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Background: The mechanisms of improvement of left ventricular (LV) function with cardiac 

resynchronization therapy (CRT) are not yet elucidated. The aim of this study was to 

characterize CRT responder profiles through clustering analysis, based on clinical and 

echocardiographic pre-implantation data, integrating automatic quantification of 

longitudinal strain signals. 

Methods: This is a multicenter observational study of 250 patients with chronic heart failure 

evaluated before CRT device implantation and followed up to four-years. Clinical, 

electrocardiographic and echocardiographic data were collected. Regional longitudinal strain 

signals were also analyzed with custom-made algorithms in addition to the existing 

approaches including the myocardial work indices. The response was defined as a decrease 

≥15% in LV end-systolic volume. Death and hospitalization for heart failure at 4-years 

defined the adverse event rate. 70 features were analyzed using a clustering approach (k-

means).  

Results: 5 clusters were identified, with response rates between 50% in cluster 1 and 92.7% 

in cluster 5. These 5 clusters differed mainly by the characteristics of LV mechanics, 

evaluated by strain integrals.  There was a significant difference in event-free survival at 4-

year between cluster 1 and the other clusters. The quantitative analysis of strain curves, 

especially in the lateral wall was more discriminative than apical rocking, septal flash or 

myocardial work in most phenogroups. 

Conclusions: Five clusters are described, defining groups of below-average to excellent 

responders. They demonstrate the complexity of LV mechanics and prediction of response to 

CRT. Automatic, quantitative analysis of longitudinal strain curves appears as a promising 

tool to improve the understanding of LV mechanics, patient characterization and selection 

for CRT.  
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Introduction:  

Current international guidelines recommend only clinical and electrocardiographic criteria to 

select patients for CRT, with no clear recommendations on the role of imaging for patient 

selection(1, 2). However, CRT corrects mechanical dyssynchrony through electrical 

stimulation(3, 4). Therefore, imaging techniques such as echocardiography have been 

studied and recent advances have been examined to understand different types of cardiac 

mechanical dyssynchronies and to consider them in relation to CRT(5, 6). Typically, in purely 

conduction disorders with a broad left bundle branch block (LBBB), there is an early 

activated septum that contracts prior to aortic valve opening and stretches the LV lateral 

wall(7). Contraction in the late activated lateral wall in this case causes a variable degree of 

systolic lengthening of the septum. This typical pattern of dyssynchrony could be influenced 

by the etiology of the cardiomyopathy, by loading conditions, diastolic or valvular 

characteristics. Therefore, there is not only one, but several kinds of mechanical 

dyssynchrony and this might explain why it has been so challenging to demonstrate the 

value of imaging techniques for selecting patients(8, 9). Also, CRT response is complex, with 

a great heterogeneity in patient characteristics. 

An interesting approach to solve this complex evaluation of dyssynchrony is based on 

multiparametric analysis methods, and Machine Learning can be particularly useful in this 

context(10),36. The aim of this work is to evaluate a multiparametric clustering method 

integrating clinical and classical echocardiographic data, exploiting novel markers of the 

regional cardiac function, such as myocardial work and global longitudinal strain(5), to define 
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specific subgroups of CRT patients based on their baseline characteristics and their CRT 

response.  
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Material and Methods  

Study population 

We prospectively included patients from different centers in Europe who were eligible based 

on clinical grounds for CRT implantation according to the current European Society of 

Cardiology guidelines, and who consented to the study. These patients agreed to get their 

follow-up in the implanting center and they were not involved in a trial related to the device 

implanted. More specifically, these are chronic heart failure patients remaining symptomatic 

NYHA (New York Heart Association) II to III despite a step by step increase in the 

recommended medical treatments and management (all received beta-blockers, all received 

ACE-inhibitor or sacubitril-valsartan and all were on diuretics). Implantation was decided 

only after a careful follow-up and progressive optimization of medications. The patients 

were rather homogeneous in that careful pre-implantation optimization and implantations 

occurred between 2015 and 2019, (except 10 that were implanted before). Patients 

undergoing upgrades of pacemaker or implantable cardiac defibrillator were also included. 

Patients were evaluated systematically before CRT implantation and every 6-months after 

implantation. 

Exclusion criteria were: non “I-A”, “I-B” indications for CRT according to ESC-guidelines 

(patients had LBBB and QRS > 130 ms but some had an atypical LBBB and QRS ≥150 ms), 

inadequate echocardiographic image quality according to the judgment of the investigator 

and absence of echocardiographic follow-up at 6 months(1).  Patients in atrial fibrillation 

were also excluded. 

The study was carried out in accordance with the principles outlined in the Declaration of 

Helsinki and was approved by the local ethical committee of each center. 

Baseline and follow up evaluation 
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The baseline evaluation included clinical evaluation NYHA functional class, 6-min walking 

distance, laboratory testing, electrocardiographic (ECG) recording, echocardiographic 

evaluation of cardiac dimensions and function. These investigations were repeated at the 6 

months follow up. Clinical information including cardiovascular risk factors, ECG and 

biological markers (creatinine, haemoglobin, sodium, NT-proBNP) was collected at baseline. 

The following aspects of the ECG were analyzed according to the guidelines: rhythm, PR 

interval duration, QRS axis, QRS duration and QRS morphology. 

