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In memory of Dr Hiroyuki Sorimachi, a pivotal researcher in the calpain field 

This review was written in memory of our late friend, Dr Hiroyuki Sorimachi, who, following 

the steps of his mentor Koichi Suzuki, a pioneer in calpain research, has made tremendous 

contributions to the field. During his career, Hiro also wrote several reviews on calpain, the last 

of which, published in 2016, was comprehensive [1]. In this manuscript, we decided to put 

together a review with the basic information a novice may need to know about calpains. We 

also tried to avoid similarities with previous reviews and reported the most significant new 

findings, at the same time highlighting Hiro’s contributions to the field. The review will cover 

a short history of calpain discovery, the presentation of the family, the life of calpain from 

transcription to activity, the human diseases caused by calpain mutations and their therapeutic 

perspectives. In addition, the readers can find in Table 1 the listing of all the most relevant 

reviews in calpain research according to different subjects as well as the link of two online 

resources created by Dr. Sorimachi. 

Subject Reference 

Online resources CaMPDB: a resource for calpain and modulatory proteolysis http://.calpain. 

org/ [2] 

Calpain Research Portal, http://calpain.net/index.html 

Whole calpain family [1, 3-11] 

Physiological system [12] (Calpain-1 and -2 in the brain); [13] (Calpain-14 oesophagus)  

Individual calpains [14, 15]; [16]  (Calpain-3) 

Modulators of calpain 

activity 

[1, 17] 

Inhibitors [18] (patent review); [17, 19] (cysteine protease inhibitors) 

Crystal structures and 

domains/calpain 

activation 

[20-23] 

Pathological mutations in 

calpains 

[24] (CAPN3, CAPN10); [25] 

 

Table 1: Calpain review articles  

THE HISTORY OF CALPAIN FAMILY DISCOVERY. 

The calpain system (Clan CA, family C02; EC 3.4.22.17) is recognized as the third proteolytic 

system of the cell besides the lysosomal and proteasomal systems. In the following paragraph, 

we provide an historical perspective on calpain discovery. This would help a novice in the field 
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understand how the research on this class of proteins developed during the years, and what 

underlies the complexity of defining this superfamily. The first Ca2+-dependent cysteine 

protease discovered is the one known today as calpain-2. In 1964, Guroff partially isolated 

calpain-2 from rat brain as a novel ubiquitous protease able to hydrolyse casein in a Ca2+-

dependent manner [26]. The same year, Meyer, Fisher and Krebs identified the same protein as 

a factor that activates phosphorylase kinase, and named it KAF (kinase activating factor). In 

1968, KAF was then described as a Ca2+-dependent proteolytic enzyme independently by 

Huston & Krebs and Drummond & Duncan [27-29]. In 1972, Goll’s group re-identified (for 

the third time) a protein also corresponding to the current calpain-2 as Ca2+-activated 

sarcoplasmic factor (CaSF) able to hydrolyse Z-lines [30]. Finally, in 1978, Imahori and 

colleagues purified this 80kD protease to homogeneity for the first time from chicken skeletal 

muscle and called it Ca2+-activated neutral protease or CANP [31]. The same year, Murachi’s 

group reported the occurrence of an inhibitor for CANP in rat liver known today as calpastatin, 

and partially purified it [32]. During this time, it was also demonstrated by protein purification 

and Ca2+-activation assays that at least two different isoforms of Ca2+-dependent proteases were 

present, with different sensitivities to Ca2+ concentrations [33]. In 1981, Murachi and 

colleagues reviewed all the literature of that time on this class of proteins and proposed that this 

new group of proteases, which requires an SH-reducing agent and the presence of Ca2+ for full 

activity, should be called calpain. “Cal” stands for calcium, like in calcitonin or calmodulin, 

whereas “-pain” stands for the resemblance with well-known thiol proteases such as papain and 

clostripain [34]. During this period, it was also discovered that both these proteases exist as the 

larger part of a heterodimer in association with a smaller subunit of 30kD (known today as 

calpain subunit 1 or CAPNS1) [35]. The determination that the active site of calpain contained 

a cysteine only arrived in 1983 through protein sequencing [36]. One year after, these authors 

also published the first nucleotide sequence of a calpain, following cloning of the cDNA of 
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what was named a calcium-dependent protease or CANP (probably the chicken CAPN11, that 

seems to be ubiquitous in birds) [37, 38]. This finding was the first to show that calpains contain 

domains sharing marked similarity to papain-like and calmodulin-like proteins [37]. 

As mentioned above, two different isoforms of these proteases were found, both ubiquitous, but 

with different sensitivities to Ca2+ [39, 40]. Interestingly, the two main research groups working 

on this new class of proteases kept using different names, creating confusion in the literature. 

Imahori’s group named them µ-CANP and m-CANP based on the Ca2+ concentration necessary 

for their full activity (micro- and milli-molar, respectively) [40]. On the other side, Murachi’s 

group used the names calpain-1 for the former and calpain-2 for the later [39].  

The year 1989 changed the calpain field forever, when Sorimachi and colleagues, by screening 

human and rat muscle cDNA libraries, discovered and cloned a non-ubiquitous calpain for the 

first time, whose expression was mostly restricted to skeletal muscle, and called it p94 (known 

today as calpain-3) in reference to its molecular weight [41]. This finding led to the discovery 

of another tissue-specific calpain (known today as calpain-8) with expression restricted mainly 

in the stomach, suggesting the existence of a protease family with several members [42]. For 

this reason, Suzuki’s group proposed a new nomenclature: µ-CL and m-CL for µ- and m-

Calpain large subunits respectively, 30K for the small subunit and the analogical name nCL-x 

for the newly discovered members (where nCL stands for novel Calpain Large subunits and x 

for the associated number) [3, 42]. Calpain-3 was then named nCL-1 and the future calpain-8 

nCL-2. However, this nomenclature was never adopted outside of their group and this again 

created confusion in the literature. Since these first findings, many other calpain members have 

been discovered. Their first appearance in the literature is listed in Table 2. 

Today, the nomenclature uses “CAPN” for the genes and “calpain” for the protein products, 

followed by an analogical number to identify the specific member of the protein family (eg. 

