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a b s t r a c t 

A principal component analysis based on the generalized Gini correlation index is proposed (Gini PCA). 

The Gini PCA generalizes the standard PCA based on the variance. It is shown, in the Gaussian case, that 

the standard PCA is equivalent to the Gini PCA. It is also proven that the dimensionality reduction based 

on the generalized Gini correlation matrix, that relies on city-block distances, is robust to outliers. Monte 

Carlo simulations and an application on cars data (with outliers) show the robustness of the Gini PCA 

and provide different interpretations of the results compared with the variance PCA. 
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. Introduction 

The first PCA was introduced by Pearson (1901) , projecting a 

eal matrix X onto the eigenvectors of its covariance matrix, and 

bserving that the variances of those projections are the corre- 

ponding eigenvalues. One of the key property is that X 

� X is a 

ositive matrix. Most statistical properties of PCAs (see Anderson, 

963; Flury & Riedwyl, 1988 ) are obtained under Gaussian assump- 

ions. Furthermore, geometric properties can be obtained using the 

act that the covariance defines an inner product on the subspace 

f random variables with finite second moment, which is a strong 

ypothesis that can be dropped with the aid of the Gini index. 

This late decade, a line of research has been developed and 

ocused on the Gini methodology, see Yitzhaki and Schechtman 

2013) for a general review of different Gini approaches applied 

n Statistics and in Econometrics. 1 Among the Gini tools, the Gini 

egression has received a large audience since the Gini regres- 

ion initiated by Olkin and Yitzhaki (1992) . Gini regressions have 

een generalized by Yitzhaki and Schechtman (2013) in different 

reas and particularly in time series analysis. Shelef and Schecht- 

an (2011) and Carcea and Serfling (2015) investigated ARMA pro- 

esses with an identification and an estimation procedure based on 

ini autocovariance functions. This robust Gini approach has been 

hown to be relevant to heavy tailed distributions such as Pareto 
� Research Fellow LISER Luxembourg. The authors are indebted to their three re- 

iewers for their very helpful remarks and suggestions. A. Charpentier acknowl- 

dges the support of the Natural Sciences and Engineering Research Council of 

anada Grant NSERC-2019-07077 , and AXA Research Fund Joint Research Initiative. 
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1 See Giorgi (2013) for an overview of the ”Gini methodology”. 

a

s

t

i

a

n

ttps://doi.org/10.1016/j.ejor.2021.02.010 

377-2217/© 2021 The Author(s). Published by Elsevier B.V. This is an open access article
rocesses. Also, Shelef (2016) proposed a unit root test based on 

ini regressions to deal with outlying observations in the data. 

In parallel to the above literature, a second line of research on 

ultidimensional Gini indices arose. This literature paved the way 

n the valuation of inequality about multiple commodities or di- 

ensions such as education, health, income, etc., that is, to find 

 real-valued function that quantifies the inequality between the 

ouseholds of a population over each dimension, see among oth- 

rs, List (1999) , Gajdos and Weymark (2005) , Decancq and Lugo 

2013) . More recently, Banerjee (2010) shows that it is possible 

o construct multidimensional Gini indices by exploring the pro- 

ection of the data in reduced subspaces based on the Euclidean 

orm. Accordingly, some notions of linear algebra have been in- 

reasingly included in the axiomatization of multidimensional Gini 

ndices. 

In this paper, in the same vein as in the second line of re- 

earch mentioned above, we start from the recognition that linear 

lgebra may be closely related to the maximum level of inequal- 

ty that arises in a given dimension. In data analysis, the variance 

aximization is mainly used to further analyze projected data in 

educed subspaces. The variance criterion implies many problems 

ince it captures a very precise notion of dispersion, which does 

ot always match some basic properties satisfied by variability 

easures such as the Gini index. Such a property may be, for ex- 

mple, an invariance condition postulating that a dispersion mea- 

ure remains constant when the data are transformed by mono- 

onic maps. 2 Another property typically related to the Gini index is 

ts robustness to outlying observations, see e.g. Olkin and Yitzhaki 
2 See Furman and Zitikis (2017) for the link between variability (risk) measures 

nd the Gini correlation index. See also Laurini and Ohashi (2015) for problem of 

oisy PCA for pricing interest rate derivatives. 
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1992) in the case of linear regressions. Accordingly, it seems nat- 

ral to analyze multidimensional dispersion with the Gini index, 

nstead of the variance, in order to provide a Principal Component 

nalysis (PCA) in a Gini sense (Gini PCA). 3 

In the field of � 2 norm PCA, many authors have proposed ro- 

ust estimators in order to deal with outlying observations. For in- 

tance Laurini and Ohashi (2015) point out that the classical PCA 

s not suitable for the estimation of principal components on some 

imes series such as forward rate curves because of the presence 

f measurement errors (inherent to market microstructure effects 

nd numerical interpolations). Then, they propose to employ long 

un covariance matrices that prevent temporal dependencies due 

o either serial correlation or to some contamination process. 

Another branch of PCA, the � 1 norm PCA, became famous these 

ast two decades. The algorithms underlying the � 1 norm PCA are 

ainly built on the minimization of the absolute difference be- 

ween the coordinates of the projected data and the original data. 

wak (2008) , show that the � 1 norm PCA is rather less sensitive 

o outliers compared with the � 2 norm PCA. An algorithm based 

n either linear or quadratic programming is proposed to obtain a 

 1 norm PCA. Despite the robustness of the technique, it remains 

uite time-consuming and not rotational invariant. 

Ding, Zhou, He, and Zha (2006) propose the R1-PCA which is a 

otational invariant � 1 norm PCA. It deals properly with outliers and 

nables rotations, however it strongly depends on the dimension 

f the subspace in which the data are projected onto. Indeed, the 

rojector of dimension K − 1 cannot be deduced from the projector 

f dimension K. 

Since the � 1 norm PCA relies on optimization problems, the lit- 

rature offers some new techniques of optimization related to the 

 1 PCA such as � 1 norm discriminant analysis for image and pat- 

ern recognitions, see for instance Li, Shaoa, and Deng (2015) who 

ropose to replace the Euclidean norm by the � 1 norm in or- 

er to maximize the between-group variability in a given sample 

ith the aid of an iterative algorithm. Brooks, Dulá, and Boone 

2013) suggest the � 1 norm best-fit hyperplane problem leading to 

 ‘pure’ � 1 PCA and Visentin, Prestwich, and Armagan (2016) a � 1 
orm inverse iterative process based on linear programming that 

inimizes the variance. 

Instead of looking for optimization procedures related to the 

 1 norm, we propose a closed-form � 1 norm PCA. 4 Indeed, fol- 

owing the recent works on the Gini index done by Yitzhaki and 

chechtman (2013) , it is well-known that the Gini covariance func- 

ion, being a � 1 norm covariance, enables robustness statistical es- 

imations. Baccini, Besse, and de Falguerolles (1996) and Korhonen 

nd Siljamäki (1998) are among the first authors dealing with a � 1 - 

orm PCA Gini framework. Their idea was to robustify the standard 

CA by means of the Gini Mean Difference metric introduced by 

ini (1912) , which is a city-block distance measure of variability. 

he authors employ the Gini Mean Difference as an estimator of 

he standard deviation of each variable before running the singular 

alue decomposition leading to a robust PCA. In what follows, we 

nvestigate the employ of the generalized Gini covariance opertator 

n order to obtained a closed-form � 1 PCA without taking recourse 

o algorithms of optimization. 