Echocardiography 

Before implantation of the CRT device, patients were imaged by transthoracic 

echocardiography according to a predefined acquisition protocol (ViVid E9, S70 or E95, 

General Electric Healthcare, Horten, Norway). A complete echocardiogram including a 

speckle tracking analysis and global longitudinal strain (GLS) was performed and recorded for 

a core laboratory analysis (Inserm 1414 Clinical Investigation Center, Innovative Technology, 

Rennes, France 35000). Left atrial (LA) volume, right ventricular (RV) size and function were 

recorded according to recommendations (including RV strain free wall). Left ventricular 

ejection fraction (LVEF) and LV volumes were calculated using the biplane modified Simpson 

method. In order to obtain LV strain curves, two-dimensional grayscale images were 

acquired in the standard apical 4-chamber (4ch), 3-chamber (3ch), and 2-chamber (2ch) 

views, at a frame rate of at least 60 frames/s. 

Mechanical dyssynchrony was quantified using a multi-parametric approach. Intra-

ventricular dyssynchrony was defined by the visual presence of septal flash (SF) and/or 

apical rocking (AR)(11). SF is a premature and short contraction of the septum during the 

QRS and before the aortic valve opening. AR is a displacement of the LV-apex towards the 

lateral wall. (12) In addition to these two approaches, mitral inflow pattern and mitral inflow 
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duration were measured to determine atrioventricular dyssynchrony, defined as E/A 

duration < 40% of the cardiac cycle. 

 Offline echocardiographic analysis 

Offline analysis was performed with a dedicated software (BT12-EchoPAC PC V202.0.0, GE 

Healthcare, Horten, Norway) to analyze all echocardiographic parameters, strain integrals, 

global longitudinal strain traces, and myocardial work on the pre-CRT implant echocardiogram. 

A line was traced along the endocardium’s inner border in each of the three apical views on 

an end-systolic frame, and a region of interest was automatically defined between the 

endocardial and epicardial borders, with global longitudinal strain (GLS) then automatically 

calculated from the strain in the three apical views. For the 16 LV segments, the time to peak 

strain was determined and the standard deviation was calculated and named systolic 

mechanical dispersion, as previously proposed by Hasselberg et al.12. 

The calculated longitudinal strain signals for each segment were exported from the EchoPAC 

software. Each file was composed of longitudinal strain time series corresponding to 6 

myocardial segments. These files were processed through a custom-made script in order to 

extract a set of features for further processing(5). These parameters are detailed in the 

paragraph “feature extraction” below. Myocardial work indices were calculated as 

previously reported(6, 13, 14).  

Feature extraction 

We analyzed 70 features (Appendix 1). 26 features were clinical and classical 

echocardiographic features, detailed in Table 1. These features were chosen among 

characteristics known to be correlated to CRT response(1, 11, 15). 44 features were 

automatically extracted from longitudinal strain curves of the apical 4ch view with a custom 
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Python program.  Strain curves were obtained for 6 myocardial segments: basal-septal (BS), 

medio-septal (MS), apico-septal (AS), basal-lateral (BL), medio-lateral (ML), apico-lateral (AL). 

The features automatically extracted from strain traces have been already described and 

published by our team5. Briefly, these features are based on the estimation of the integral, 

or area over the curve, of each available strain signal, on different time supports. Hence, for 

each segment, different integrals are estimated. Figure 1-B shows an example of such 

extracted integral features for the Basal Lateral segment (BL) of a 4ch view. The first integral 

feature (����
�����	


) is calculated from the beginning of the QRS to the instant of the aortic 

valve closure (Figure 1-B, upper panel). It represents a quantification of the cumulative 

strain developed by a given segment, which effectively contributes to LV ejection. A second 

integral (�����

�����	

) is calculated from the beginning of the QRS to the strain peak (Figure 1-B, 

middle panel). It represents the global cumulative strain developed by the contraction of the 

segment. The third integral is calculated as follows:  


�����	
 = �����

�����	

− ����

�����	

 

and corresponds thus to the integral between the strain peak and the aortic valve closure 

(Figure 1-B lower panel). This is a marker of the mechanical efficiency of the segment. 

Positive values of this marker reflect an inefficient (or wasted) cumulative strain, acting after 

the closure of the aortic valve, when blood is no longer ejected. 

This procedure was applied to all segments and to all views. Then, the mean of these 

different integrals was calculated for each view: ����
���	, �����

���	 and 
���	. The last set of 

features was based on the sums of integrals for the two walls Septal S and Lateral L (16): 

����
� , �����

� , 
�, ����
� , �����

�  and 
�.  
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These features represent the cumulative strain from all segments of a given wall. Figure 1-C 

shows, as an example, the two opposing walls of the 4ch view. Finally, the differences of the 

cumulative strain of the two sides were calculated as follows: 

����
� = ����

� − ����
�  

�����
� = �����

� − �����
�   


� = 
� − 
� 

 

They are detailed below and shown in Figure 1. As in our previous works, strain integrals 

were calculated only for negative values under -5%:  

- ������	
: time to peak strain for each segment (time to peak from QRS onset) 

- ����	:  average of all ������	
  

- ������	
: amplitude of the peak of strain for each segment 

- ����	:  average of all ������	
 

- ����
�����	


: integral between QRS onset and aortic valve closure for each segment 

(Integral of strain curve over time from QRS onset to the peak of strain) 

- ����
���	: average of all  ����

�����	

  

- �����

�����	

: integral between QRS onset and strain peak for each segment 

- �����
���	: average of all �����

�����	

  

- 
�����	
: integral between the strain peak and the aortic valve closure.  

