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Bertrand Mercier March 2, 2021 Introduction

To study the Riemann problem we need an equation of state for water in the pure liquid case, in the diphasic case and in the pure steam case. To get simple computations, many people are considering two different stiffened gas equations of state (EOS) : one for the liquid phase and one for the steam phase, and use thermodynamic rules to combine them in the diphasic domain (see e.g. [START_REF] Barberon | Finite volume simulation of cavitating flows[END_REF]). In the present paper, we rather use a table, for the diphasic domain, giving ܶ, ሺܶሻ, ߬ ሺܶሻ, ߬ ௩ ሺܶሻ, ߝ ሺܶሻ, ߝ ௩ ሺܶሻ, ݏ ሺܶሻ, ݏ ௩ ሺܶሻ

where ሺܶሻ is the saturation pressure, ߬ ሺܶሻ, .ݏ݁ݎ‪ሺ ߬ ௩ ሺܶሻሻ is the specific volume at saturation in the liquid (resp. steam) phase, ߝ ሺܶሻ, ߝ ௩ ሺܶሻ (resp. ݏ ሺܶሻ, ݏ ௩ ሺܶሻ)are similarly the specific energy (resp. entropy) at saturation. We show how to use our table to derive an EOS in the diphasic domain. ( §1).

In §2, we show how to combine our diphasic EOS with a stiffened gas EOS in the pure liquid domain and a perfect gas EOS in the steam domain.

In §3 we address the solution of the Riemann problem with our combined equations of state. We show that the Hugoniot curves we obtain are convex, and provide a general method for solving the Riemann problem. Finally we give some specific examples in connection with depressurization.

Method A : to compute , ܶ and ,ݏ when ߬ and ߝ are given :

Let ݕ ఛ ሺܶሻ = ൫߬ -߬ ௩ ሺܶሻ൯ ቀ߬ ሺܶሻ -߬ ௩ ሺܶሻቁ ൗ ݕ ఌ ሺܶሻ = ൫ߝ -ߝ ௩ ሺܶሻ൯ ቀߝ ሺܶሻ -ߝ ௩ ሺܶሻቁ ൗ
To compute ܶ we just have to solve the equation ݕ ఛ ሺܶሻ = ݕ ఌ ሺܶሻ. This is a non linear equation with one unknown ܶ which can be easily solved by

• finding ݅ such that ݕ ఛ ሺܶ ሻ > ݕ ఌ ሺܶ ሻ and ݕ ఛ ሺܶ ାଵ ሻ < ݕ ఌ ሺܶ ାଵ ሻ ܶ ≤ ߠ ≤ ܶ ାଵ
• solving a second degree equation to find ߠ such that ܶ = ሺ1 -ߠሻܶ ାଵ + ߠܶ and then .

(Indeed, we have to solve

൫߬ -߬ ௩ ሺߠሻ൯ ቀߝ ሺߠሻ -ߝ ௩ ሺߠሻቁ = ൫ߝ -ߝ ௩ ሺߠሻ൯ ቀ߬ ሺߠሻ -߬ ௩ ሺߠሻቁ
where the functions ߬ ሺߠሻ, ߬ ௩ ሺߠሻ, ߝ ሺߠሻ and ߝ ௩ ሺߠሻ are all linear in ߠ ) • Let ݕ * denote the common value of ݕ ఛ ሺܶሻ and ݕ ఌ ሺܶሻ we let

ݏ = ݕ * ݏ ሺܶ ሻ + ሺ1 -ݕ * ሻ ݏ ௩ ሺ ܶሻ∎
Method B : to compute , ܶ and ߝ, when ߬ and ݏ are given :

In the same way, we solve

ݕ ఛ ሺܶሻ = ݕ ௦ ሺܶሻ = ݕ * where ݕ ఛ ሺܶሻ = ൫߬ -߬ ௩ ሺܶሻ൯ ቀ߬ ሺܶሻ -߬ ௩ ሺܶሻቁ ൗ ݕ ௦ ሺܶሻ = ൫ݏ -ݏ ௩ ሺܶሻ൯ ቀݏ ሺܶሻ -ݏ ௩ ሺܶሻቁ ൗ
The details are left to the reader. ∎ Method C : to compute ߝ, when ߬ and  are given : This is still easier :  being given, first we evaluate ܶ and then compute

ݕ * = ൫߬ -߬ ௩ ሺܶሻ൯ ቀ߬ ሺܶሻ -߬ ௩ ሺܶሻቁ ൗ So that ߝ = ݕ * ߝ ሺܶሻ + ሺ1 -ݕ * ሻ ߝ ௩ ሺ ܶሻ. ∎

Test of our equation of state.