In particular, it is shown that the variance may be seen as 

n inappropriate criterion for dimensionality reduction in the 

ase of data contamination or outlying observations. A general- 

zed Gini PCA is investigated by means of Gini correlations matri- 

es. These matrices contain generalized Gini correlation coefficients 
3 Recent PCAs derive latent variables thanks to regressions based on elastic net 

a � 1 regularization) that improves the quality of the regression curve estimation, 

ee Zou, Hastie, and Tibshirani (2006) . 
4 For � 1 norm PCA with new geometric perspectives, see Schölkopf, Smola, and 

üller (1998) for the kernel PCA which is a non-linear PCA. 
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237 
see Yitzhaki, 2003 ) based on the Gini covariance operator intro- 

uced by Schechtman and Yitzhaki (1987) and Schechtman and 

itzhaki (2003) . The generalized Gini correlation coefficients are: 

i) bounded, (ii) invariant to monotonic transformations, (iii) and 

ymmetric whenever the variables are exchangeable. It is shown 

hat the standard PCA is equivalent to the Gini PCA when the vari- 

bles are Gaussians. Also, it is shown that the generalized Gini PCA 

ay be realized either in the space of the variables or in the space 

f the observations. In each case, some statistics are proposed to 

erform some interpretations of the variables and of the obser- 

ations (absolute and relative contributions). To be precise, a U- 

tatistics test is introduced to test for the significance of the cor- 

elations between the axes of the new subspace and the variables 

n order to assess their significance. Monte Carlo simulations are 

erformed in order to show the superiority of the Gini PCA com- 

ared with the usual PCA when outlying observations contaminate 

he data. Finally, with the aid of the well-known cars data, which 

ontain outliers, it is shown that the generalized Gini PCA leads to 

ifferent results compared with the usual PCA. 

The outline of the paper is as follows. Section 2 sets the no- 

ations and presents the Gini-covariance operator. Section 3 is de- 

oted to the generalized Gini PCA. Section 4 focuses on the inter- 

retation of the Gini PCA. Sections 5 and 6 present some Monte 

arlo simulations and applications, respectively. 

. Notations, definitions and Gini-covariance operators 

In this section, the properties of the Gini Covariance operator is 

tudied with the special case of Gaussian random variables. Then, 

he properties of the Gini correlation matrix are reviewed. 

.1. Notations 

Let N 

∗ be the set of integers and R [ R ++ ] the set of [posi-

ive] real numbers. Let M be the set of all N × K matrix X = [ x ik ]

hat describes N observations on K dimensions such that N � K, 

ith elements x ik ∈ R , and I n the n × n identity matrix. The N × 1

ectors representing each variable are expressed as x ·k , for all 

 ∈ { 1 , . . . , K} and we assume that x ·k � = c1 N , with c a real con-

tant and 1 N a N-dimensional column vector of ones. The K × 1 

ectors representing each observation i (the transposed i th line of 

 ) are expressed as x i ·, for all i ∈ { 1 , . . . , N} . It is assumed that x ·k 
s the realization of the random variable X k , with cumulative dis- 

ribution function F k . The arithmetic mean of each column (line) of 

he matrix X is given by x̄ ·k ( ̄x i ·). The cardinal of set A is denoted 

 { A } . The � 1 norm, for any given real vector x , is ‖ x ‖ 1 = 

∑ K 
k =1 | x k | ,

hereas the � 2 norm is ‖ x ‖ 2 = ( 
∑ K 

k =1 x 
2 
k 
) 1 / 2 . The trace and the de-

erminant of X are denoted by Tr [ X ] and | X | , respectively. 

ssumption 2.1. The random variables X k are such that E [ | X k | ] <
 for all k ∈ { 1 , . . . , K} , but no assumption is made on the second

oments (that may not exist). 

This assumption imposes less structure compared with the clas- 

ical PCA in which the existence of the second moments are nec- 

ssary, as can be seen in Appendix A for a review of � 2 PCA. 

.2. The Gini-covariance operator 

In this section, X = (X 1 , · · · , X K ) denotes a random vector. The 

ovariance matrix between X and Y , two random vectors, is de- 

ned as the inner product between centered versions of the vec- 

ors, 

 X , Y 〉 = Cov ( X , Y ) = E [( X − E [ X ])( Y − E [ Y ]) T ] . (1)

ence, it is the matrix where elements are regular covariances be- 

ween components of the vectors, Cov ( X , Y ) = [ Cov (X i , Y j )] . It is
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he upper-right block of the covariance matrix of ( X , Y ) . Note that 

ov ( X , X ) is the standard variance-covariance matrix of vector X . 

efinition 2.1. Let X = (X 1 , · · · , X K ) be collections of K iden- 

ically distributed random variables. Let h : R → R denote a 

on-decreasing function. Let h ( X ) denote the random vector 

h (X 1 ) , · · · , h (X K )) , and assume that each component has a finite

ariance. Then, operator �C h ( X ) = Cov ( X , h ( X )) is called h -Gini co-

ariance matrix. 

Let us now introduce the Gini-covariance. Gini (1912) intro- 

uced the Gini mean difference operator �, defined as: 

(X ) = E (| X 1 − X 2 | ) where X 1 , X 2 ∼ X, and X 1 ⊥⊥ X 2 , (2)

or some random variable X (or more specifically for some dis- 

ribution F with X ∼ F , because this operator is law invari- 

nt). For F (X ) being uniformly distributed on [0,1], we have 

ov (F (X ) , F (X )) = 1 / 12 , then: 

(X ) = 4 Cov [ X, F (X )] = 

1 

3 

Cov [ X, F (X )] 

Cov [ F (X ) , F (X )] 
(3) 

here the ratio on the right-hand side of (3) is interpreted as the 

lope of the regression curve of the observed variable X and its 

ranks’ (up to a scaling coefficient). Thus, the Gini-covariance is ob- 

ained when the function h is equal to the cumulative distribution 

unction of the second term, see Schechtman and Yitzhaki (1987) . 

efinition 2.2. Let X = (X 1 , · · · , X K ) be a collection of K identically

istributed random variables, with cumulative distribution func- 

ion F . Then, the Gini covariance is �C F ( X ) = Cov ( X , F ( X )) . 

On this basis, it is possible to show that the Gini covariance 

atrix is a positive semi-definite matrix. 

heorem 2.1. Let Z ∼ N (0 , 1) . If X represents identically distributed 

aussian random variables, with distribution N (μ, σ 2 ) , then the two 

ollowing assertions hold: 

(i) �C F ( X ) = σ−1 Cov (Z, �(Z)) V ar ( X ) . 