- 
���	: average of all 
�����	
 

- ����
� : sum of ����

�����	

  septal segments 

- ����
� : sum of ����

�����	

 lateral segments 

- ����
� = ����

� − ����
�  
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- �����
� : sum of �����

�����	

 septal segments 

- �����
� : sum of �����

�����	

 lateral segments 

- �����
� = �����

� − �����
�    

- 
�: sum of 
�����	
 septal segments 

- 
�: sum of 
�����	
 lateral segments  

- 
� = 
� − 
�  

In a pre-processing phase, all features were normalized with the standard score before the 

application of the clustering algorithm. The original, non-normalized data were kept for the 

interpretation phase. 

Clustering phase 

K-means is a classical and widely-known clustering method 2,(17, 18),34,35. The algorithm 

creates K different clusters. To do so, it finds a mean for each cluster which is the closest to 

each data point within the cluster (Appendix). We have chosen the K-means methods 

because of its low computational costs and because it produces tight clusters in comparison 

to other methods. One known disadvantage of this method is the sensitivity to the initial 

conditions. In our case, repetition on several runs using different initial conditions yielded no 

notable modification in the identified clusters. K-means and subsequent analyses were made 

using a custom script based on open-source library Sklearn under the Python language 37. 

The choice of the optimal number of clusters K was determined using the Silhouette score, 

which is a measure of consistency within a cluster of data 32. The Silhouette value is a 

measure of how similar an object is to its own cluster (cohesion) compared to other clusters 

(separation). The Silhouette score ranges from −1 to +1, where a higher value indicates that 

the object is well matched to its own cluster and poorly matched to neighboring clusters. In 
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order to determine the best number of clusters to generate, we calculated in this work the 

Silhouette score for the interval [2, 15] clusters.  

Post-clustering feature-dimension reduction  

Principal component analysis (PCA) transforms a large dataset into a dataset with fewer 

features named components. Since the obtained components are a combined marker of all 

initial features, they do not provide a direct physiological meaning. The obtained PCA 

components are ranked by the level of the variance of the original data that they capture 3.  

In this work, PCA was applied after the clustering phase, mainly to provide a graphical 

representation of the clusters in a reduced space and to ease multi-variate characterization 

of each cluster. The three first principal components were used. Note that the clustering 

method was applied on the original, normalized features. In this manner, the separation of 

the individuals during the clustering method is performed on individual, interpretable 

features.  

The correlation between each original feature and a given principal component can be 

readily obtained from the results of the PCA. These correlations can be plotted on each 

factorial plane (correlation plot), scaled, and superposed to the PCA feature project plot, in 

order to visualize how each feature contributes to each principal component and, therefore, 

to the constitution of each cluster. In this graph, the amplitude of the vectors (distance to 

the origin) represents the relative contribution of each feature to the factor map; features 

that are positively correlated are closely located and features that are negatively correlated 

present an opposite sign. 

Rank test Analysis 

A Wilcoxon signed-rank test was applied to establish how the clusters differ. For each 

feature, it was applied between a given cluster and the population composed of the 
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individuals of the four other clusters. This analysis indicates how a cluster is different from 

the others, in a feature-by-feature basis. For each cluster, we classified the features 

according to their rank test. The features with the best rank of a given cluster can be linked 

to the response rate of this cluster. 

Response and adverse event rate 

According to the prespecified protocol, at 12-month, the response was a reduction in left 

ventricular end-systolic volume (LVESV) of ≥ 15% (i.e. LV reverse remodeling) or an increase 

of 5% in LVEF. The patients respecting this criterion are named responders, otherwise they 

were considered non-responders. 

The adverse event rate was a composite clinical criterion with occurrence of death, and/or 

hospitalization for heart failure. Kaplan-Meier estimates were used to construct the survival 

curves based on all available follow-up for the time-to-event analysis, for all obtained 

clusters. A log rank test was applied to compare each pair of clusters. 

Results 

254 patients were analyzed, and 250 patients were included in the final analysis. Four 

patients were not included in the analysis due to missing data. Table 1 shows the 

patient characteristics. 185 responders were identified, representing 74% of the population. 

According to the Silhouette score, the optimal number of clusters was identified as 5 

clusters. Cluster 1 included 52 patients, 50 % of those being responders. Cluster 2 included 

65 patients, with 70.8% responders. Cluster 3 was composed of 29 patients with a 72.4% 

responder rate. Cluster 4 contained 63 patients, with a rate of 85.7% of responders. Finally, 

cluster 5 included 41 patients with 92.7% responder rate. 

As a confirmation, we also tested PCA with 15 principal components before clustering and 

we obtained the same clusters except for some patients that were borderline between 2 
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clusters. We chose to keep the clustering without previous PCA to offer more interpretability 

and to provide a comprehensive manuscript on the role of imaging in the field of CRT. 

Figure 2 shows projected features for all patients in the space of the two first principal 

components of the PCA. The first principal component explains 23.4 % of the variance and 

10.2 % for the second. So, the representation in the two principal component space explains 

33.6 % of the variance. A plot of the second factorial axis, explaining 32.5% of the variance, 

was also analyzed but is not shown in the paper. Each patient is thus represented by a dot in 

this graph. Different colors represent the different obtained clusters. Responder patients are 

represented with a star sign. Note that, due to the projection of individuals on this plane, 

clusters do overlap. This does not occur in the 70-dimension space of the original features. 

The arrows presented in Figure 2 represent the variable correlation plots, that have been 

scaled by a factor of 7 in order to be superimposed on the feature projection graph. As 

already described, these arrows show the direction of the original features in the space of 

the two first principal components. We only kept the arrows with a magnitude greater than 

0.7.  