CAPN1 and calpain-1) [7]. As is clear from Table 2, the analogical number in the gene/protein 
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name does not correspond to the order of discovery. This results from the fact that some 

members of the family (CAPN8, 9, 15) were named differently than “calpain” at the time of 

their discovery while the Human Genome Nomenclature Committee was including consecutive 

numbers for other calpain members (Table 2 and Figure 1). Another discrepancy is due to the 

fact that CAPNS1 was incorrectly named CAPN4/Calpain-4 before the discovery of calpain-5. 

Consequently, the gene list of the 15 family members lacks a “CAPN4”, jumping from 3 to 5 

(Figure 1). Of note, a second small subunit (CAPNS2) was identified in humans, homolog to 

CAPNS1, with a still unknown physiological role [43]. 
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Gene 1st Discovery Technique Species Original name 
CAPN1 1980, Mellgren [33] Protein purification Dog Calcium-

dependent 

protease, peakI-

type 

CAPN2 1964, Guroff [26] Protein purification Rat Neutral calcium-

activated 

proteinase 

CAPN3 1989, Sorimachi et al. [41] cDNA library screening 

(by hybridization) 

Human and 

Rat 

P94 (nCL-1) 

CAPN5 1997, Mugita et al. [44] 

and Dear et al.[45] 

Blast search + cDNA 

cloning [44] 

PCR with redundant 

oligonucleotides[45] 

Human and 

Mouse (C. 

elegans) 

htra-3 (nCL-3) 

[44] 

CAPN5[45] 

CAPN6 1997, Dear et al.[45] PCR with redundant 

oligonucleotides 

Human and 

Mouse 

Capn6 

CAPN7 1999, Franz et al. [46] Blast search + 

hybridization 

Cloned in 2001[47] 

Mouse and 

Human 

CAPN7[46] 

PalBH[47] 

CAPN8 1993, Sorimachi and 

Suzuki[42] 

cDNA library screening 

(by hybridization) 

Rat nCL-2 

CAPN9 1998, Lee et al. [48] cDNA cloning Mouse nCL-4 

CAPN10 2000, Horikawa et al. [49] Genome-wide screen (for 

type 2 diabetes) 

Human CAPN10 

(approved by 

HGNC before 

publication) 

CAPN11 1999, Dear et al. [50] BlastN algorithm Human 

(vertebrates) 

CAPN11 

CAPN12 2000, Dear et al. [51] In situ hybridization and 

Northern blot analysis 

Mouse and 

Human 

CAPN12 

CAPN13 2001, Dear and Boehm[52] BlastN algorithm + 

Radiation hybrid mapping 

Mouse and 

Human 

CAPN13 

CAPN14 2001, Dear and Boehm[52] BlastN algorithm + 

Radiation hybrid mapping 

Mouse and 

Human 

CAPN14 

CAPN15 1998, Kamei et al [53] cDNA isolation Human 

(Drosophila) 

SOLH 

CAPN16 2012, Hoogewijs et al. [54] Comparative genomic 

studies 

Human ADGB, 

androglobin (these 

are also name and 

gene symbol 

approved by 

HGNC)  

 

Table 2 – List of human calpain genes and their first appearance in the literature. CAPN1 

and CAPN2 were purified as respective homodimers with the CAPNS1 subunit.  
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Figure1 – Nomenclature timeline of the vertebrate calpain family. In the upper panel, boxes 

indicate nomenclature proposed at the time of first appearance in the literature. In the lower 

panel, boxes indicate the name change to the current nomenclature for those calpains that were 

named differently at the time of discovery. The grey box with a black border indicates the 

incorrect inclusion of CAPNS1 as a calpain gene. HGNC: Human Genome Nomenclature 

Committee. Although before the early 90's calpains were referred to by a variety of names, only 

the first discovery name and current nomenclature are provided, in order to simplify the figure. 

A CURRENT DESCRIPTION OF CALPAIN FAMILY MEMBERS 

The accepted definition of a calpain is a protein that has an amino-acid sequence significantly 

similar to the protease domain of conventional calpains, irrespective of proteolytic ability [6]. 

In mammals, the calpain family is composed of 15 gene products (Figure 2, Table 2) while 

additional calpains have been recognized in lower ontological classes [6, 7]. Because of their 

extensive sequence similarity, history and in the wake of protein kinase C nomenclature, the 

first two calpains  discovered (-1 and -2) used to be called “conventional” [6]. The remaining 

family members are further divided into classical and non-classical calpains depending on the 

resemblance of their domain organisation to those of the conventional calpains (Figure 2). 

Moreover, based on their expression profile and physiological role, nine calpains are classified 

as ubiquitous and six as tissue-specific (Figure 2). 
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Over the years, even if complicated by the instability of these proteins, a number of crystal 

structures of different calpains and calpain domains have been solved. These structural studies 

have provided useful information into tertiary and quaternary structure organizations, as well 

as giving insight on the activation of both classical and non-classical calpains (Table 3). It is 

worth mentioning that the structure of calpain-2 was the first calpain crystal structure ever 

solved, in 1999, and to date the only one that has been solved in its entirety.  
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Protein Domain solved Species Conditions 
PDB* 

ID 
Reference 

Calpain-

1 

Calcium-bound protease 

core 
Rattus norvegicus Ca2+ (C115S) 

 

1KXR 
[55] 

Calpain-1-like (First 48 
and last 62 residues of 

calpain-2) 

Bos taurus, 

Rattus norvegicus 
Ca2+-free (C105S) 1QXP [56] 

Protease core (PC1 & 

PC2) 
Rattus norvegicus 

Ca2+, leupeptin 1TL9 
[57] 

Ca2+, E64 1TLO 

Protease core 
 

Rattus norvegicus 

Ca2+, complexed with SNJ-1945, a alpha-
ketoamide-type inhibitor. 

2G8J 

[58] 
Ca2+, complexed with SNJ-1715, a cyclic 

hemiacetal-type inhibitor 
 

2G8E 

Protease core 
 

Homo sapiens 
Ca2+, inhibited by ZLLYCH2F (G213A) 1ZCM [59] 

Protease core 
 

Rattus norvegicus 

Ca2+, inactivated by WR13(R,R), an 
epoxysuccinyl-type inhibitor. 