(ii) �C F ( X ) is a positive semi-definite matrix. 

roof. See Appendix C. �

Note that �C F ( X ) = Cov ( X , −F ( X )) = �C −F 
( X ) , where F = 1 −

 denotes the survival distribution function. 

efinition 2.3. Let X = (X 1 , · · · , X K ) be a collection of K identically

istributed random variables, with survival distribution function F . 

hen, the generalized Gini covariance is G �C ν ( X ) = �C −F 
ν−1 ( X ) =

ov ( X , −F 
ν−1 

( X )) , for ν > 1 . 

This operator is related to the one introduced in Schechtman 

nd Yitzhaki (2003) , called generalized Gini mean difference GMD ν

perator. More precisely, an estimator of the generalized Gini mean 

ifference is given by: 

MD ν (x ·� , x ·k ) := − 2 

N − 1 

νCov (x ·� , r ν−1 
x ·k ) , ν > 1 , 

here r x ·k = (R (x 1 k ) , . . . , R (x nk )) is the decumulative rank vector of

 ·k , that is, the vector that assigns the smallest value (1) to the 

reatest observation x ik , and so on. 5 The rank of observation i with 

espect to variable k is: 

 (x ik ) := 

{
N + 1 − # { x ≤ x ik } if no ties 

N + 1 − 1 
p 

∑ p 
i =1 

# { x ≤ x ik } if p ties x ik . 

ence GMD ν (x ·� , x ·k ) is the empirical version of 

2 ν�C ν (X � , X k ) := −2 νCov 
(
X � , F k (X k ) 

ν−1 
)
. 
5 It is an unbiased and consistent estimator being a U-statistics, see Yitzhaki and 

chechtman (2013) Chapter 9. 

p

r

238 
he index GMD ν is a generalized version of the GMD 2 proposed 

arlier by Schechtman and Yitzhaki (1987) , and can also be written 

s: 

MD 2 (X k , X k ) = 4 Cov 
(
X k , F k (X k ) 

)
= �(X k ) . 

hen k = �, GMD ν represents the variability of the variable x ·k it- 

elf. Focus is put on the lower tail of the distribution x ·k when- 

ver ν → ∞ , the approach is said to be max-min in the sense that

MD ν inflates the minimum value of the distribution. On the con- 

rary, whenever ν → 0 , the approach is said to be max-max, in this 

ase focus is put on the upper tail of the distribution x ·k . As men-

ioned in Yitzhaki and Schechtman (2013) , the case ν < 1 does not 

ntail simple interpretations, thereby the parameter ν is used to 

e set as ν > 1 in empirical applications. 6 

Note that even if X k and X � have the same distribu- 

ion, we might have GMD ν (X k , X � ) � = GMD ν (X � , X k ) . In that case

 [ X k h (X � )] � = E [ X � h (X k )] if h (2) � = 2 h (1) (this property is never-

heless valid if h is linear). We would have GMD ν (X k , X � ) =
MD ν (X � , X k ) when X k and X � are exchangeable (see Appendix 

 for some properties on exchangeability and the positive semidef- 

niteness of the Gini-covariance matrix). But since generally GMD ν

s not symmetric, we have for x ·k being not a monotonic transfor- 

ation of x ·� and ν > 1 , GMD ν (x ·k , x ·� ) � = GMD ν (x ·� , x ·k ) . In other

ords, the exchangeability property is not necessary for Gini PCA. 

.3. Generalized Gini correlation 

In this section, X is a matrix in M . The Gini correlation coef- 

cient ( G -correlation from now on), is a normalized GMD ν index 

uch that for all ν > 1 , see Schechtman and Yitzhaki (2003) , 

C ν (x ·� , x ·k ) := 

GMD ν (x ·� , x ·k ) 
GMD ν (x ·� , x ·� ) 

; GC ν (x ·k , x ·� ) := 

GMD ν (x ·k , x ·� ) 
GMD ν (x ·k , x ·k ) 

, 

ith GC ν (x ·k , x ·k ) = 1 and GMD ν (x ·k , x ·k ) � = 0 , for all k, � = 1 , . . . , K.

ollowing Schechtman and Yitzhaki (2003) , the G -correlation is 

ell-suited for the measurement of correlations between non- 

ormal distributions or in the presence of outlying observations in 

he sample. 

roperty 2.1. – Schechtman and Yitzhaki (2013): 

(i) GC ν (x ·� , x ·k ) ≤ 1 . 

(ii) If the variables x ·� and x ·k are independent, for all k � = �, then

C ν (x ·� , x ·k ) = GC ν (x ·k , x ·� ) = 0 . 

(iii) For any given monotonic increasing transformation ϕ, 

C ν (x ·� , ϕ(x ·k )) = GC ν (x ·� , x ·k ) . 
(iv) If (x ·� , x ·k ) have a bivariate normal distribution with Pearson 

orrelation ρ, then GC ν (x ·� , x ·k ) = GC ν (x ·k , x ·� ) = ρ . 

(v) If x ·k and x ·� are exchangeable up to a linear transformation, 

hen GC ν (x ·� , x ·k ) = GC ν (x ·k , x ·� ) . 

Whenever ν → 1 , the variability of the variables is attenuated 

o that GMD ν tends to zero (even if the variables exhibit a strong 

ariance). The choice of ν is interesting to perform generalized Gini 

CA with various values of ν in order to robustify the results of the 

CA, since the standard PCA (based on the variance) is potentially 

f bad quality if outlying observations drastically affect the sample. 

A G -correlation matrix is proposed to analyze the data into 

 new vector space. Following Property 2.1 (iv), it is possible to 

escale the variables x ·� thanks to a linear transformation, then the 

atrix of standardized observation is, 

 ≡ [ z i� ] := 

[
x i� − x̄ ·� 

GMD ν (x ·� , x ·� ) 

]
. (4) 
6 In risk analysis ν ∈ (0 , 1) denotes risk lover decision makers (max-max ap- 

roach), whereas ν > 1 stands for risk averse decision makers, and ν → ∞ extreme 

isk aversion (max-min approach). 
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he variable z i� is a real number without dimension. The variables 

 ·k are rescaled such that their Gini variability is equal to unity. 

ow, we define the N × K matrix of decumulative centered rank 

ectors of Z , which are the same compared with those of X : 

 

c 
z ≡ [ R 

c (z i� )] := [ R (z i� ) 
ν−1 − r̄ ν−1 

z ·� ] = [ R (x i� ) 
ν−1 − r̄ ν−1 

x ·� ] . 

ote that the last equality holds since the standardization (4) is 

 strictly increasing affine transformation. 7 The K × K matrix con- 

aining all G -correlation indices between all couples of variables z ·k 
nd z ·� , for all k, � = 1 , . . . , K is expressed as: 

C ν ( Z ) := − 2 ν

N(N − 1) 
Z 

� R 

c 
z . 

f GMD ν ( Z ) ≡ [ GMD ν (z ·k , z ·� )] , then we get the following. 

roposition 2.1. For each standardized matrix Z defined in (4) , the 

ollowing relations hold: 

MD ν ( Z ) = GC ν ( X ) = GC ν ( Z ) . (5) 

MD ν (z ·k , z ·k ) = 1 , ∀ k = 1 , . . . , K. (6) 

roof. See Appendix C. �

Finally, under a normality assumption, the generalized Gini co- 

ariance matrix GC ν ( X ) ≡ [ GMD ν (X k , X � )] is shown to be a positive

emi-definite matrix. 

heorem 2.2. Let Z ∼ N (0 , 1) . If X represents identically distributed 

aussian random variables, with distribution N (μ, σ 2 ) , then the two 

ollowing assertions hold: 

(i) GC ν ( X ) = σ−1 Cov (Z, �(Z)) V ar ( X ) . 