We let ߝ = ݂ሺ߬, ݏሻ : a well-known result in thermodynamics (see e.g. [START_REF] Faccanoni | Étude d'un modèle fin de changement de phase liquide-vapeur[END_REF]) is that we should have To check that this is the case, we have selected ݏ = 4.4957 and 5.81494≤ ߬ ≤ 10.46689. We compute the derivative of ߝ w.r.t ߬ both by forward and backward difference. The results given in Fig. 1 show a rather good agreement that make us confident with the validity of our equation of state.

Sound speed

We notice on Fig. 1 that, if we write  = ݂ሺ߬, ݏሻ, for fixed ,ݏ ݂ሺ߬, ݏሻ is a decreasing function of ߬, so that the sound speed exists :

We have

(2) ܿ = ߬ ඥ-߲ ߲߬ ⁄
provided we use international units for each variable.

When we select ߬, ߝ as the primitive thermodynamic variables, we use that

(3) ܿ = ߬ ඥ. ߲ ߲ߝ ⁄ -߲ ߲߬ ⁄
also in international units.

In the following test we replace partial derivatives by finite differences, and we get the results given in We notice that the sound speed in a diphasic mixture is much lower than in the liquid phase, where it is of the order of 800 to 1200 m/s. This result is well known. §2 Equation of state for the liquid phase For the pure liquid phase, we shall use a stiffened gas EOS. [START_REF] Faccanoni | Étude d'un modèle fin de changement de phase liquide-vapeur[END_REF] (4)

 = ߛ- ஶ + ሺߛ -1ሻሺߝ -ݍሻ/߬ From(3), we have ܿ = ߬ ඥ. ߲ ߲ߝ ⁄ -߲ ߲߬ ⁄
From (4) we get

߲ ߲ߝ ⁄ = ሺߛ -1ሻ/߬ ߲ ߲߬ ⁄ = -ሺߛ -1ሻሺߝ -ݍሻ/߬ ଶ ܿ ଶ = ߬ ଶ ሺ. ߲ ߲ߝ ⁄ -߲ ߲߬ ⁄ ሻ = ߬ ଶ ሺ-ߛሺߛ -1ሻ  ஶ ߬ ⁄ + ߛሺߛ -1ሻሺߝ -ݍሻ/߬ ଶ ሻ = ߛ߬ሺ-ߛ ஶ +  ஶ + ሺߛ -1ሻሺߝ -ݍሻ/߬ሻ = ߛሺ +  ஶ ሻ߬ So that we get ܿ = ඥߛሺ+ ஶ ሻ߬

Remark :

In [START_REF] Faccanoni | Étude d'un modèle fin de changement de phase liquide-vapeur[END_REF] Faccanoni shows that, when ߬ and ݏ are selected as the primitive variables, the SG equation of state can be written

 = - ஶ + ሺߛ -1ሻ ߬ ିఊ exp ሺሺݏ -݉ሻ ܥ ௩ ሻ ⁄
Along the isentrope, we have

+ ஶ = ሺ +  ஶ ሻ ቀ ఛ బ ఛ ቁ ఊ so that డ డఛ  = డ డఛ ሺ +  ஶ ሻ ቀ ఛ బ ఛ ቁ ఊ = ሺ-ߛሻ߬ ିଵ ሺ +  ஶ ሻ ሺ߬ ሻ ఊ ߬ ିఊ = ሺ-ߛሻ߬ ିଵ +‪ሺ ஶ ሻ
Another way to compute the sound speed is to use (2) which gives

ܿ = ߬ ඥ-߲ ߲߬ ⁄ = ඥߛሺ+ ஶ ሻ߬. ∎
In what follows, we shall select  = 5.664 ܽܲܯ and ߬ = 1.3083 ݃݇/ܮ which correspond to saturated liquid water at ܶ = 545 ,ܭ and ݏ = 2.9935 kJ/kg/K . To define our equation of state we just have to select  ஶ and ߛ.

We have selected  ஶ = 186 ܽܲܯ and ߛ = 2.79, but other choices are possible.