2NQI 

[60] 
Ca2+, inactivated by WR18(S,S), an 

epoxysuccinyl-type inhibitor. 
2NQG 

Protease core 
 

Homo sapiens 
Ca2+ 2ARY [61] 

Protease core 
 

Rattus norvegicus 

Ca2+, inactivated by ZLAK-3001, an alpha-

ketoamide 
2R9F 

[62] 
Ca2+, inactivated by ZLAK-3002, an alpha-

ketoamide 
2R9C 

Calpain-

2 

Calpain-2 
 

Rattus norvegicus 
Ca2+-free (C105S) 

 

1DF0 
[63] 

Heterodimer 
 

Homo sapiens 
Ca2+-free 

1KFX; 
1KFU 

[64] 

Calcium- bound 

protease core 
Rattus norvegicus Ca2+ (C105S) 1MDW [65] 

Heterodimer 
 

Rattus norvegicus 
K10T and C105S 1U5I [66] 

Heterodimer Rattus norvegicus Ca2+, Calpastatin (C105S) 
 

3DF0 
[67] 

Heterodimer Rattus norvegicus Ca2+, Calpastatin (C105S) 3BOW [68] 

Calpain-

3 

Penta-EF-hand (PEF) Homo sapiens Ca2+  
4OKH 

[69] 

Protease core  Homo sapiens 

C129S with Ca2+ 
 

6BDT 

[70] 

C129A with Ca2+/CaCl2 
 

6BGP 

C129A Ca2+-free - 

E-64 added to a Ca2+-  bound C129 core 
 

6BJD 

Leupeptin added to a Ca2+-  bound C129 core 6BKJ 

Calpain-

5 
Protease core 

 

Homo sapiens 
Ca2+-free 

 

6P3Q 
[71] 

Calpain-

7 
Distal C2-like domain Homo sapiens Ca2+-free 2QFE - 

Calpain-

8 
Protease core 

 

Homo sapiens 

 

Ca2+, Leupeptin 2NQA - 

Calpain-

9 

Protease core Homo sapiens Ca2+ 1ZIV [61] 

Protease core 
 

Homo sapiens 

 

Ca2+, Leupeptin 2P0R - 

Calpain-

13 
Domain IV Homo sapiens Ca2+ 2I7A - 

Table 3: Crystal structures solved for the calpain family. (*) [72] Since the 2012 review by 

Campbell and Davies, inclusive of all calpain crystal structures known at that time [23], calpain-
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3 (PDB ID: 6BDT and 4OKH) and calpain-5 (PDB ID: 6P3Q) crystal structures have been 

resolved. 
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Classical calpains 

The classical group is comprised of nine calpains, of which calpain-1, -2, -13 and -14 are 

expressed ubiquitously while calpain-3, -8, -9, -11 and -12 expression is restricted to particular 

tissues (Figure 2). By definition, they all share the same structural composition. This 

organisation was clarified following determination of the tridimensional structure of calpain-2 

in 1999 [63] as well as the subsequent calpains (Table 3). The classical calpains consist of: i) 

an N- terminal anchor helix region of variable length; ii) a catalytic domain named calpain-type 

cysteine protease conserved (CysPc), subdivided into two globular core domains called 

protease core 1 and 2 (PC1 and PC2 or DI and DII); iii) a calpain-type beta-sandwich (CBSW 

or DIII) domain and; iv) a penta-EF-hand domain (PEF or DIV). The N-terminal anchor is 

involved in the maintenance of the inactive state, as well as in Ca2+-dependant activation. In 

CysPc, the catalytic activity is possible thanks to a triad of amino acids composed of a cysteine, 

a histidine and an asparagine, as determined via site directed mutagenesis [73]. From a 

tridimensional point of view, the active site resides in the catalytic cleft between the two PC 

domains, with the cysteine located in PC1 and the histidine and asparagine in PC2. The CBSW 

domain is also called C2-like (C2L) for the similarity with a common structural domain called 

C2, very often involved in Ca2+-dependant membrane targeting [74]. The PEF domain is 

characterized by five repetitive EF-hand motifs and a helix-loop-helix structure involved in 

Ca2+ binding. The fifth EF-hand of the domain acts as a dimerization module to generate both 

homodimers and heterodimers [6]. 

Mammalian calpain-1 and -2 are the most studied and therefore well-known calpains, both are 

ubiquitously expressed with similarities in substrate specificities and mode of inhibition. As 

mentioned above, the functional form of calpain-1 and -2 exists as a heterodimer, where the 

gene product of CAPN1 or CAPN2 is the large catalytic subunit and the small 30 KDa protein 

acts as regulatory subunit (calpain subunit 1, or CAPNS1) [63, 64]. Interestingly, the crystal 
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structure of CAPNS1 was solved even before any calpain members. The subunit is composed 

of an N-terminal Glycine rich region (GR) and a PEF domain. The dimerization with the large 

subunit occurs through the fifth EF hands of their respective PEF domains [75]. CAPN1 and 

CAPN2, are the only calpains where association with CAPNS1 has been demonstrated to be 

required in vivo. In fact, disruption of CAPNS1 in mice results in destabilization of both 

calpains [76, 77]. 

Calpain-3 shares the same domains of the conventional calpains, but has additional specific 

sequences: NS at the N-terminal, the insertion sequence IS1 within the PC2 domain and the 

insertion sequence IS2 between the CBSW and PEF domains. The insertion sequence IS1 is 

primarily responsible for the uniquely rapid autolysis of calpain-3 that underlies enzymatic 

activation. The IS2 region contains a nuclear localization signal and calpain-3 has been 

observed in the nucleus and cytoplasm [78]. Interestingly, it was suggested that calpain-3 may 

have a non-proteolytic function with a role in Ca2+ release from the sarcoplasmic reticulum 

[79]. The resolution of the crystal structure of the PEF domain of calpain-3 demonstrated that 

this calpain is able to form a homodimer through its PEF domain [80]. In these homodimers, 

the calpain-3 monomers are oriented in such a way that allows the catalytic sites to be positioned 

at opposite ends [69]. Further investigation into the quaternary structure of calpain-3 revealed 

it can also form a homotrimer, the first demonstration of trimerisation of any calpain family 

member or PEF containing proteins [81]. 