The mean, the standard deviation and the rank of the most significant features are displayed 

in Table 2 for each one of the 5 clusters. These features are the 5 best for each cluster 

according to the rank test presented in Supplementary Material. It also shows some classical 

features used to predict CRT response. We can note that clinical features show a lower 

ranking compared to those obtained from strain integrals. The only clinical features with 

high ranking, in addition to those presented in Table 2, are the Ischemic etiology for cluster 1 

and Gender for cluster 4. Global myocardial work and Constructive myocardial work were 

particularly interesting for cluster 2, respectively ranked 9 and 6. 
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According to these results, Figure 3 summarizes the most significant features characterizing 

each cluster, presented in order of their importance. For each cluster, features with higher 

values compared to their value in other clusters are shown in a box named “High value”. The 

same was done for features showing medium and low values. For instance, patients in 

cluster 2 have a relatively high QRS, medium ����	 and low �����
���	 with respect to the other 

clusters, so QRS are in “High value” box, ����	 in “Medium value” and �����
���	 in “Low value” 

for cluster 2. 

The most significant features characterizing patients in cluster 5 are the strain integrals, 

especially ����
�  and ����

� . ����
�  quantifies the cumulative strain developed by the lateral wall, 

which effectively contributes to LV ejection and ����
�  represents the difference of the 

cumulative strain developed by each wall to eject blood. 

In contrast to cluster 5, that is characterized by a high ����
�  and ����

� , these strain integrals are 

low for cluster 1, showing the worst responder rate. The highly-ranked, SF and AR are low 

for the patients of cluster 1 and the ischemic etiology is high (explaining probably why other 

highly-ranked integral strains are also low in this cluster). We can also note low values of 

LBBB morphology. These characteristics are consistent with known data for poor responders 

9 10 11. 

Clusters 2 and 3 have similar response rates, but they differ by their features. Indeed, cluster 

2 shows the lowest LVEF, GLS and constructive work. In contrast, cluster 3 shows the highest 

LVEF, GLS and constructive work. Some integrals are important for one or two of these 

clusters, mainly concerning the septal wall and the mean of integrals: ����
�� , ����

���	, ����
� , 

�����
���	, �����

� . Value of peak of strain are also important for these clusters: ����	 and ���. 

Clusters 2 and 3 show an average response rate to CRT, so their corresponding features were 

considered as less useful to estimate response to CRT. 
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Cluster 4 has a better response to CRT (85.7%). The most significant features are different 

from the other clusters. Indeed, this is the only cluster where time to peak strain (� type) 

and integrals between the strain peak and the aortic valve closure (
 type) are significant 

contributors. For clinical features, gender is only useful to separate cluster 4 from the others 

but constructive work is the only highly-ranked feature of cluster 4 which has a high rank for 

several other clusters too. 

Strain traces analysis  

The barycenter of each cluster was detected as the vector obtained by calculating the mean 

of each feature within a given cluster. The patient that was the closest to each barycenter 

was considered as a “representative” patient for the corresponding cluster and was selected 

for strain analysis. Figure 4 displays the observed strain signals of these representative 

patients of each cluster. 

Kaplan Meier analysis 

Kaplan Meier curves for event free survival at 4 years are displayed in Figure 5. We observed 

a 22.8% overall adverse event rate (death and hospitalization for heart failure) in the whole 

population. The mean duration of follow up was 3.7 years. It is interesting to note the stark 

contrast between the low event rate in cluster 5 (7.3 %) and the very high event rate in 

cluster 1 (36.5%). The other groups are almost equal (respectively 13.8%, 13.8%, 14.3% in 

clusters 2, 3 and 4). 

There was a significant difference in overall event-free survival at 4 years with p<0.001, and 

between clusters 1 and 2 (p=0.004), 1 and 3 (p=0.033), 1 and 4 (p=0.004), 1 and 5 (p=0.003). 

There is no significant difference between the others (p>0.05). 

The adverse event rate is similar to the response for every cluster, except cluster 4. The 

features associated with a good response are the same for good survival (cluster 5). The 
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same conclusion can be made for the lack of response and low survival (cluster 1). Cluster 2 

and 3 have similar survival as well as average response rate. Cluster 4 shows a similar 

adverse event rate than clusters 2 and 3, but with a higher response rate to CRT. The 

features that best separate this cluster from the others are thus interesting potential 

markers to detect response to CRT, but with lack of sensitivity on increased survival. 

Discussion 

Unsupervised machine learning allows for an integration of echocardiographic data 

(deformation parameters quantified automatically), as well as ECG and clinically meaningful 

data into a comprehensive analysis of CRT response. We identified 5 phenogroups with 

different profiles of CRT response. Our work exploits morphological features of strain curves 

that have shown to be of particular significance(5, 10).  