(ii) GC ν ( X ) is a positive semi-definite matrix. 

roof. The first part (i) follows from Yitzhaki and Schechtman 

2013) , Chapter 6. The second part follows directly from (i). �

Theorem 2.2 shows that under the normality assumption, the 

ariance is a special case of the Gini methodology. As a con- 

equence, for multivariate normal distributions, it is shown in 

ection 4 that Gini PCA and classical PCA (based on the � 2 norm 

nd the covariance matrix) are equivalent. 

. Generalized Gini PCA 

In this section, the multidimensional Gini variability of the ob- 

ervations i = 1 , . . . , N, embodied by the matrix GC ν ( Z ) , is max-

mized in the R 

K -Euclidean space, i.e. , in the set of variables 

 z ·1 , . . . , z ·K } . This allows the observations to be projected onto the

ew vector space spanned by the eigenvectors of GC ν ( Z ) . Then, 

he projection of the variables is investigated in the R 

N -Euclidean 

pace induced by GC ν ( Z ) . Both observations and variables are an- 

lyzed through the prism of absolute and relative contributions to 

ropose relevant interpretations of the data in each subspace. 

.1. The R 

K -Euclidean space 

It is possible to investigate the projection of the data Z onto the 

ew vector space induced by GMD ν ( Z ) or alternatively by GC ν ( Z )

ince GMD ν ( Z ) = GC ν ( Z ) . Let f ·k be the k th principal component,

.e. the k th axis of the new subspace, such that the N × K matrix F 

s defined by F ≡ [ f ·1 , . . . , f ·K ] with R 

c 
f ≡ [ r ν−1 

c, f 1 
, . . . , r c 

c, f ·K 
] its corre-

ponding decumulative centered rank matrix (where each decumu- 

ative rank vector is raised to an exponent of ν − 1 ). The K × K ma- 

rix B ≡ [ b ·1 , . . . , b ·K ] is the projector of the observations, with the

ormalization condition b 

� b ·k = 1 , such that F = Z B . We denote by
·k 

7 By definition GMD ν (x ·� , x ·� ) ≥ 0 for all � = 1 , . . . , K. As we impose that x ·� � = c1 N , 

he condition becomes GMD ν (x ·� , x ·� ) > 0 . f
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·k (or 2 μ·k ) the eigenvalues of the matrix [ GC ν ( Z ) + GC ν ( Z ) � ] . Let

he basis B := { b ·1 , . . . , b ·h } with h ≤ K issued from the maximiza-

ion of the overall Gini variability: 

max b 

� 
·k GC ν ( Z ) b ·k �⇒ [ GC ν ( Z ) + GC ν ( Z ) � ] b ·k = 2 μ·k b ·k , 

∀ k = 1 , . . . , K. 

ndeed, from the Lagrangian, 

 = b 

� 
·k GC ν ( Z ) b ·k − μ·k [1 − b 

� 
·k b ·k ] , 

ecause of the non-symmetry of GC ν ( Z ) , the eigenvalue equation 

s, 

 GC ν ( Z ) + GC ν ( Z ) � ] b ·k = 2 μ·k b ·k , 

hat is, 

 GC ν ( Z ) + GC ν ( Z ) � ] b ·k = λ·k b ·k . (7)

he new subspace { f ·1 , . . . , f ·h } such that h ≤ K is derived from the

aximization of the Gini variability of the observations over each 

xis f ·k . To be precise, this Gini variability is the Generalized Gini 

ean Difference of f ·k given by: 

GMD ν (f ·k , f ·k ) := − 2 ν

N(N − 1) 
f � ·k R 

c 
z b ·k . (8) 

he Generalized Gini Mean Difference measures the variability be- 

ween the observations projected onto the new axis f ·k and the 

rojected rank of these observations. In the literature on inequal- 

ty indices, this kind of index is rather known as a generalized Gini 

ndex, because of the product between a variable f ·k and a func- 

ion � of its ranks, �( r f k ) := R 

c 
z b ·k . Yaari (1987) and subsequently 

aari (1988) proposes generalized Gini indices with a rank distor- 

ion function � that describes the behavior of the decision maker 

being either max-min or max-max). 8 

As shown in the next result, when the variability of the obser- 

ations projected onto component f ·k is null, then the eigenvalue 

ssociated with axis f ·k is null. In the same time, there is neither 

o-variability in the Gini sense between f ·k and another axis f ·� , 
hat is GGMD ν (f ·k , f ·� ) = 0 . 

roposition 3.1. Let the eigenvalues of GC ν ( Z ) + GC ν ( Z ) � be such

hat λ1 = 2 μ·1 ≥ · · · ≥ λ·K = 2 μ·K . Then, 

i) GGMD ν (f ·k , f ·k ) = GGMD ν (f ·k , f ·� ) = GGMD ν (f ·� , f ·k ) = 0 , for all 

 = 1 , . . . , K, if and only if, λ·k = 0 and k = 1 , . . . , K. 

ii) max k =1 , ... ,K GGMD ν (f ·k , f ·k ) = μ·1 . 
iii) min k =1 , ... ,K GGMD ν (f ·k , f ·k ) = μ·K . 

roof. See the Appendix. �

In the Gaussian case, because the Gini correlation matrix is 

ositive semi-definite, the eigenvalues are non-negative, then the 

GMD is null whenever it reaches its minimum. Furthermore, the 

ini PCA and the standard PCA are equivalent. 

roposition 3.2. Let Z ∼ N (0 , 1) and let X represent identically dis- 

ributed Gaussian random variables, with distribution N (0 , ρ) such 

hat V ar (X k ) = 1 for all k = 1 , . . . , K and let γ. 1 , . . . , γ.K be the eigen-

alues of V ar ( X ) . Then the following assertions holds: 

(i) Tr [ GC ν ( X )] = Cov (Z, �(Z)) Tr [ Var ( X )] . 

(ii) μ·k = GGMD ν (f ·k , f ·k ) = Cov (Z, �(Z)) γ·k ≥ 0 for all 

k = 1 , . . . , K. 