Calpain-8 and -9 are mostly expressed in the gastrointestinal tract. Interestingly, it was shown 

that they are able to form a heterodimer with each other. The N-terminal anchor helix and C-

terminal EF-hands of calpain-8 interact with the C-terminal EF-hands of calpain-9, forming a 

complex called gastric calpain (G-calpain) [82, 83]. The G-calpain is a protease complex where 

it has been shown that the catalytic activity is exerted by calpain-8, while calpain-9 functions 
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as a chaperone-like regulatory subunit [83]. Besides G-calpain, calpain-8 is also able to 

homodimerize and calpain-9 to form a complex with CAPNS1 [82, 83]. 

Little is known about the remaining four classical calpains, apart from their organ distribution. 

Calpain-13 is ubiquitous, while calpain-11 is expressed in testis and calpain-12 expression is 

restricted to hair follicle cells [7]. There is no evidence that they heterodimerise with CAPNS1, 

except for the avian form of CAPN11 that was shown to be associated with the small subunit 

[84]. As for Calpain-14 initially thought to be ubiquitous, it is expressed at the highest level in 

the oesophagus where it constitutes a marker for tissue identity [85]. 

Non-classical calpains 

Non-classical calpains present sequence homology with the classical calpains in the CysPc 

region but do not have complete similarity in domain organisation. In particular, they lack the 

PEF domain and for some the CBSW. According to the classification of Sorimachi [6], they are 

divided into three groups depending on their structure and additional domains: the PalB 

subfamily, which includes CAPN5, CAPN6, CAPN7 and CAPN10, is the most evolutionarily 

conserved group, the Sol subfamily, which comprises only one calpain (CAPN15) and the single 

group of demi-calpain (CAPN16), a very divergent calpain. They are all ubiquitous apart from 

CAPN6, which was found to predominantly be expressed in embryonic muscles and placenta 

[45, 86]. 

The PalB subfamily takes its name from an alternative term for the human CAPN7 (PALBH) 

through homology with the Aspergillus atypical calpain PalB [47]. The members of this family 

all lack a PEF domain making it implausible that they are able to bind the small subunit. The 

PEF domain is replaced either by a domain that is similar in structure to the classical C2 domain 

(for calpain-5 and -6), or by a second CBSW (for calpain-7 and -10). Calpain-5, historically 

called hTRA3 for its homology to the TRA-3 sex determination gene of C. Elegans [44], has 
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the structural feature of having 2 NLS that accounts for its dual localization in the nucleus and 

cytoplasm [87]. Furthermore, calpain-5 has a unique conformational feature of three extended 

flexible loops in each PC domain. These loops are proposed to account for the high Ca2+ 

concentrations required for optimal activity [71]. Calpain-6 is unique because it lacks a cysteine 

residue in the catalytic triad (substituted with Lys in humans) within the PC1 domain, 

suggesting that it may not possess proteolytic activity [45]. In this calpain, the C2-like domain 

mediates the interaction with microtubules rather than phospholipids [88, 89]. 

The SOL subfamily includes only CAPN15, also called SOLH in human, as the homologue of 

the small optic lobes (SOL) gene identified in D. Melanogaster [53]. Calpain-15 is a conserved 

ubiquitous protein that is highly expressed in the nervous system [90] and has up to 6 Zn-finger 

repeats at the N-terminus, recently shown to be able to bind polyubiquitin [91], a CysPC 

domain, and a SOL homology domain (SOH) at the C-terminal domain of unknown function 

[53]. 

The demi-calpain subfamily includes calpain-16, which consists of half the CysPC proteolytic 

domain and a calmodulin-binding motif (amino acid sequence motif IQ) in the C-terminal 

region [6]. The actual name of this protein is androglobin (ADGB) as registered in the HUGO 

database. Phylogenetic analyses indicate that this gene is probably not a descendant of an 

ancestral calpain, but rather a protein derived from the fusion of a calpain domain with a 

globulin in an exon-shuffling event [54]. Interestingly, the calpain domain of ADGB has 

retained only the cysteine of the typical triad but contains several His and Asn residues at non-

standard positions. It is not yet defined whether calpain-16 has proteolytic activity [54]. 
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Figure 2: The domains of calpains. Abbreviations used for domain names: CysPc: calpain-

type cysteine protease sequence motif defined in the conserved domain database at the National 

Center for Biotechnology Information, which is composed of two protease core domains 1 and 

2 (PC1 and PC2). CBSW: calpain-type beta-sandwich domain (formerly called "C2-domain-

like (C2L)" domain). PEF: penta-EF-hand domain. GR: glycine-rich hydrophobic domain. 

MIT: microtubule interacting and transport motif. C2: C2 domain. Zn: Zn-finger motif. SOH: 

SOL-homology domain. TM: transmembrane domain. IQ: calmodulin-interacting domain. 

Symbols: (*) change of one or more amino acids in the catalytic triad). This figure is an updated 

version of that found in Ono & Sorimachi (2012) [7]. Note - The tissue-specificity attributed to 

each calpain reflects the tissue in which it is predominately expressed. We refer the reader to 

the GTEx Portal (https://gtexportal.org/home/) for further details of tissue expression for each 

calpain.  

FROM TRANSCRIPTION TO ACTIVITY 

http://www.ncbi.nlm.nih.gov/Structure/cdd/cddsrv.cgi?uid=28925
https://gtexportal.org/home/
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Proteolytic events are irreversible post translation modifications. Therefore, they require strict 

control to occur at the right time, the right place and on the right targets in order to keep 

homeostasis and avoid cell self-destruction. Calpains cumulate all existing possibilities for 

controlling proteolysis, from expression to conformational changes. In this part of the review, 

we will present these mechanisms using the most relevant examples to illustrate how such 

control can be achieved. 

Expression and alternative splicing 

The strategies that the cell uses to regulate calpain function start by spatio-temporal modulation 

of the level or the form of transcription. Restricting the expression of certain calpains only to 

the required cells and time with the goal to avoid abnormal functions and deleterious effects is 

a simple but extremely efficient way of activity modulation. The most exquisite example of this 

is given by calpain-3. In adults, this calpain is expressed solely in the skeletal muscle. 

