 64-bit CPU and 2 GB of memory. In
general, it is known to have as many nodes as possible in
Ethereum because the number of nodes and CPUs represent
the security level of PoW. However, even if more nodes, CPUs,
and memory are used, it is difficult to increase throughput
or reduce latency due to Ethereum’s difficulty adjustment
mechanism, so it is important to have an appropriate number
of nodes. We argue that such insights help establishing cost-
effective energy markets developed on a blockchain.

REFERENCES

[1] M. Andoni, V. Robu, D. Flynn, S. Abram, D. Geach, D. Jenkins,
P. McCallum, and A. Peacock, “Blockchain technology in the energy
sector: A systematic review of challenges and opportunities,” Renewable
and Sustainable Energy Reviews, vol. 100, pp. 143-174, 2019.

[2] E. Mengelkamp, J. Girttner, K. Rock, S. Kessler, L. Orsini, and
C. Weinhardt, “Designing microgrid energy markets: A case study: The
brooklyn microgrid,” Applied Energy, vol. 210, pp. 870-880, 2018.

[3] P. Ledger, “Power ledger white paper,” Power Ledger Pty Ltd, Australia,
White paper, pp. 16-21, 2017.

[4] T. T. A. Dinh, J. Wang, G. Chen, R. Liu, B. C. Ooi, and K.-L.
Tan, “Blockbench: A framework for analyzing private blockchains,” in
Proceedings of the 2017 ACM International Conference on Management
of Data, 2017, pp. 1085-1100.

[5] B. E Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking cloud serving systems with ycsb,” in Proceedings of the
1st ACM symposium on Cloud computing, 2010, pp. 143-154.

[6] K.-L. Brousmichc, A. Anoaica, O. Dib, T. Abdellatif, and G. Deleuze,
“Blockchain energy market place evaluation: an agent-based approach,”
in 2018 IEEE 9th Annual Information Technology, Electronics and
Mobile Communication Conference (IEMCON). 1EEE, 2018, pp. 321—
327.

[7]1 M. Foti and M. Vavalis, “Blockchain based uniform price double
auctions for energy markets,” Applied Energy, vol. 254, p. 113604, 2019.

[8] D. Han, C. Zhang, J. Ping, and Z. Yan, “Smart contract architecture for
decentralized energy trading and management based on blockchains,”
Energy, p. 117417, 2020.

[9] V. Buterin et al., “A next-generation smart contract and decentralized

application platform,” white paper, vol. 3, no. 37, 2014.

J. Kwon, “Tendermint: Consensus without mining,” Draft v. 0.6, fall,

vol. 1, no. 11, 2014.

E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis,

A. De Caro, D. Enyeart, C. Ferris, G. Laventman, Y. Manevich et al.,

“Hyperledger fabric: a distributed operating system for permissioned

blockchains,” in Proceedings of the Thirteenth EuroSys Conference,

2018, pp. 1-15.

J. Horta, D. Kofman, D. Menga, and A. Silva, “Novel market approach

for locally balancing renewable energy production and flexible demand,”

in 2017 IEEE International Conference on Smart Grid Communications

(SmartGridComm). 1EEE, 2017, pp. 533-539.

A. Jha, R. K. Bhattacharjee, M. Nandi, and F. A. Barbhuiya, “A frame-

work for maintaining citizenship record on blockchain,” in Proceedings

of the 2019 ACM International Symposium on Blockchain and Secure

Critical Infrastructure, 2019, pp. 29-38.

R. A. Memon, J. P. Li, and J. Ahmed, “Simulation model for blockchain

systems using queuing theory,” Electronics, vol. 8, no. 2, p. 234, 2019.

(10]

(11]

[12]

[13]

[14]