Clustering 

Traditionally, much of the research in cardiology comes from conventional hypothesis-driven 

studies that explore a small number of preselected features in limited datasets and their 

impact on treatment and prognosis, and statistical methods such as logistic or linear 

regression analysis. To define CRT response, we are limited to the initially proposed 

determinants without any convincing demonstration that imaging tools could help(1, 10, 19) 

. Machine learning-based methods can process a large number of variables in a hypothesis-

free approach. It might help move from “evidence-based medicine” to data-driven precision 

medicine(20, 21). Clustering approaches have been developing recently because they could 

help better understand diseases, and define subgroups of similar patients in a heterogenous 

population(20, 22-24). Our current interpretation relies on a few parameters for patient 

selection and our strain quantification relies on a learning curve and expertise for a limited 

number of selected parameters, such as peaks or time to peaks, which might not capture the 
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information content throughout the cardiac cycle. The proposed feature extraction and 

machine learning methods go beyond clinical experience and the limited number of standard 

parameters, by capturing and integrating the complex and complete information from 

myocardial mechanics throughout the cardiac cycle. Unsupervised clustering allows for the 

integration of clinical data and for the representation of a given individual into an output 

space, within one of the defined clusters, whereby the likelihood to respond to CRT can be 

better predicted. The originality of our approach resides in the features we imputed in our 

clustering algorithm. We applied a quantitative approach to clustering, with analysis of strain 

integrals, as well as classical clinical and echocardiographic features. It complements our 

previous work, firstly by extending the number of features extracted from strain curves and 

secondly by providing a combined analysis with clinical features(5). The approach is different 

from the work by Cikes et al, which is based on the analysis of echocardiographic data of a 

large randomized study, where the strain curves were exploited only through qualitative 

markers(10). The obtained results from the clustering phase allows for the identification of 

groups of different response rates, ranging from below-average to above-average. In our 

work, which included patients who were implanted based on current CRT guidelines (1), 

cluster 1 had a response rate of 50.0 %. The negative predictive value of this approach is low. 

However, clustering produces subgroups of similar patients that can then be analyzed based 

on a multitude of characteristics. We applied factorial plans and rank tests to understand 

cluster differentiation. We can note that features which compose the first factorial plane are 

essentially obtained from strain integral analysis and this first factorial plane explains 33.6% 

of the variance of the whole feature space. It should be emphasized that all the available 

variables were used for rank test characterization between different clusters, providing a 

wide analysis for the identification of the most informative features differentiating any 
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cluster from the others. Traditional features (QRS-morphology or duration, LVEF, NYHA) do 

not help to define clusters in our selected population. The construction of the included 

patient population can be the cause. Indeed, every patient has broad QRS with LBBB 

morphology creating a population with homogeneous traditional features.  

Adverse event rate, super response (cluster 5) to low probability of response (cluster1)  

In our study, 74% of patients responded to CRT with ≥15% decrease in LVESV, which is 

comparable to response rate described in the literature(1, 25). We observed a 22.8% overall 

adverse event rate (death and hospitalization for heart failure), which is coherent with 

known data(25).  

Patients in Cluster 5 show an outcome that can be compared to that of super responders, 

described previously in the literature(26, 27). Super response has different definitions, either 

LVEF≥50% or in the highest quartile or absolute change of LVEF ≥15% or LV end-systolic 

volume reduction of ≥30% at 6 months(7, 27). Average LVEF in cluster 5 at 6-months post 

CRT was 48.6%, with an improvement in LVEF of +18.2 %, making patients in this group 

super responders, whereas average LVEF post CRT was 35.7% in cluster 1 (+5.6%), 32.8% in 

cluster 2 (+11.2%), and 45.3% in cluster 3 (+12%). Cluster 4 also presented a good response 

profile with post CRT LVEF at 46.6% with +17.7% LVEF improvement.  

Strain trace morphology of cluster 5 (Figure 4-E) shows a typical LBBB activation pattern with 

early stretching of lateral wall and early shortening of septal wall, early (<70% ejection time) 

peak septal contraction, and late lateral peak contraction, after aortic valve closure. This 

typical LBBB pattern is known to be associated with an improved prognosis after CRT 7. 

Indeed, SF and AR, as well as typical LBBB strain trace pattern reflect specific 

electromechanical dyssynchrony, which is the target of CRT 8. Nevertheless, the rank of 

these three features is rather low for cluster 5. This is certainly due to close results with 
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cluster 4. Indeed, both of them have high SF, AR and LBBB. SF and AR have already been 

shown to be associated with CRT response and better prognosis 6. We can also note that the 

patients in clusters 4 and 5 show a low rate of ischemic etiology, low occurrence of MR, high 

wasted myocardial work and high constructive myocardial work. These results are consistent 

with our recent work on myocardial work indices 4 5.   

In contrast, cluster 1 shows the worst responder rate and the worst adverse event rate. 

Strain trace morphology in cluster 1 (Figure 4-A) shows an atypical LBBB morphology, with 

some early stretching of the lateral wall, non-early peak septal shortening close to aortic 

valve closure, and peak lateral shortening during or shortly after aortic valve closure. 

Patients in cluster 1 therefore do not present true electromechanical dyssynchrony, but 

rather a non-electrical scar substrate of mechanical dyssynchrony, on which CRT is less 

effective by two mechanisms: presence of scar tissue on the area of LV lead placement and 

reduced myocardial viability 8 14. Precise mapping of the scar areas by multimodality imaging 

would be particularly interesting in this group to improve LV lead placement, which has been 

shown to improve CRT response 15. 

It is also interesting to note that the group with the worst prognosis is cluster 1, the worst 

responder, but patients in cluster 2, the group with the most severe cardiomyopathy, lowest 

LVEF, GLS and remodeled LV, have a response rate of 70.8%, and a significantly better 

prognosis than cluster 1, with an adverse event rate of 13.8% at 4 years versus 36.5% 

(p=0.004). This means that even patients with advanced cardiomyopathy and severe 

remodeling can benefit from CRT, but those who do not respond to CRT have a very poor 

prognosis and must be identified early, to adapt therapy and follow up. Machine learning 

approaches can help identify these patient profiles. 