Interestingly, gene transfer experiments showed that ectopic expression of calpain-3 in the heart 

leads to cardiotoxicity, demonstrating the absolute requirement to restrict the expression of the 

protein to the tissues that specifically require its activity [92]. The timing of expression is also 

an important regulation checkpoint. For example, during human and murine myogenesis, 

calpain-3 expression occurs only after innervation, a time when most of the other muscle-

specific proteins are already expressed [93]. Calpain-3 also provides a perfect example for 

alternative splicing as a control mechanism [94]. Alternative splicing of exons coding IS1 and 

IS2 were observed across tissues such as brain, smooth muscle, and embryonic lens or during 

development [78, 95]. These domains are important for full proteolytic capacity and their 

absence results in calpain-3 isoforms with reduced autolysis and/or lack of proteolytic activity, 

while potentially keeping the non-proteolytic function [93]. 

Immature conformation of the protein 
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During protein formation, the association with a molecular chaperone to achieve the correct 

conformation appears to be necessary for at least some calpains. Such a requirement for 

chaperone intervention represents a means to prevent immediate activation of the protease, 

providing an additional point of modulation. A clear example for such a mechanism is 

obviously the conventional calpain small regulatory subunit (CAPNS1), which has a 

chaperone-like function on conventional calpains and is required for the stability of both calpain 

catalytic subunits. Only the formation of this heterodimeric structure allows the subsequent 

activation of conventional calpains [76]. Another example is G-calpain, the heterodimeric 

structure formed by calpain-8 and -9. The resulting protease complex functions with calpain-8 

as the active proteolytic subunit and calpain-9 probably acting like a molecular chaperone, 

stabilizing the structure similarly to the action of CAPNS1 with calpain-2 [82, 83]. 

Interaction with inhibitors 

One of the most intuitive regulatory mechanisms is the expression of modulatory proteins able 

to directly inhibit calpain by inducing conformational changes, which could impair proteolytic 

activity or substrate accessibility. Most of the data on modulators for these proteins have been 

generated from studies on conventional calpains and calpain-3, whereas there are very few 

examples of direct endogenous regulation of the other calpains. Calpastatin is the elite inhibitor 

of conventional calpains. It binds directly to all domains of the calpain molecule by occupying 

both sides of the active cleft, at the same time looping some of the adjacent amino acid residues 

to protect itself from proteolysis [67, 68, 96-98]. It was also shown that G- calpain can be 

inhibited by calpastatin like for the conventional calpains [83]. For the calpains that do not bind 

calpastatin, other safeguard mechanisms exist. For example, calpain-3 activity in skeletal 

muscle is heavily controlled through interaction with a giant protein of the sarcomere, titin. This 

protein has calpain-3 binding sites at the N2A region (I-band) and in the C terminus (M-line). 

The N2A titin is able to inhibit calpain-3 activity by protecting IS2 from autolysis [99-101]. In 
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addition, the association of calpain-3 with titin also forces the protease to a sarcomeric 

localization, providing another way to prevent aberrant activity via subcellular 

compartmentalization [92, 102]. 

From an inactive state to an active state 

The activation of calpain is a multi-step process starting with a protein locked in an inactive 

conformation. The question of how a calpain is maintained in an inactive state was answered 

when the crystal structure of Ca2+-free calpain-2 was solved. The structure showed that the 

geometric proximity of each residue of the catalytic triad would not allow the biochemical 

reactions to result in a nucleophilic and therefore active cysteine [63, 64]. As the crystal 

structures were solved of other calpain family members in their inactive states, in the absence 

of Ca2+, the same arrangement of an unassembled catalytic triad was observed in calpain-1 and 

calpain-5 [56, 71]. For calpain-9, an unassembled catalytic triad was observed even in the 

calcium-bound state [61]. These observations suggests a general mechanism in accordance with 

the remarkable similarity in the 3D structure of the proteolytic cores of the different calpains.  

The Ca2+-induced activation mechanism of the proteases was described thanks to the 

observation of active versus inactive calpain-1 crystal structures [55, 103]. It appears that after 

binding of two Ca2+ ions, one to PC1 and one to PC2, an unstructured loop region within PC2 

undergoes a conformational change becoming a β-sheet. As a result of the new conformation, 

a side chain in PC2 is displaced from the active cleft, permitting the proper formation of the 

catalytic triad [22]. Assembly of the protease core to an active state through the cooperative 

binding of two Ca2+ ions to the equivalent sites used in calpain-1 and -2 was also demonstrated 

for calpain-3 and -5 [70, 71]. As for calpain 9, the distance between the catalytic residues is still 

too great for the formation of the salt-bridge linking the two PC domains even after Ca2+-

induced conformational changes. This prevents formation of the active triad and indicates 

additional and currently unknown auto-inhibition and activation mechanisms for calpain-9 [61]. 
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Conventional calpains require high concentrations of Ca2+ to be activated in vitro [104, 105]. A 

burning question within the calpain field is, how are calpains activated within the cell where it 

is difficult to reach such high Ca2+ levels? Evidences that the Ca2+ concentration required for 

calpain-1 activation is considerably lowered by the presence of particular phospholipids [106, 

107] and that vicinity to the membrane and binding to phospholipids regulate calpain-2 

activation support the hypothesis of subcellular compartmentalization as a mechanism of 

calpain regulation [108, 109]. Calpain-5 is another calpain requiring millimolar concentration 

of Ca2+ for its activation like calpain-2. The reason for this threshold is the presence of 

additional flexible loops leading to a particular protease core conformation associated with the 

lack of the Ca2+-regulated PEF domain typical of the non-classical calpains [71]. Of interest, 

the cells where CAPN5 is expressed have high resting Ca2+ levels. This necessity for extreme 

Ca2+ levels is likely an evolutionary adaptation providing either a specific cell defense 

mechanism to cells expressing high basal Ca2+ levels such as retinal cells [110] or a means to 

avoid mislocalized and/or accidental activation when associated with spatial 

compartmentalization. 