(iii) | GC ν ( X ) | = Cov K (Z, �(Z)) | Var ( X ) | . 
(iv) For ν > 1 : 
8 Strictly speaking Yaari (1987) and Yaari (1988) suggest probability distortion 

unctions � : [0 , 1] → [0 , 1] , which does not necessarily coincide to our case. 
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μ·k 
T r [ GC ν ( X )] 

= 

γ·k 
T r [ V ar ( X )] 

, ∀ k = 1 , . . . , K. 

roof. See Appendix C. �

Point (ii) shows that the eigenvalues are always non-negative 

n the case of Gaussian variables. On the contrary, it may appear 

hat GGMD (f .k , f .k ) = μ.k < 0 . Since the index GGMD measures the

ssociation between the (projected) variable f .k and its (projected) 

anks, this would indicate that the variable is not correlated with 

ts rank vector. Consequently, the information provided by com- 

onent f .k would be irrelevant since by definition as far as the 

ariability over f .k increases, GGMD (f .k , f .k ) increases. We can in- 

erpret the negativity of the eigenvalue as an irrelevant principal 

omponent in which the interpretation of the PCA cannot be done. 

his occurs when the quantity of information 

μ·k 
T r [ GC ν ( X )] 

captured 

y each axis f .k is very low. In some particular cases, such as ex- 

hangeability of the variables, the matrix of Gini covariance is pos- 

tive semi-definite, and so the eigenvalues are non-negative (see 

ppendix B ). 

Point (iv) shows that the eigenvalues of the standard PCA are 

roportional to those issued from the generalized Gini PCA. Be- 

ause each eigenvalue (in proportion of the trace) represents the 

ariability (or the quantity of information) inherent to each princi- 

al component, then both PCA techniques are equivalent when X 

s Gaussian. In cases of non-Gaussian distributions, and in particu- 

ar when outlying observations affect the sample, the Gini PCA can 

e used with many parameters ν (from max-min to max-max de- 

ision makers) in order to select the optimal parameter that mini- 

izes the influence of the outliers (see Section 5.4 ). 

As a remark, we can show that the maximization of the mul- 

idimensional variability in the Gini sense b 

� 
·k GC ν ( Z ) b ·k does not 

ecessarily coincide with the maximization of the traditional Gini 

ariability embodied by GMD ν (f ·k , f ·k ) . 

emark 3.1. Let B = { b ·1 , . . . , b ·h } with h ≤ K be the basis issued

rom the maximization of b 

� 
·k GC ν ( Z ) b ·k for all k = 1 , . . . , K, then:

ax GMD ν (f ·k , f ·k ) = μ·k for all k = 1 , . . . , K, if and only if r ν−1 
c, f ·k 

=
 

c 
z b ·k . 

roof. See Appendix C. �

The difference between GGMD ν (f ·k , f ·k ) and GMD ν (f ·k , f ·k )
omes from the fact that GGMD ν (f ·k , f ·k ) deals with projected ranks

f the observations ( R 

c 
z b ·k ). It measures the co-variability (or de- 

ree of association) between the projected observations and their 

rojected ranks. 9 

Finally, the literature has already dealt with multidimensional 

ini index, see for instance Banerjee (2010) . The author proposes 

o extract the first eigenvector e ·1 of X 

� X and to project the data 

 such that s := X e ·1 so that the multidimensional Gini index is 

 (s ) = s � ˜ �( r s ) , with r s the rank vector of s and with 

˜ � a func-

ion that distorts the ranks. Banerjee (2010) ’s index is derived from 

he matrix X 

� X . To be precise, the maximization of the variance- 

ovariance matrix X 

� X (based on the � 2 metric) yields the projec- 

ion of the data on the first component f ·1 , which is then employed

n the multidimensional Gini index (based on the � 1 metric). This 

pproach is legitimated by the fact that G (s ) has some desirable 

roperties linked with the Gini index. However, this Gini index 

eals with an information issued from the variance-covariance ma- 

rix, and as such the projection of the data onto the new sub- 

pace does not prevent the presence of outlying observations that 

ould capture an important part of the information (variance) on 

he first principal component. This case occurs in the classical PCA 
9 On the contrary, GMD ν (f ·k , f ·k ) deals with the ranks of the projected observa- 

ions. 

∑
R

240 
see Section 5 for Monte Carlo simulations). Let us before investi- 

ate the R 

N -Euclidean space. 

.2. The R 

N -Euclidean space 

In classical PCA, the duality between R 

N and R 

K enables the 

igenvectors and eigenvalues of R 

N to be deduced from those of 

 

K and conversely. This duality is not so obvious in the Gini PCA 

ase. Indeed, in R 

N the Gini variability between the observations 

ould be measured by GC ν ( ̃  Z ) := 

−2 ν
N (N −1) 

( R 

c 
z ) 

� Z , and subsequently 

he idea would be to derive the eigenvalue equation related to 

 

N , 

 GC ν ( ̃  Z ) + GC ν ( ̃  Z ) � ] ̃  b ·k = ̃

 λ·k ̃  b ·k . 

he other option is to define a basis of R 

N from a basis already

vailable in R 

K . In particular, the set of principal components 

 f 1 , . . . , f ·k } provides by construction a set of normalized and or-

hogonal vectors. Let us rescale the vectors f ·k such that: 

 

 ·k = 

f ·k 
GMD ν (f ·k , f ·k ) 

. 

hen, { ̃  f 1 , . . . , ̃
 f ·k } constitutes an orthonormal basis of R 

K in the 

ini sense since GMD ν ( ̃  f ·k , ̃  f ·k ) = 1 . This basis may be used as a

rojector of the variables z ·k onto R 

N . Let ˜ F be the N × K matrix 

ith ̃

 f ·k in columns. The projection of the variables z ·k in R 

N is 

iven by the following Gini correlation matrix: 

 := 

−2 ν

N(N − 1) 
˜ F 

� 
R 

c 
z , 

hereas it is given by 1 
N ̃

 F 
� 

Z in the standard PCA, that is, the ma- 

rix of Pearson correlation coefficients between all ̃  f ·k and z ·� . The 

ame interpretation is available in the Gini case. The matrix V is 

ormalized in such a way that V ≡ [ v k� ] are the G -correlations in-

ices between ̃

 f ·k and z ·� . This yields the ability to make easier the 

nterpretation of the variables projected onto the new subspace. 

. Interpretations of the Gini PCA 

The analysis of the projections of the observations and of the 

ariables are necessary to provide accurate interpretations. Some 

riteria have to be designed in order to bring out, in the new sub- 

pace, the most significant observations and variables. 

.1. Observations 

The absolute contribution of an observation i to the variability 

f a principal component f ·k is: 

CT ik = 

f ik �(R ( f ik )) 

GGMD ν (f ·k , f ·k ) 
. 

he absolute contribution of each observation i to the generalized 

ini Mean Difference of f ·k ( ACT ik ) is interpreted as a percentage 

f variability of GGMD ν (f ·k , f ·k ) , such that 
∑ N 

i =1 ACT ik = 1 . This pro-

ides the most important observations i related to component f ·k 
ith respect to the information GGMD ν (f ·k , f ·k ) . On the other hand,

nstead of employing the Euclidean distance between one observa- 

ion i and the component f ·k , the Manhattan distance is used. The 

elative contribution of an observation i to component f ·k is then: 

CT ik = 

| f ik | 
‖ f i ·‖ 1 

. 

emark that the gravity center of { f 1 , . . . , f ·K } is g := ( ̄f 1 , . . . , ̄f ·K ) =
 . The Manhattan distance between observation i and g is then 

 K 
k =1 | f ik − 0 | , and so 

CT ik = 

| f ik | 
‖ f − g ‖ 1 

. 

i ·
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Fig. 1. Circle of correlation. 
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he relative contribution RCT ik may be interpreted rather as the 

ontribution of dimension k to the overall distance between ob- 

ervation i and g . 