Our sub-saturated fluid will be initially at specific volume ߬ ଵ = 1.30098 .݃݇/ܮ We complement our isentrope in the two-phase mixture domain by using the second method described in §1. We get the result shown on Fig. 3. Obviously the isentrope is continuous but there is a strong slope discontinuity between both parts. This corresponds to a strong discontinuity of the sound speed ܿ (see Fig 4). We then have ݑ ோ = ݑ = 0 and we shall assume that  ோ >  . We anticipate that we shall have a 1-shock (propagating to the left) and a 3-rarefaction wave propagating to the right. For t > 0 we shall have an intermediate constant state ݑ * ,  * , itself subdivided in 2 parts separated by a contact discontinuity. On the left (resp. on the right) of the contact discontinuity, we shall have ߬ = ߬ ଵ (resp. ߬ = ߬ ଶ ).

We have 4 unknowns ݑ * ,  * , ߬ ଶ , ߬ ଵ , and we need 4 scalar equations. First we shall use the fact that the following Riemann invariant is constant along a 3-rarefaction wave. We remind the reader that in Eulerian coordinates

߲ ݐ߲ ቆ ߬ ݑ ߝ ቇ + ൭ ݑ -߬ 0 ߬  ఛ ݑ ߬  ఌ 0 ߬ ݑ ൱ ߲ ݔ߲ ቆ ߬ ݑ ߝ ቇ = 0
Let us call λ ଵ , λ ଶ and λ ଷ the 3 eigenvalues of the matrix of this hyperbolic sytem they satisfy

ሺݑ -λሻ ଷ + ߬ ଶ .  ఛ . ሺݑ -λሻ -߬ ଶ . .  ఌ . ሺݑ -λሻ = 0 So that ሺݑ -λሻሾሺݑ -λሻ ଶ -߬ ଶ ሺ.  ఌ - ఛ ሻሿ = ሺݑ -λሻሾሺݑ -λሻ ଶ -ܿ ଶ ሿ
And we get the well-known result that λ ଵ = ݑ -ܿ, λ ଶ = ,ݑ λ ଷ = ݑ + ܿ.

Riemann invariants :

uL, pL, τL uR, pR, τR

m/s L/kg
We check that

ݎ ଷ = ൭ -߬ ܿ  ߬ ൱ is the eigenvector associated to λ ଷ indeed ൭ -ܿ -߬ 0 ߬  ఛ -ܿ ߬  ఌ 0 ߬ -ܿ ൱ ൭ -߬ ܿ  ߬ ൱ = ൭ 0 -߬ ଶ  ఛ -ܿ ଶ +   ఌ ߬ ଶ 0 ൱ = ൭ 0 0 0 ൱ A function ܴ = ܴሺ߬, ,ݑ ߝሻ is a 3-Riemann invariant iff ∇ܴ. ݎ ଷ = 0 i-e -ܴ߬ ఛ + ܿ ܴ ௨ + ߬ ܴ ఌ = 0 Then ܴ = ݑ -݃ሺ߬ሻ is a 3-Riemann invariant iff ܿ = ߬ ݃ ᇱ ሺ߬ሻ or ݃ ᇱ ሺ߬ሻ = ܿ ߬ ⁄
As a second Riemann invariant we can choose the entropy ݏ which is constant in a rarefaction wave.

Let ݏ ோ denote the entropy of the right state, we let

ܿ ோ ሺ߬ሻ = ܿሺ߬, ݏ ோ ሻ We can choose ݃ሺ߬ሻ =  ܿ ோ ሺߪሻ ߪ ⁄ ݀ߪ ఛ ఛ బ
We now get our first two equations :

(5)

ݑ * -݃ሺ߬ ଶ ሻ -൫ݑ ோ -݃ሺ߬ ோ ሻ൯ = 0 (6)  * -݂ሺ߬ ଶ ሻ = 0
Remark : 1°/ By using Method B introduced in §1, we can tabulate the isentrope associated to ݏ ோ . More precisely, we compute a 5-column table such that we find ߬, , ,ݕ ܿ and ݃ in the 5 columns. So that we have tabulated values for ݃ሺ߬ሻ, but also for  = ݂ሺ߬ሻ By assuming linear interpolation, we can also evaluate ݃ ᇱ ሺ߬ሻ and ݂ ᇱ ሺ߬ሻ. 2°/ Knowing the velocity ݑ ோ ,for all values of ߬, we can compute ݑ = ݑሺ߬ሻ by using ݑሺ߬ሻ -݃ሺ߬ሻ -൫ݑ ோ -݃ሺ߬ ோ ሻ൯ = 0.