Demonstration of the real value of strain curves for analyzing mechanical dyssynchrony 
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The role of longitudinal strain integrals in understanding left ventricular mechanics has 

already been highlighted 16, and our study shows the added value of using strain integrals in 

a clustering approach to improve phenogroup differentiation with better granularity. Indeed, 

integrals of strain, such as ����
� , ����

� , �����
�  and �����

� , can differentiate super responders 

(high value), usual responders (medium value) and bad responders (low values). However, 

septal wall strain integrals do not discriminate well between good and bad responders, 

except for cluster 4 with integrals such as 
�. 

����
�  represents a quantification of the cumulative strain developed by all the lateral 

segments, which effectively contributes to LV ejection. This could be a marker of residual 

lateral wall contraction. Stimulation of the lateral wall is a target of CRT therapy, and the 

amount of mechanical energy which can be developed by this wall is known to be associated 

to CRT response 15.  

�����
�  corresponds to the global cumulative strain developed by the contraction of the lateral 

wall and is an indirect marker of lateral wall viability. In patients undergoing CRT, the 

delayed activation of the lateral wall occurs after aortic valve closure, meaning only a part of 

the cumulative strain developed by the lateral wall contributes to LV ejection. 

Strain integrals also differentiate clusters of similar patients. Indeed, in clusters 4 and 5, 

which present similar profiles of CRT response (respectively 85.7% and 92.7%) but different 

post CRT outcomes with a 2-fold risk of death or hospitalization for heart failure in cluster 4 

(14.3% versus 7.3% in cluster 5), classical clinical and echocardiography parameters fall short 

to differentiate these clusters and some strain trace characteristics are similar with SF and 

AR. However, strain integral features differ, with high integrals of strain (���� and ����� 

types) in cluster 5 and low integrals of strain (
 types) in cluster 4 as represented in Figure 3. 

Limitations 
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The quality of data relies on acquired images and their quality, which is an inherent limit in 

all echocardiographic studies, but we minimized this limitation by excluding echo exams with 

unacceptable 2D image quality. Future studies with more subjects and automated 

measurements could allow for a more detailed clustering and patient-specific approach, 

where machine-learning could be implemented to predict response and prognosis for each 

patient. Patients in atrial fibrillation were not considered in this study. Validation of the 

present results on another cohort has not been yet performed. We focused the analysis on 

the description of the clusters and the value of the concept. 

As we can see in Figure 2, our data contains outliers. Clustering such as K-means can be 

sensitive to such data. 

Some error can appear in the classification with the rank test analysis due to many statistical 

tests performed.  

We acknowledge that the success of CRT is dependent upon proper location of the LV pacing 

lead.  The LV lead was positioned at the discretion of the implanter though the goal was to 

achieve the shortest QRS duration. 

 

Conclusions 

Clustering applied to CRT recipients allows for the identification of specific subgroups of CRT 

response and outcome. This provides information about indicators of low response, as well 

as very good response. Automatic quantitative longitudinal strain curve analysis offers a 

good discriminative value between clusters, more than classical clinical and 

echocardiographic features, and appears as a promising tool to improve the understanding 

of LV mechanics and to improve patient characterization and selection for CRT. 
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 Figure 1. Feature extraction from longitudinal strain time series. A) Longitudinal strain 

signals for all segments showing standard amplitude and time-domain features extracted 

automatically from these signals. The black solid line corresponds to the onset of the QRS 

and the black dotted line is the aortic valve closure. The colored dots correspond to the peak 

of stain for each one of the six segments. B) Example calculation of the three kinds of 

strain integrals (grey zones) from the longitudinal strain signal of segment BL. The 

upper panel shows the integral value calculated before the aortic valve closure (����
�� ). The 

middle panel depicts the integral calculated up to the strain peak (�����
�� ). The lower panel 

shows the difference between the two preceding integral calculations (
��). Note that all 

integrals are calculated for values lower than 5%. C) Identification of the different segments, 

showing how the sum of integrals for different segments are calculated (B: basal, M: Mid, 

and A: Apical, S: Septal and L: Lateral). 



25 

 

 

 

Figure 2. Results obtained from the application of a principal component analysis (PCA) to 

the available data. Only the first plane, composed of the first two principal components is 

displayed, allowing for a 2D representation of the underlying 70-dimensions space. In this 

plane, each dot represents a patient and each color represents a different cluster. 

Responders are marked with a star. The black arrows represent a variable correlation plot. 

The direction of each arrow represents the direction in which a given variable (noted at the 

tip of each arrow) contributes to the representation of the data in the plane. Ω represents, 

from left to right, 
��, 
�� and 
�. GLS: global longitudinal strain, ���  and ���: amplitude 

of the peak of strain for ML and MS, ����	:  average of all amplitude of peak of strain, ����
��  

and ����
�� : integral between QRS onset and aortic valve closure for BS and MS, ����

���	: mean of 

all integral between QRS onset and aortic valve closure, ����
�  and ����

� : sum of the integral 

between QRS onset and aortic valve closure for each wall, ����
� : difference between ����

�  and 
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����
� , �����

��  and �����
�� : integral between QRS onset and peak of strain for MS and ML, �����

���	: 

mean of all integral between QRS onset and peak of strain, �����
�  and �����

� : sum of the 

integral between QRS onset and peak of strain for each wall, �����
� : difference between �����

�  

and �����
� , 
�� and 
��: integral between aortic valve closure and peak of strain for BS and 

MS, 
�: sum of the integral between aortic valve closure and peak of strain for septal wall.