.2. Variables 

The usual PCA enables the variables to be analyzed in the circle 

f correlation, which outlines the correlations between the vari- 

bles z ·k and the principal components f ·� measured by cos 2 θ (see 

ig. 1 ). 

The most significant variables must be retained in order to 

ake the interpretation of the data in the new subspace. It would 

e possible to test for the significance of the terms of the Gini cor- 

elation matrix V ≡ [ v k� ] : 

 �k := 

Cov (f ·� , R 

c 
z ·k ) 

Cov (f ·� , R 

c 
f ·� ) 

= v k� . 

owever, this option is not investigated because the U-statistics U �k 

s not rotational invariant. 10 Consequently, the correlation between 

he principal components and the variables is captured in the fol- 

owing way: 

˜ 
 �k := 

Cov (f ·� , R 

c 
z ·k ) 

Cov (z ·k , R 

c 
z ·k ) 

, 

ith R 

c 
z ·k the (decumulative) centered rank vector of z ·k raised to 

n exponent of ν − 1 . Since ˜ U �k is a ratio of two Gini covariances, 

hen it is a U-statistics, i.e. an unbiased and consistent estimator 

f ˜ U 

0 
�k 

:= E ( ̃  U �k ) . From Theorem 10.4 in Yitzhaki and Schechtman 

2013) , Chapter 10, we asymptotically get that 
√ 

N ( ̃  U �k − ˜ U 

0 
�k 

) 
a ∼ N . 

hen, the proposed test is: 

H 0 : ˜ U 

0 
�k 

= 0 

H 1 : ˜ U 

0 
�k 

� = 0 . 

et ˆ σ 2 
�k 

be the Jackknife variance of ˜ U �k , then it is possible to test 

or the null under the assumption N → ∞ as follows: 11 

˜ U �k 

ˆ σ�k 

a ∼ N (0 , 1) . (9) 
10 When the sign of the eigenvectors is reversed, the rank vector of the projected 

bservations R c f ·� does not remain invariant. 
11 As indicated by Yitzhaki (1991) , the efficient Jackknife method may be used to 

nd the variance of any U-statistics. 

a

i

c

o

241 
t is worth mentioning that the usual circle of correlations does not 

rovide the significance of the variables, and moreover, the Pearson 

orrelation cos 2 θ may be sensitive to outliers since it depends on 

he � 2 metric. 

. Monte Carlo simulations 

In this Section, it is shown with the aid of Monte Carlo sim- 

lations that the usual PCA yields irrelevant results when outly- 

ng observations contaminate the data. To be precise, the absolute 

ontributions computed in the standard PCA based on the variance 

ay lead to select outlying observations on the first component in 

hich there is the most important variability (a direct implication 

f the maximization of the variance). We propose three simula- 

ions: a first one with a strong correlation between the variables, 

 second one with lower correlations, and a third one with Clay- 

on copula. Then, we propose an algorithm to select the optimal 

arameter ν . 

.1. Case 1: strong correlation 

The Monte Carlo simulations are based on the following process 

f data contamination. 

Algorithm 1: Monte Carlo Simulation 

Result : Robust Gini PCA with data contamination 

1 θ = 1 [ θ is the value of the outlier] ; 

2 repeat 

3 Generate a 4-variate normal distribution X ∼ N , N = 500 ; 

4 Introduce outliers in 1 row of X : X 

o 
ji := θX ji with 

j = 1 , . . . , 4 [for a random row localization]; 

5 Compute the eigenvalues λoi 
·k of Var ( X 

o ) and of 

GC ν ( X 

o ) + GC ν ( X 

o ) T 

6 until θ = 10 0 0 [increment of 1]; 

7 ; 

8 For Variance and Gini PCA, the ACT and RCT are computed 

for the axes 1 and 2 on the contaminated matrix X 

o ; 

9 return Root-Mean-Square Errors of eigenvalues, ACT and RCT 

; 

The Root-mean-square error of the eigenvalues are computed as 

ollows: 

MSE λ.k 
= 

√ ∑ 1 , 0 0 0 
i =1 (λoi 

·k − λ·k ) 2 

1 , 0 0 0 

, 

here λoi 
.k 

is the eigenvalue computed with outlying observations 

n the sample. The RMSE of ACT et RCT are computed in the same 

anner. 

We first investigate the case where the variables are highly cor- 

elated in order to gauge the robustness of each technique (Gini 

or ν = 2 , 4 , 6 and variance). The correlation matrix between the 

ariables is given by: 

= 

⎛ ⎜ ⎝ 

1 0 . 8 0 . 9 0 . 7 

0 . 8 1 0 . 8 0 . 75 

0 . 9 0 . 8 1 0 . 6 

0 . 7 0 . 75 0 . 6 1 

⎞ ⎟ ⎠ 

As can be seen in the matrix above, we can expect that all the 

nformation be gathered on the first axis because each pair of vari- 

bles records an important linear correlation. The repartition of the 

nformation on each component, that is, each eigenvalue in per- 

entage of the sum of the eigenvalues is the following. 

The first axis captures around 82% of the variability of the 

verall sample (before contamination). Although each PCA method 
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Table 1 

Eigenvalues % and their RMSE (level). 

Eigenvalues Gini ν = 2 Gini ν = 4 Gini ν = 6 Variance 

eigenvalues (%) 83.14 82.68 82.31 82.90 

Axis 1 

RMSE (level) 14.60 13.53 12.79 15.81 

eigenvalues (%) 10.55 11.31 11.87 10.82 

Axis 2 

RMSE (level) 13.86 11.86 10.10 10.09 

eigenvalues (%) 4.24 4.01 3.87 4.27 

Axis 3 

RMSE (level) 2.83 2.69 2.69 4.21 

Table 2 

Average of the RMSE of the ACT of the observations over each principal component 

(standard deviation in parenthesis). 

RMSE of ACT (%) Gini ν = 2 Gini ν = 4 Gini ν = 6 Variance 

Axis 1 2.92 3.02 3.12 4.01 

(1.59) (1.59) (1.65) (1.89) 

Axis 2 0.56 0.83 1.32 0.24 

(0.81) (1.57) (2.86) (0.23) 

Table 3 

Average of the RMSE of the RCT of the observations over each principal component 

(standard deviation in parenthesis). 

RMSE of RCT (%) Gini ν = 2 Gini ν = 4 Gini ν = 6 Variance 

Axis 1 33.67 33.86 33.89 50.26 

(9.40) (9.37) (9.41) (12.35) 

Axis 2 24.19 24.71 24.63 44.75 

(7.65) (8.33) (8.14) (11.62) 
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Table 4 

Eigenvalues % and their RMSE. 