We still call "isentrope" the so obtained curve ߬ → ሼݑሺ߬ሻ, ሺ߬ሻሽ. ∎

Hugoniot curves. Now what happens along the 1-shock ?

We have the Rankine-Hugoniot relations. Let ߪ denote the speed of the shock, we should have ( 7)

ߩ ଵ ݑ ଵ -ߩ ݑ = ߪሺߩ ଵ -ߩ ሻ (8) ሺߩ ଵ ݑ ଵ ଶ +  * ሻ -ሺߩ ݑ ଶ +  ሻ = ߪሺߩ ଵ ݑ ଵ -ߩ ݑ ሻ (9) ሺߩ ଵ ܧ ଵ +  * ሻݑ * -ሺߩ ܧ +  ሻݑ = ߪሺߩ ଵ ܧ ଵ -ߩ ܧ ሻ
where (noting

ݑ ଵ = ݑ * ሻ ܧ ଵ = ߝ ଵ + ଵ ଶ ݑ ଵ ଶ ܧ = ߝ + ଵ ଶ ݑ ଶ
Proceeding as DESPRÉS B. Numerical Methods for Eulerian and Lagrangian Conservation Laws Springer International Publishing, 2017, p.155, we introduce :

݆ = ߩ ሺߪ -ݑ ሻ = ߩ ଵ ሺߪ -ݑ ଵ ሻ So that ݑ = ߪ -݆߬ and ݑ ଵ = ߪ -݆߬ ଵ ݑ ଵ -ݑ = ݆ሺ߬ -߬ ଵ ሻ or ݆ = -ሾݑሿ/ሾ߬ሿ
Then from (8) we get

ሺߩ ଵ ݑ ଵ ଶ +  ଵ ሻ -ሺߩ ݑ ଶ +  ሻ = ߩ ଵ ߪ ݑ ଵ -ߩ ݑߪ = ሺߩ ଵ ݑ ଵ + ݆ሻ ݑ ଵ -ሺߩ ݑ + ݆ሻ ݑ = ߩ ଵ ݑ ଵ ଶ + ݑ݆ ଵ -ߩ ݑ ଶ -jݑ
So that we get :

 ଵ - = ݆ሺݑ ଵ -ݑ ሻ or ݆ = ሾሿ/ሾݑሿ
We also have

(10) ሺ ଵ - ሻ ௨ భ ା௨ ಽ ଶ = ݆ ௨ భ మ ି௨ ಽ మ ଶ
Finally from (9) we get

ሺߩ ଵ ܧ ଵ +  ଵ ሻݑ ଵ -ሺߩ ܧ +  ሻݑ = ߪሺߩ ଵ ܧ ଵ -ߩ ܧ ሻ = ሺߩ ଵ ݑ ଵ + ݆ሻܧ ଵ -ሺߩ ݑ + ݆ሻܧ  ଵ ݑ ଵ - ݑ = ݆ሺܧ ଵ -ܧ ሻ Finally ܧ ଵ -ܧ = ߝ ଵ -ߝ + ଵ ଶ ሺݑ ଵ ଶ -ݑ ଶ ሻ So that  ଵ ݑ ଵ - ݑ = ݆ሺܧ ଵ -ܧ ሻ = ݆ሺߝ ଵ -ߝ ሻ + ݆ ௨ భ మ ି௨ ಽ మ ଶ = ݆ሺߝ ଵ -ߝ ሻ + ሺ ଵ - ሻ ௨ భ ା௨ ಽ ଶ ݆ሺߝ ଵ -ߝ ሻ =  ଵ ݑ ଵ - ݑ -ሺ ଵ - ሻ ௨ భ ା௨ ಽ ଶ = ଵ ଶ ሾ ଵ ݑ ଵ - ݑ - ଵ ݑ +  ݑ ଵ ሿ = ଵ ଶ ሺݑ ଵ -ݑ ሻሺ ଵ +  ሻ = ଶ ሺ߬ -߬ ଵ ሻሺ ଵ +  ሻ Hence (11) ሺߝ ଵ -ߝ ሻ + ଵ ଶ ሺ ଵ +  ሻሺ߬ ଵ -߬ ሻ = 0
Since ߝ ଵ = ݂ሺ߬ ଵ ,  ଵ ሻ equation (11) defines a (so called Hugoniot) curve in the plane (߬, ሻ.