 

Figure 3. Most significant features with high, medium or low values for each cluster, listed by 

level of importance. GLS: global longitudinal strain 

 

 
A) Cluster 1 B) Cluster 2 
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Figure 4. Strain curves representative patients of each cluster (the closest to the barycenter). 

The black solid line corresponds to the onset of the QRS and the black dotted line is the 

aortic valve closure. The black dots correspond to the value of strain for the six segments at 

the aortic valve closure. The colored dots correspond to the peak of stain for the six 

segments. A) Strain curves of the patient of cluster 1 (dyssynchrony but severely impaired 

myocardial longitudinal deformation). B) Strain curves of the patient of cluster 2 (less 

dyssynchrony at the apex, impaired myocardial longitudinal deformation). C) Strain curves of 

the patient of cluster 3 (early deformation of the septum resulting in stretching of the lateral 

wall with an overall reduced alteration of regional myocardial deformation). D) Strain curves 

of the patient of cluster 4 (close to cluster 4, but with much more pronounced 

C) Cluster 3 D) Cluster 4 

E) Cluster 5 
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dyscoordination between septal and lateral walls). E) Strain curves of the patient of cluster 5 

(the most discordant deformation between septal and lateral LV-walls). 

             
Cluster 1 52 44 41 40 37 37 37 35 33 

Cluster 2 65 62 62 61 57 57 56 56 56 

Cluster 3 29 28 27 27 27 25 25 25 25 

Cluster 4 63 61 60 59 57 56 56 55 54 

Cluster 5 41 41 41 41 40 40 39 38 38 

Figure 5. Kaplan Meier survival curve at 4 years with the numbers at risk. 
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Tables 

Table 1. Patient characteristics of the whole studied population and for responders and non-

responders. Results are presented as mean±sd, except for binary features such as Gender or 

Hypertension which are presented as percentage. Features with a * marker have a 

significant P-value (<0.05) between Responders and Non-Responders. 

 
Overall 

population 
Responders 

Non-

Responders 
P-value 

Number of patients (%) 250 (100%) 185 (74%) 65 (26%)  

Gender, % of males * 65.6 60.0 81.5 0.002 

Age (years) 67.2 ± 10.9 67.2 ± 10.9 67.1 ± 10.8 0.96 

Ischemic etiology, % * 31.2 23.2 53.8 <0.001 

Moderate to severe 

MR, % 
9.6 9.7 9.2 0.91 

Diabetes mellitus, % 18.4 15.67568 26.15385 0.068 

Hypertension, % 30.8 30.27027 32.30769 0.76 

NYHA functional class 2.3 ± 0.7 2.3 ± 0.6 2.4 ± 0.8 0.26 

Creatinine (μmol) 92.2 ± 36.1 92.5 ± 33.5 91.5 ± 42.7 0.85 

QRS duration (ms) * 161.7 ± 23.0 163.7 ± 20.7 155.7 ± 27.7 0.015 

LBBB, % * 87.2 91.4 75.4 <0.001 

Left atrial volume 

(mL/m2) * 
45.1 ± 16.1 43.8 ± 16.4 48.6 ± 14.9 0.042 

LVEDV (mL) 216.2 ± 73.8 211.3 ± 75.6 230.1 ± 66.6 0.077 

LVESV (mL) 156.8 ± 62.8 154.2 ± 63.7 164.2 ± 59.5 0.27 

LVEF (%) 28.0 ± 6.6 27.9 ± 6.3 28.5 ± 7.3 0.51 

SF, % * 68.4 82.70 27.69 <0.001 

AR, % * 65.2 74.59 38.46 <0.001 

E/e’ ratio * 13.9 ± 7.9 12.8 ± 7.7 17.1 ± 7.8 <0.001 

TAPSE * 19.0 ± 5.1 19.6 ± 4.8 17.2 ± 5.5 <0.001 

Right ventricular strain 

(%) * 
-15.5 ± 10.1 -16.3 ± 10.0 -13.1 ± 10.2 0.027 

SPAP (mm Hg) 21.6 ± 20.6 21.7 ± 19.9 21.3 ± 22.6 0.90 

GLS (%) * -8.6 ± 3.3 -9.0 ± 3.3 -7.3 ± 2.7 <0.001 

Dispersion (strain 

peaks) (ms) 
93.6 ± 49.0 96.6 ± 46.0 85.1 ± 55.7 0.10 

LBBB: left bundle branch block morphology, LVEDV: left ventricular end-diastolic volume, 

LVESV: left ventricular end-systolic volume, LVEF: left ventricular ejection fraction, SF: septal 

flash, AR: apical rocking, TAPSE: tricuspid annular plan systolic excursion, GLS: global 

longitudinal strain. 
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Table 2. Main features for each one of the 5 identified clusters and some clinical features. 

Results are presented as mean±sd (rank), except SF, AR, LBBB and Ischemic etiology which 

are presented as percentage (rank). 

 Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 

����
�  

-2.86 ± 2.05 

(1) 

0.77 ± 1.90 

(43) 

-4.18 ± 3.27 

(11) 

0.14 ± 2.34 

(63) 

4.34 ± 2.31 

(2) 

�����
�  

-1.36 ± 2.58 

(2) 

1.37 ± 1.51 

(42) 

-1.89 ± 3.04 

(27) 

0.49 ± 2.68 

(67) 

3.22 ± 2.39 

(11) 

SF, % 
38.5 

(3) 

60.0 

(51) 

65.5 

(67) 

92.1 

(15) 

85.4 

(32) 

����
�  

2.26 ± 1.64 

(4) 

1.98 ± 1.58 

(22) 

6.86 ± 2.77 

(15) 

3.70 ± 1.65 

(70) 

8.67 ± 2.14 

(1) 

AR, % 
36.5 

(5) 

64.6 

(69) 

34.5 

(30) 

88.9 

(18) 

87.8 

(25) 

�����
���	 

1.25 ± 0.36 

(50) 

0.58 ± 0.31 

(1) 

2.50 ± 0.70 

(9) 

1.66 ± 0.54 

(22) 

1.93 ± 0.64 

(17) 

�����
�  

4.42 ± 1.68 

(41) 

1.05 ± 0.89 

(2) 

8.46 ± 2.78 

(7) 

4.74 ± 2.34 

(30) 

4.17 ± 2.34 

(56) 

GLS 
-8.1 ± 2.1 

(51) 

-5.1 ± 1.7 

(3) 

-11.7 ± 3.1 

(18) 

-9.9 ± 2.6 

(17) 

-10.5 ± 2.2 

(19) 

����	 
-9.34 ± 2.01 

(37) 

-4.01 ± 2.42 

(4) 

-14.01 ± 2.06 

(3) 

9.18 ± 2.44 

(41) 

8.79 ± 2.62 

(57) 

����
���	 

1.23 ± 0.42 

(63) 

0.53 ± 0.33 

(5) 

2.98 ± 0.73 

(4) 

1.21 ± 0.51 

(60) 

2.16 ± 0.58 

(10) 

����
��  

1.81 ± 0.93 

(8) 

0.26 ± 0.46 

(14) 

4.00 ± 1.02 

(1) 

1.03 ± 0.87 

(57) 

0.94 ± 0.80 

(53) 

����
�  

5.12 ± 1.59 

(13) 

1.21 ± 1.13 

(7) 

11.04 ± 2.68 

(2) 

3.56 ± 2.17 

(58) 

4.29 ± 2.03 

(50) 

��� 
-9.91 ± 2.75 

(20) 

-3.54 ± 3.63 

(10) 

-14.03 ± 2.15 

(5) 

-8.79 ± 3.13 

(54) 

-7.76 ± 3.26 

(52) 


���	 
-0.02 ± 0.33 

(56) 

-0.05 ± 0.26 

(55) 

0.48 ± 0.81 

(35) 

-0.45 ± 0.40 

(1) 

0.23 ± 0.45 

(22) 


� 
0.70 ± 1.38 

(21) 

0.16 ± 0.82 

(66) 

2.58 ± 3.07 

(17) 

-1.18 ± 1.39 

(2) 

0.12 ± 1.42 

(64) 

����	 
0.39 ± 0.12 

(54) 

0.23 ± 0.18 

(12) 

0.46 ± 0.10 

(49) 

0.53 ± 0.14 

(3) 

0.47 ± 0.18 

(31) 


�� 
0.35 ± 0.77 

(24) 

0.05 ± 0.28 

(57) 

1.00 ± 1.36 

(20) 

-0.36 ± 0.59 

(4) 

-0.14 ± 0.45 

(38) 


�� 
0.28 ± 0.58 

(23) 

0.10 ± 0.34 

(54) 

0.90 ± 0.99 

(16) 

-0.34 ± 0.57 

(5) 

-0.16 ± 0.43 

(30) 

����
��  

0.51 ± 0.65 

(7) 

0.52 ± 0.69 

(32) 

1.78 ± 1.18 

(33) 

1.09 ± 0.90 

(69) 

2.82 ± 0.94 

(3) 
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����
��  

0.62 ± 0.79 

(11) 

0.47 ± 0.81 

(28) 

2.38 ± 1.66 

(24) 

1.25 ± 0.91 

(56) 

2.74 ± 1.28 

(4) 

�����
�  

3.06 ± 1.68 

(6) 

2.42 ± 1.45 

(16) 

6.57 ± 2.39 

(25) 

5.23 ± 1.83 

(28) 

7.40 ± 2.18 

(5) 

QRS duration 

(ms) 

156 ± 28 

(48) 

167 ± 24 

(49) 

160 ± 17 

(51) 

165 ± 14 

(53) 

157 ± 28 

(60) 

LVEF (%) 
30.1 ± 4.5 

(31) 

21.6 ± 5.5 

(11) 

33.3 ± 5.1 

(23) 

29.0 ± 5.6 

(61) 

30.4 ± 5.4 

(29) 

LBBB, % 
71.2 

(15) 

90.8 

(59) 

82.8 

(60) 

95.2 

(38) 

92.7 

(51) 

Ischemic 

etiology, % 

55.8 

(9) 

30.8 

(70) 

41.4 

(52) 

17.5 

(34) 

14.6 

(33) 

Constructive 

work 

929 ± 271 

(38) 

596 ± 256 

(6) 

1386 ± 395 

(21) 

1225 ± 372 

(12) 

1278 ± 347 

(20) 

Response 

rate, % 
50.0 70.8 72.4 85.7 92.7 

SF: Septal Flash, AR: Apical Rocking, GLS: global longitudinal strain, LVEF: left ventricular 

ejection fraction, LBBB: left bundle branch block morphology 

 



The physician get optimal images and 
optimal speckle tracking data

Automated extraction of strain feature that can be computed 
to provide clusters of patients

with distinct response to 
CRT and different prognosis
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