Ca2+-induced conformational changes to align the catalytic triad is only one layer of calpain 

activation. Proteolytic removal of N-terminal or internal peptides can be required for enzyme 

activation. Such cleavage can lead to additional structural changes to assemble the catalytic site, 

to free the active site sterically blocked by a peptide, or else change the interactions with other 

proteins including inhibitors. In particular, it has been demonstrated that the conventional 

calpains autolyse their first N-terminal domain rapidly after Ca2+ binding [111]. Resolution of 

the crystal structure of calpain-2 showed that the N-terminal anchor of calpain-2 binds to 

CAPNS1, tethering together the two molecules [63]. The internal autolysis of the N-terminal 

segment is an intermolecular event. Release of the tether between the large and small calpain 

subunits allows more conformational flexibility between PC1 and PC2 and therefore may aid 
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alignment of the catalytic triad. It is important to note, that while this autolysis occurs rapidly 

after Ca2+-induced activation it is not essential for enzyme activation [112]. N-terminal 

autolysis has been shown to reduce the Ca2+ concentration required for activation [112]. Rapid 

autolysis of the N-terminal anchor has also been observed in calpain-1 [55], calpain-3 [113] 

and calpain-9 [61]. Calpain-3 is distinctive within the calpain family in that autolysis is so rapid 

that the full-length protein can barely be detected in vitro [14]. The underlying molecular 

mechanism is autoproteolysis of a further internal peptide, IS1, a sequence present at the 

interface of PC1 and PC2. The key event for calpain-3 activation is the intramolecular cleavage 

of IS1 that in turn allows for the opening of the cleft to calpain-3 substrates [70]. IS1 was found 

to be disordered and to act as an internal inhibitory polypeptide whose cleavage is required for 

full activation [113, 114]. This is supported by the crystal structure showing the N-terminus of 

IS1 residing and binding to residues within the active cleft, therefore blocking access to the 

catalytic cleft. In addition, autolysis leads to instability, regulating the duration of enzyme 

activity within the cell. 

Additional post translation modifications can modulate calpain activity. Phosphorylation is one 

of the most common protein modifications and calpains are no exception. Several findings 

indicate that phosphorylation plays a major role in the regulation of calpain activation [115-

117]. Tridimensional modeling revealed that phosphorylation at serine 369 in calpain-2 by 

protein kinase A generates constraints in domain movement, contributing to keep the protease 

in an inactive state [115]. In contrast, the phosphorylation of calpain-1 promotes its activity, by 

conformational changes yet to be characterized [116]. Interestingly, another reversible 

mechanism for control of proteolytic activity, acting directly through modification of the 

catalytic triad, has been proposed. Indeed, nitric oxide seems to reduce calpain-mediated 

proteolysis in cultured myotubes through nitrosylation of the cysteine of the active site [118, 

119]. 
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Finally, another indirect way to modulate calpain activity is to modify its interactors or 

substrates. For example, phosphorylation of calpastatin has been shown to decrease its 

inhibitory ability on conventional calpains [117]. It has recently also been found that different 

human cells express an alternatively spliced calpastatin (named hcast 3-25) that lacks all the 

exons coding for the inhibitory domains and that this form of calpastatin operates as a positive 

modulator of calpain-1 [120]. 

Substrate recognition 

Those calpains that possess enzymatic activity exert an intracellular limited proteolytic activity 

on their target that is modulatory rather than degradative. Calpains do not “erase” but instead 

“modulate” their target by generating new fragments of the protein and consequently alter its 

original function with changes to protein-protein interactions or subcellular distribution [7, 121-

123]. 

The analysis of crystal structures and kinetics has elucidated the positions surrounding the 

cleavage site that are most influential for calpain cleavage [57, 58, 60, 62, 67, 68, 124]. Peptide 

libraries, machine learning and position-specific scoring matrix analysis have been used to 

reveal amino acid sequence preferences and develop calpain cleavage site predictors [60, 124-

131]. Structural data showed the active cleft is flanked by two flexible loops that may confer 

interaction specificity to calpain substrates through variability in sequences [57]. Calpain 

substrates identified thus far are involved in a range of cellular processes including signal 

transduction, membrane repair and structural sarcomeric proteins, many of which still need to 

be validated under physiological conditions [132-142]. 

ABNORMAL CALPAINS AND THERAPIES 

What has been learnt from mutations in calpain genes? 
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The necessity for the various systems adopted to control calpain activity, described in the 

previous paragraphs, is also stressed by the large number of publications describing the 

deleterious consequences of calpain overexpression and/or exacerbated activity. At the same 

time, the biological importance of calpain is highlighted by the several pathological conditions 

associated with calpain inactivation or absence. An extensive number of studies are present in 

the literature regarding this topic, but this part of the review will focus on the genetic disorders 

caused by mutations in human calpain genes (Table 2), and on what we have learnt from the 

most important findings on mammalian animal models. 

The identification of inactivating mutations in CAPN3 as the genetic cause of limb girdle 

muscular dystrophy (LGMD) is a milestone that marked both the calpain and the muscular 

dystrophy fields [143]. The association of calpain deficiency with a pathology was in plain 

contrast with the initial concept of calpain hyperactivation as an aggravating agent in 

myopathies [144]. The discovery totally changed the perspective on the involvement of calpains 

in diseases, opening an entire new line of research. However, besides the calpain-3-related 

LGMD (LGMD-R1), so far only three additional monogenic disorders have been identified as 

being caused by mutations in calpain family members, one for the classical calpains and 2 for 

the non-classical calpains, while associations of pathological conditions with high-risk genetic 

variations is more frequent (Table 4). 

LGMD-R1 is the most frequent form of LGMD, caused by recessive mutations in CAPN3 and 

characterized by progressive skeletal muscle degeneration with no involvement of other tissues 

[143, 145]. The disease onset occurs in the first or second decade of life, leading to decreased 

ambulation and difficulties in performing daily life activities [145-148]. Recapitulation of the 

pathological phenotype in different calpain-3 murine models, although with reduced severity, 

confirmed mutations in CAPN3 are disease causing. While there is a lack of understanding of 

the molecular mechanism leading to the disease, analyses of these models, as well as of human 
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biopsies, suggests an abnormal adaptation of the muscle fibers as a plausible pathological 

mechanism [15]. Dominant variants in CAPN3 were also increasingly being associated with 

LGMD, creating a new subtype of the disorder: LGMD-D4, with similar but more mild 

symptoms and a delayed onset compared to LGMD-R1 [149, 150]. Further analyses showed a 

loss of proteolytic activity in the mutated proteins and a dominant negative effect on wild-type 

calpain-3 [150]. 