Eigenvalues Gini ν = 2 Gini ν = 4 Gini ν = 6 Variance 

eigenvalues (%) 49.98 49.91 49.75 49.74 

Axis 1 

RMSE (level) 28.04 23.66 19.25 48.02 

eigenvalues (%) 35.29 35.62 35.98 35.66 

Axis 2 

RMSE (level) 19.07 21.76 24.68 33.70 

eigenvalues (%) 9.11 8.98 8.84 8.98 

Axis 3 

RMSE (level) 5.74 6.17 6.62 8.85 

Table 5 

Average of the RMSE of the ACT of the observations over each principal component 

(standard deviation in parenthesis). 

RMSE of ACT (%) Gini ν = 2 Gini ν = 4 Gini ν = 6 Variance 

Axis 1 3.40 3.46 3.55 4.00 

(1.65) (1.67) (1.71) (1.92) 

Axis 2 0.27 0.32 0.31 0.23 

(0.20) (0.22) (0.25) (0.21) 

Table 6 

Average of the RMSE of the ACT of the observations over each principal component 

(standard deviation in parenthesis). 

RMSE of RCT (%) Gini ν = 2 Gini ν = 4 Gini ν = 6 Variance 

Axis 1 32.49 28.05 26.37 48.16 

(10.89) (10.55) (10.48) (12.85) 

Axis 2 23.35 23.78 24.08 42.73 

(8.76) (9.41) (9.60) (9.45) 

t

(  

f  

b

t

o

v

o

(  

ν  

m

r

t

b

R

T

t

w

5

s

c

P

l

C

G  

m

f

c  

t  

·
b

ields the same repartition of the information over the different 

omponents before the contamination of the data, it is possible to 

how that the classical PCA is less robust. 

On the one hand, Table 1 depicts the RMSE of the eigenval- 

es, which are slightly lower for the Gini PCA, especially for the 

rst component. On the other hand, Table 2 shows that the RMSE 

f the ACT (in percentage) measured during to the contamination 

rocess provide lower values for the Gini index compared with the 

ariance. Over the first component, the mean of the RMSE is the 

owest for ν = 2 . The same remarks holds true for the standard 

eviation over the first axis, the second one may be considered as 

on-significant. 

Finally, Table 3 presents the RMSE of the RCT . Again, the RMSE 

f the RCT of the standard PCA are much more important com- 

ared with the Gini PCA. Since the RCT point out the distance be- 

ween each observation and each component, their reliability en- 

bles to use the projection of the observations onto the two first 

omponents in order to make a graphical interpretation. 

.2. Case 2: intermediate correlation 

Let us now take an example with less correlations between the 

ariables in order to get a more equal repartition of the informa- 

ion on the first two principal components. 

= 

⎛ ⎜ ⎝ 

1 −0 . 5 0 . 25 0 . 5 

−0 . 5 1 −0 . 9 0 

0 . 25 −0 . 9 1 −0 . 25 

0 . 5 0 −0 . 25 1 

⎞ ⎟ ⎠ 

The repartition of the information over the principal compo- 

ents (percentage of each eigenvalue) is given in Table 4 . When 

he information is less concentrated on the first axis (50% for axis 1 

nd around 35% for axis 2), the RMSE of the eigenvalues after con- 

amination are much more important for the standard PCA com- 

ared with the Gini approach (approximately 1.7 times more im- 

ortant for the two first axes). 
242 
Let us now have a look on the RMSE of the absolute con- 

ributions of each observation ( N = 500 ) for each PCA technique 

 Table 5 ). We obtain the same kind of results, with less variability

or the second axis. In Table 5 , it is apparent that the classical PCA

ased on the � 2 norm exhibits more ACT variability. This means 

hat the contamination of the data can lead to the interpretation 

f some observations as significant (important contribution to the 

ariance of the axis) while they are not (and vice versa). On the 

ther hand, the RMSE of the RCT after contamination of the data 

 Table 6 ) are less spread out for the Gini technique for ν = 4 and

= 6 over the first axis, and for ν = 2 over the second axis. This

eans that the distance from one observation to an axis is more 

eliable (although the interpretation of the data rather depends on 

he ACT ). 

As in the previous simulation, these results show that the PCA 

ased on the variance is less stable about eigenvalues, ACT and 

CT that outline the most important observations of the sample. 

his may lead to irrelevant interpretations when the contamina- 

ion process is important. The same interpretations are obtained 

ith copulas. 

.3. Simulations with copulas 

In order to move away from the classical multivariate Gaus- 

ian distribution it is possible to use copulas with pairwise ex- 

hangeability (although exchangeability is not necessary for Gini 

CA). A natural class of copulas is the class of Archimedean copu- 

as that could also exhibit heavy tails, interpreted as outliers (see 

harpentier & Segers, 2009; Nelsen, 2007 for states of the art). 

iven a generator ψ : [0 , ∞ ] → [0 , 1] which is some completely

onotone function (that could be interpreted as the Laplace trans- 

orm of a positive random variable), a bivariate Archimedean 

opula is C ψ 

: (u 1 , u 2 ) �→ ψ (ψ 

−1 (u 1 ) + ψ 

−1 (u 2 )) . This can be ex-

ended to higher dimension using (u 1 , · · · + u d ) �→ ψ (ψ 

−1 (u 1 ) +
· · + ψ 

−1 (u d )) , which will be an exchangeable symmetric distri- 

ution in dimension d. Actually, such a copula can also be writ- 
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Table 7 

Eigenvalues % and their RMSE (level). 

Eigenvalues Gini ν = 2 Gini ν = 4 Gini ν = 6 Variance 

eigenvalues (%) 67.56 72.36 74.77 67.12 

Axis 1 

RMSE (level) 16.88 15.96 13.77 31.15 

eigenvalues (%) 21.30 20.11 19.30 21.23 

Axis 2 

RMSE (level) 11.06 12.36 13.06 19.81 

eigenvalues (%) 9.70 6.91 5.53 9.89 

Axis 3 

RMSE (level) 6.46 5.22 4.51 9.80 

Table 8 

Average of the RMSE of the ACT of the observations over each principal component 

(standard deviation in parenthesis). 

RMSE of ACT (%) Gini ν = 2 Gini ν = 4 Gini ν = 6 Variance 

Axis 1 3.10 3.13 3.24 3.98 

(1.65) (1.72) (1.77) (1.98) 

Axis 2 0.45 1.45 1.48 0.24 

(0.51) (2.69) (3.69) (0.24) 

Table 9 

Average of the RMSE of the RCT of the observations over each principal component 

(standard deviation in parenthesis). 