We denote by

 ଵ =  ுை ሺ߬ ଵ ሻ
the relation so obtained between  ଵ et ߬ ଵ . If ݆ < 0 we have a 1-shock, whereas with ݆ > 0 a 3-shock (and for ݆ = 0 we have a contact discontinuity).

We have ݆ ଶ = -ሾሿ/ሾ߬ሿ which proves that the Hugoniot curve is decreasing.∎ Remark : Lax's entropy condition for a 1-shock requires that ߪ < ݑ -ܿ ܽ݊݀ ݑ ଵ -ܿ ଵ < ߪ < ݑ ଵ For a 3-shock, we have

ݑ ଵ + ܿ ଵ < ߪ ܽ݊݀ ݑ < ߪ < ݑ + ܿ . ∎

Convexity of the Hugoniot curves

An example is shown in [START_REF] Barberon | Finite volume simulation of cavitating flows[END_REF] where the Hugoniot curves both in the ሼ߬, ሽ plane and the ሼ,ݑ ሽ plane are not convex. This is not what we find here, but we are not in the same situation, since mass exchange between phases are possible. We shall consider 2 examples :

-The first one is a case where the Hugoniot curve is crossing the saturation curve on the steam side -The second one is a case where the Hugoniot curve is crossing the saturation curve on the liquid side ݈݁݉ܽݔܧ 1 ∶ On Fig. 6, we represent the Hugoniot curve crossing the saturation line in ሼ34.53 ,݃݇/ܮ 5.664 ܽܲܯሽ. 

L/kg

MPa

The steam saturation line is in grey. The Hugoniot curve is made of a blue part (in the diphasic domain) and a red part (in the pure steam domain. Both seem to be tangent. In any case the curve is convex. We have assumed that steam is a perfect gas with ߛ = 1.21 but it does not change significantly if we take ߛ = 1.4. For the pure liquid phase we have selected ߛ = 2 and  ஶ = 215,863 .ܽܲܯ The Hugoniot curve in the diphasic (resp. liquid) domain is in blue (resp. grey). The saturation curve is in red.

We see that the Hugoniot curve is continuous, but it has a slope discontinuity when it crosses the saturation curve. However it is convex. We proceed as follows :

1. We build the isentrope starting from ߬ ோ ; ܲ ோ ; ݑ ோ 2. We build the Hugoniot curve starting from ߬ ; ܲ ; ݑ 

Fig. 1

 1 Fig.1 pressure p vs -߲ߝ ߲߬ ⁄

Fig 2

 2 Fig 2 Sound speed evaluated either with (2) or (3) as a function of the steam mass fraction x (there are 2 superposed curves)

Fig 3

 3 Fig 3 Isentrope in a ߬,  diagram. The SG part is shown in blue. The diphasic part in red.

Fig 4

 4 Fig 4 Sound speed ܿ along the isentrope ݏ = 2.9935 kJ/kg/K. §3 : Solution of the Riemann problem with real equation of state We shall first consider the case where we have the same diphasic fluid with two different states separated by a diaphragm which is to be removed at time t=0.

Fig. 5

 5 Fig.5 Hugoniot curve and Isentrope starting from the same point ሼ߬ ,  ሽ. On Fig. 5 we compare the isentrope passing at ߬ = 313.7083 ݃݇/ܮ ; ܲ = 0.15 ܽܲܯ ; ݑ = 0 and the Hugoniot curve starting at the same point. (ܲ ଵ in MPa and ߬ ଵ in L/kg). We notice that both curves are very close to each other around the point ሼ߬ , ܲ ሽ, but this is a well known result. Note that on Fig 5 the isentrope starts from a saturated liquid state ሼ1.3083 ,݃݇/ܮ 5.664 ܽܲܯሽ Remark : From relations ݆ = -ሾݑሿ/ሾ߬ሿ and ݆ = ሾሿ/ሾݑሿ we get that ሾሿሾ߬ሿ + ሾݑሿ ଶ = 0. The parameter ݆ is called the Lagrangian velocity of the shock.