Pathological mutations in additional calpain family members were identified some seventeen 

years after the initial genetic diagnosis for calpain-3 was made. In 2012, mutations in CAPN5 

were reported to be responsible for autosomal dominant neovascular inflammatory 

vitreoretinopathy (ADNIV). This genetic disorder is characterized by a progressive retinal 

degeneration with presence of inflammatory T-cells and severe neovascularization, that leads 

to bleeding, formation of scar tissue and ultimately blindness [151]. ADNIV-causative 

mutations in CAPN5 were demonstrated to lead to a gain-of function representing the first 

example, and the only one to date, of a dominantly inherited disease caused by an hyperactive 

calpain [152, 153]. These gain of function mutations are located in a region encoding a flexible 

loop whose function is to limit substrate access to the catalytic site instead, the mutations lead 

to increased proteolytic activity and lower Ca2+-activation threshold [152, 153]. A mouse model 

heterozygous for one of these mutations (R243L) recapitulated the ADNIV phenotype, even if 

with milder symptoms, confirming the hypothesis of a dominant gain of function effect [152]. 

Interestingly, despite high expression of calpain-5 in other tissues, hyperactive mutation-related 

pathological effects were only observed in the ocular system [152]. This observation may be 

related to the high Ca2+ threshold required for activation and the high Ca2+ concentrations 

present in the retinal cells [154]. 
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Despite the large number of studies, the first disease-causative human mutation in conventional 

calpains was identified more than 50 years after the intial discovery of calpain (Tables 2 and 

4). Recessive mutations in CAPN1 were identified in 2016 as the cause of neurological 

disorders such as spastic paraplegia, spinocerebellar ataxia or as a combination of both. Spastic 

paraplegia is characterized by progressive muscle stiffness and hyperreflexia in the lower limbs 

due to corticospinal tract degeneration [155]. Spinocerebellar ataxia is characterized by 

progressive degeneration of the cerebellum leading to gait imbalance associated with limb 

incoordination [156]. Other studies correlated additional CAPN1 mutations to these 

neurodegenerative disorders, or even a combination of both [157-160]. These discoveries 

encouraged a deeper analysis of Capn1-KO mice, which were initially reported as showing no 

pathological phenotype, except for defects in platelet aggregation [161]. A more careful 

characterization of this mouse model suggested an implication of calpain-1 in a pro-survival 

pathway in cells of the cerebellum as well as in synaptic plasticity in both the hippocampus and 

cerebellum [156, 162]. Surprisingly, there is an absence of reported CAPN2 disease-causing 

mutations in humans (Table 4). Of note, this might be related to a deleterious effect of the loss 

of function of this protease during development as shown by the fact that calpain-2 knock-out 

mice are embryonic lethal, suggesting the possibility of non-detected embryonic lethal CAPN2 

mutations in humans [163, 164]. Recently, it has also been proposed that CAPN1 and CAPN2 

play opposite role in the brain: a neuroprotective action from calpain-1 and a neurodegenerative 

effect from calpain-2 [12, 165, 166] 

Finally, this year, several variants in CAPN15 have been associated with developmental eye 

disorders [90]. Loss of function mutations were identified in patients from 4 different families, 

presenting with microphthalmia and/or coloboma (disruption of the optic fissure closure). Some 

of the affected patients also displayed developmental delays and hearing loss. In the same study, 

it has been shown that calpain-15 KO mice suffered a marked growth deficit and exhibit various 
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eye defects, including anophtalmia or, microphtalmia and cataract, confirming a critical role for 

calpain-15 in the development of the ocular and neuromotor systems and comforting the 

implication of calpain 15 as a bona fide causative gene for the disease [90]. 

In addition to these monogenic diseases, it has also been suggested that single nucleotide 

polymorphisms (SNPs) in CAPN8/9 might be linked with gastric ulcer susceptibility [82], that 

SNPs in CAPN10 are linked to gestational diabetes mellitus [167], that mutations in CAPN12 

may aggravate symptoms of congenital ichthyosis [168] and that SNPs in CAPN14 are 

associated with eosinophilic oesophagitis [169, 170] (Table 4). It is also interestingly to note 

that mutations in calpastatin have been reported to lead to a peeling skin syndrome [171].
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Gene Phenotypes associated to gene variant Type of variant  
CAPN1 *Spastic Paraplegia[155, 159, 160] and 

spinocerebellar ataxia [156]. 

Causative loss-of-function mutations 

CAPN3 LGMD-R1 [143] 

*LGMD-D4 [149] 

Causative loss-of-function mutations 

CAPN5 *Autosomal dominant neovascular inflammatory 

vitreoretinopathy [152, 153, 172, 173]. 

Causative gain-of-function mutations 

CAPN8 Gastric ulcers susceptibility [82] Suspect that SNPs may be responsible 

for the susceptibility 

CAPN9 Gastric ulcers susceptibility [82] Suspect that SNPs may be responsible 

for the susceptibility 

CAPN10 Type 2 diabetes [49, 167] SNPs associated to disease 

CAPN12 *Congenital ichthyosis [168] Mutations that aggravate the existing 

phenotype 

CAPN14 Eosinophilic oesophagitis [169, 170] SNPs associated to disease 

CAPN15 *Microphthalmia and/or coloboma [90] Causative loss-of-function mutations 

 

Table 4 – List of genetic calpain variations associated with human pathologies. New 

associations since last review from Sorimachi and colleagues in 2016 (*) [1].
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Promising therapeutic approaches to cure a problem in calpain 

According to the 2016 classification by Ono, Saido and Sorimachi, calpain-related diseases can 

be divided in three main categories: type 1, caused by exacerbated calpain activity; type 2, 

caused by parasites that use their or the host’s calpain for their own survival; type 3, those 

genetic disorders caused by loss or gain of function mutations in one of the calpain genes 

(described in the previous chapters) [1]. Accordingly, a therapeutic strategy would involve 

either the inhibition of calpain activity (type 1, type 2 and gain of function type 3), or the rescue 

of calpain function (for loss of function type 3).  

A comprehensive list of calpain inhibitors has been provided in a previous review by Sorimachi 

in 2016 [1]. We also refer the readers to a review by Dókus and colleagues about the known 

modulators of calpain activity and their possible application as potential drugs [17]. For now, 

only one inhibitor has been used in clinical trials [174-176]. Unfortunately, the mere inhibition 

of calpain might not be sufficient to resolve the pathology. Sometimes it may even have a series 

of undesired effects because of the lack of specificity, or the need for more fine-tuned 

regulation. Hyperactive mutations were identified in CAPN5. Interestingly, it was shown that 

calpain-5 KO mice do not present an apparent phenotype, suggesting that inhibition of calpain-

5 might be a good candidate for a safe therapeutic strategy [177]. In addition, the availability 

of the crystal structure of calpain-5 in the inactive conformation provides useful structural 

information that can potentially guide effective inhibitor design [71].  

For calpain loss-of-function mutations, the most intuitive strategy would be replacing the 

necessary level of expression via gene therapy. This may not be straightforward for a congenital 

form with developmental defects like in calpain-15 related diseases, but it might be for recessive 

mutations in LGMD-R1. To date, a gene transfer strategy mediated by vectors derived from the 

adeno-associated virus (AAV) is under development at Genethon for LGMD-R1. A first 
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preclinical proof of concept was obtained in 2006, with a study showing the efficacy of an 

AAV1 vector expressing calpain-3 under control of a muscle-specific promoter to restore the 

phenotype of mice deficient in calpain-3 after local administration [15]. The data showed 

transgene expression with correct protein localization at the sarcomere level and restoration of 

proteolytic activity, with correction of muscle atrophy and improvement in strength. However, 

a systemic administration of the same vector caused cardiotoxicity related to the ectopic 

expression of calpain-3 in the heart. To overcome the cardiotoxic adverse effect without 

compromising the therapeutic effect in skeletal muscle, modified vectors were developed [178]. 

A second generation vector was designed by introducing target sequences of a cardiac muscle-

specific microRNA (miR208a) in the transgene expression cassette, or by the use of promoter 

sequences derived from endogenous promoters. In order to confirm the tolerance of this new 

type of vector, a pilot biodistribution and safety study was conducted in non-human primates. 

Results showed a total absence of cardiotoxicity after systemic injection with the modified 

vector. A study focusing on understanding the toxicity identified a mechanism explaining how 

the activity of calpain-3 is regulated in skeletal muscle [92]. A particular region of titin, a 

protein involved in the elasticity of the muscle to which calpain-3 binds, is indeed playing a 

role in inhibiting enzyme activity. Interestingly, this regulatory mechanism seems to be 

different between human and mouse hearts. With these encouraging results, a clinical trial is 

now in preparation at Genethon. 

An emerging strategy to cure calpain disease is the genetic correction of calpain-linked 

mutations in patients-derived induced pluripotent stem cells for their prospective use in an 

autologous cell-based therapy. Promisingly, gene editing of LGMD2A iPSC has been recently 

proven to be effective in restoring CAPN3 expression level and in rescuing muscle function 

upon transplantation of corrected iPSC-derived muscle progenitors in immunodeficient 

CAPN3-KO mice (iPSC) [179]. 
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CONCLUSIONS AND CONTRIBUTIONS BY DOCTOR HIROYUKI SORIMACHI 

TO THE CALPAIN FIELD 

Lastly, in the following paragraphs, we want to give the reader a notion of the extent of Hiro’s 

legacy to the calpain field. Those who knew him remember his heartfelt laugh, his love of 

French food and most importantly French wine. Work in the calpain field will continue and his 

memory will live on through it, and in the heart of his friends and colleagues. 

Dr. Hiroyuki Sorimachi was the first to demonstrate the existence of tissue-specific calpains. 

In 1989, he and his colleagues screened cDNA hybridization libraries from human and rat 

muscle with a probe for the chicken calpain-1 and obtained a cDNA clone encoding for a novel 

member of the calpain family with homology of more than 50% to the ubiquitous human 

calpain-1 and -2. With a series of exquisite experiments for the time, they gave the first 

description of the structure of calpain-3 and via northern blots analyses they demonstrated that 

the expression of this new calpain was restricted to skeletal muscle [41]. In 1993, by screening 

cDNA libraries from various rat tissues, he also identified a new calpain with specific 

expression in the stomach (calpain-8) and showed that two isoforms of the protein were formed 

via alternative splicing [42]. Later in the nineties, while performing the genomic cloning of 

CAPN8, Dr. Sorimachi and Dr. Koichi Suzuki’s research group identified another novel 

member of the calpain family (calpain-9) and demonstrated that its mRNA expression was 

restricted to the digestive tract [48]. Hiroyuki and Koichi also had a huge impact on our 

understanding of the structure of calpain. In 1998, they purified for the first time a recombinant 

human CAPN2 using a baculovirus system, and in the early 2000s, the crystal structure of 

calpain-2 was published in collaboration with Dr. Wolfram Bode [64, 180]. Together with Dr. 

Suzuki, Hiroyuki’s research triggered investigations into evolutionary relationships among 

calpain family members and was pivotal for the characterization of this superfamily [181]. 

Following this pioneering work, the advent of High-Throughput Sequencing Technologies 
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allowed for the identification of all 15 members of the calpain family listed above, half of which 

are predominantly tissue-specific (Table 2). 

Dr. Sorimachi also contributed tremendously in unravelling the functions of several calpain 

family members. His most studied calpain family member was calpain-3. He was the first to 

describe the unusual short half-life of the muscle-specific calpain-3 and since then he went 

deeper into the understanding of its autolysis mechanism [101, 182, 183]. Dr. Sorimachi 

discovered calpain-3 interacts with titin and also described the mechanistic implications of this 

binding [3, 100, 101, 184, 185]. His laboratory also described the interaction between calpain-

3 and substrates other than titin and provided evidence for a possible protein synthesis 

regulation by calpain-3 [186, 187] and contributed in our understanding of calpain-3 proteolytic 

activity and unconventional functions [79, 121, 123, 188-190]. The Sorimachi lab also 

discovered and characterized a gastrointestinal calpain complex formed by isoforms of calpain-

8 and -9 involved in gastric mucosal defense [82, 83]. They described the localization of 

calpain-8 expression in gastric and duodenal mucosal cells, its Golgi localization and its 

interaction with the coatomer complex suggesting functions in membrane trafficking [191]. In 

addition, using a mouse model deficient for calpain-6, they were able to demonstrate how the 

loss of this protein promotes skeletal muscle development and regeneration [89]. Another 

Sorimachi’s contribution was to demonstrate that calpain has a weak substrate specificity [124, 

187]. 

Finally, he and his research group made huge efforts to make calpain information accessible to 

all through online resources (Table 1). The readers will find in these websites many information 

on the history and many other aspects of the calpain field. 
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