Fig 6

 6 Fig 6 Hugoniot curve crossing the steam saturation line in ሼ 34.53 ,݃݇/ܮ 5.664 ܽܲܯሽ in ሼ߬, ሽ axes.

Fig 7 2 ∶

 72 Fig 7 Hugoniot curve in ሼ,ݑ ሽ axes for example 1. ݈݁݉ܽݔܧ 2 ∶ On Fig. 8, we represent the Hugoniot curve crossing the saturation line in ሼ1,3083 ,݃݇/ܮ 5.664 ܽܲܯሽ.

Fig 9 :

 9 Fig 9 : Graphical solution to the Riemann Problem in a diagram ሼ,ݑ ሽ Computer solution of the Riemann Problem.We proceed as follows :1. We build the isentrope starting from ߬ ோ ; ܲ ோ ; ݑ ோ 2. We build the Hugoniot curve starting from ߬ ; ܲ ; ݑ 3. We define a function ߬ ଶ → ݂ሺ߬ ଶ ሻ such that ݂ሺ߬ ଶ ሻ = ݑ ீ -ݑ where a. ሼ߬ ଶ , ܲ * ሽ is on the same isentrope as ሼ߬ ோ , ܲ ோ ሽ b. ݑ = ݃ሺ߬ ଶ ሻ + ൫ݑ ோ -݃ሺ߬ ோ ሻ൯ = 0 c. ሼ߬ ଵ , ܲ * ሽ is on the same Hugoniot curve as ሼ߬ , ܲ ሽ

3 .

 3 We define a function ߬ ଶ → ݂ሺ߬ ଶ ሻ such that ݂ሺ߬ ଶ ሻ = ݑ ீ -ݑ where a. ሼ߬ ଶ , ܲ * ሽ is on the same isentrope as ሼ߬ ோ , ܲ ோ ሽ b. ݑ = ݃ሺ߬ ଶ ሻ + ൫ݑ ோ -݃ሺ߬ ோ ሻ൯ = 0 c. ሼ߬ ଵ , ܲ * ሽ is on the same Hugoniot curve as ሼ߬ , ܲ ሽ d. ݑ ீ = ݑ -ඥሺ߬ -߬ ଵ ሻሺܲ * -ܲ ሻ 4. We use the dichotomy method to solve ݂ሺ߬ ଶ ሻ = 0 Example 3: With ߬ ோ = 1.3083 ݃݇/ܮ ; ܲ ோ = 5.664 ܽܲܯ ; ݑ ோ = 0 ߬ = 313.7083 ݃݇/ܮ ; ܲ = 0.15 ܽܲܯ ; ݑ = 0 we get |݂ሺ߬ ଶ ሻ| < 10 ିଵ in 40 steps. We get : ߬ ଶ = 49.5734 L/kg ߬ ଵ = 54.9847 L/kg ܲ * = 0.80977 MPa ݑ * = ݑ ீ = ݑ = -413.137m/sWe give below a plot of the solution of this Riemann problem at t = 2.5ms.

(

  Fig 10 Solution to the Riemann Problem at t=2.5 ms. Specific volume L/kg wrt x (m).

Fig 11

 11 Fig 11 Solution to the Riemann Problem at t=2.5 ms. Pressure in MPa wrt x (m)..

  

  

  

  

  

  

To graphically solve the Riemann problem, we just have to find the intersection in the plane ሼ,ݑ ሽ of the "isentrope" starting from the state ሼ߬ ோ ,  ோ , ݑ ோ ሽ and the "Hugoniot" starting from the state ሼ߬ ,  , ݑ ሽ.

Here is an example : We start from ሼ1.4746 ܮ ݇݃ ⁄ , ,ܽܲܯ51 0 ݉/ݏሽ on the right and ሼ600. We note that the rarefaction wave propagates relatively slowly (~50 m/s) to the right.

We also note that, on this specific case, ߬ has a weak jump at the contact discontinuity. This is due to the fact that we have selected the right state and the left state with the same entropy. We can see that the rarefaction wave is made of 2 parts :

-a fast wave propagating at about 800 m/s in the pure liquid phase which reduces its pressure from 15 MPa to the saturation pressure (11.4 MPa) on the same isentrope. -a slow wave propagating at about 50 m/s in the high pressure domain. This phenomenon explains some facts about the Chernobyl accident (see [START_REF] Mercier | A simplified analysis of the Chernobyl accident[END_REF] ). 

Conclusion :

We have shown that even though we need a table with 8 columns and 99 lines (only), we obtain a sufficiently accurate EOS to reproduce the depressurization process.