RMSE of RCT (%) Gini ν = 2 Gini ν = 4 Gini ν = 6 Variance 

Axis 1 33.15 32.27 31.58 49.31 

(10.38) (10.23) (9.74) (10.03) 

Axis 2 25.22 24.82 25.00 44.20 

(9.43) (9.84) (10.10) (12.23) 
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12 The maximal value ν = 6 has been chosen in view of Monte Carlo simulations 

showing that the correlations between the projected variables and the principal 

components decrease significantly. 
en (in dimension 3) as (u 1 , u 2 , u 3 ) �→ C ψ 

(u 1 , C ψ 

(u 2 , u 3 )) , with a

imple extension in dimension d. It is possible to have more gen- 

ral dependence structure using nested Archimedean copulas, as 

n McNeil (2008) . For instance, in dimension 3, one could consider 

u 1 , u 2 , u 3 ) �→ C ψ 1 
(u 1 , C ψ 2 

(u 2 , u 3 )) given two generators ψ 1 and

 2 , that should satisfy some ordering property, namely ψ 

−1 
1 

◦ ψ 2 

ust be completely monotone. This property implies that the de- 

endence between components 2 and 3 should be stronger than 

he one between 1 and the pair (2,3). Such a property can eas- 

ly be obtained when generators ψ remain in the same parametric 

amily, such as Gumbel, Clayton or Frank. 

In order to illustrate the robustness of our algorithm, we gen- 

rate some multivariate random vectors X = (X 1 , X 2 , X 3 , X 4 ) with

aussian margins, X j = �−1 (U j ) where vector U = (U 1 , U 2 , U 3 , U 4 )

s generated from a 4-dimensional Nested-Clayton copula, 

u 1 , u 2 , u 3 , u 4 ) �→ C 0 . 2 (C 0 . 5 (C 0 . 8 (u 1 , u 2 ) , u 3 ) , u 4 ) 

here C τ is the bivariate Clayton copula with Kendall’s tau τ, using 

he algorithm described in Hofert (2011) . 

We generate the same contamination process explained in Al- 

orithm 1: 1,0 0 0 Gini PCA (for ν = 2 , 4 , 6 ) and 1,0 0 0 standard PCA

ith contamination are performed in order to compute the RMSE 

f the eigen values, and the RMSE of the ACT and RCT of each ob-

ervation. 

Table 7 shows that the first axis captures around 70% of the 

ariability of the overall sample (before contamination). The RMSE 

f the eigenvalues are approximately 2 times lower for the Gini 

CA over the first and second principal components compared with 

he standard PCA. 

Table 8 shows that the RMSE of the ACT , as in the previous

onte Carlo simulations, are 1.3 times lower for the Gini PCA over 

xis 1 and 3 times lower over axis 2. 

Finally, the same conclusion can be drawn about the robustness 

f the RCT for each Gini PCA ( Table 9 ). 
243 
.4. The choice of the ν parameter 

As shown in the previous Monte Carlo simulations, the choice 

f the ν parameter may help to attenuate the presence of outlying 

bservations in the sample. In our study, outlying observations are 

ot measurement errors that should be removed from the sam- 

le. These are atypical observations for which the information on 

he different dimensions must be necessarily kept. Consequently, 

 simple algorithm for the choice of ν consists in performing two 

ypes of Gini PCA for each value of ν: 

• a first Gini PCA with outliers; 

• a second Gini PCA without outliers: an outlier test is per- 

ormed (Grubbs test) in order to delete the outliers from the sam- 

le before running again the Gini PCA. 

Then, the optimal ν parameter is selected by minimizing the 

nfluence of the outliers. The Manhattan distance of the share of 

ach eigenvalue (in percentage of the sum of all egeinvalues) be- 

ween the two Gini PCA over the significant principal components 

j ∗ are computed: 

∗ = arg min 

ν

j ∗∑ 

j=1 

∣∣∣∣ μ. j (ν) ∑ K 
k =1 μ.k (ν) 

−
μ′ 

. j 
(ν) ∑ K 

k =1 μ
′ 
.k 
(ν) 

∣∣∣∣, 
here μ′ 

. j 
(ν) and μ. j (ν) stands for eigenvalues with and with- 

ut outliers of the Gini PCA related to the parameter ν . The op- 

imal parameter ν∗ is the one that minimizes the difference of in- 

ormation over the principal components between the actual Gini 

CA and the Gini PCA if no outliers were in the sample. The idea 

s to keep those outliers (since they are not measurement errors) 

hile making the interpretation of the Gini PCA without distort- 

ng the information on each component. This grid search is used 

n Section 6 devoted to the empirical application. 

In contrast to the classical PCA, for which the projection of the 

ata yields a unique Euclidean distance between each couple of 

bservations with possible bias in eigenvalues and absolute contri- 

utions, the optimal parameter ν∗ aims at limiting the influence 

f outliers. Of course, other rules could have been chosen such 

hat the minimization of the number of outliers over each prin- 

ipal component (for each value of ν from ν = 1 . 1 to ν = 6 ). 12 An

pplication of Algorithm 2 is performed in the next Section. 

Algorithm 2: The choice of the optimal ν∗ parameter. 

Result : ν∗

1 ν = 1 . 1 ; 

2 repeat 

3 Run Gini PCA with outliers: max b 

� 
·k GC ν ( Z ) b ·k ∀ k �⇒ 

μ′ 
.k 
(v ) ; 

4 Grubbs test: all outliers are removed (over components 1 

to j ∗) ; 

5 Run Gini PCA without outliers: max b 

� 
·k GC ν ( Z ) b ·k ∀ k �⇒ 

μ.k (v ) ; 
6 until ν = 6 [ ν = ν + 0 . 1 ]; 

7 return ν∗ = arg min ν
∑ j ∗

j=1 

∣∣∣∣ μ. j (ν) ∑ K 
k =1 

μ.k (ν) 
− μ′ 

. j 
(ν) ∑ K 

k =1 
μ′ 

.k 
(ν) 

∣∣∣∣ ; 
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Fig. 2. Box plots. 

Table 10 

Pearson Correlation matrix. 

capacity x 1 power x 2 speed x 3 weight x 4 width x 5 length x 6 

x 1 1.000 0.954 0.885 0.692 0.706 0.663 

x 2 0.954 1.000 0.933 0.528 0.729 0.663 

x 3 0.885 0.933 1.000 0.466 0.618 0.578 

x 4 0.692 0.528 0.466 1.000 0.477 0.794 

x 5 0.706 0.729 0.618 0.477 1.000 0.591 

x 6 0.663 0.663 0.578 0.794 0.591 1.000 

Table 11 

Eigenvalues (%) for Gini and Variance and proportion of � 1 dispersion explained by 

the loadings vectors for Visentin et al. (2016) and Brooks et al. (2013) . 

Information Gini ν∗ = 1 . 4 Visentin et al. Brooks et al. Variance 

Axis 1 78.45 52.12 52.12 73.52 

Axis 2 12.94 7.46 7.48 14.22 

Axis 3 4.85 1.53 1.53 7.26 

Axis 4 3.35 1.03 1.03 3.93 
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Table 12 

Number of outliers. 

Grubbs test Gini ν∗ = 1 . 4 Visentin et al. Brooks et al. Variance 

Axis 1 0 0 0 0 

Axis 2 0 0 0 1 

Table 13 

Correlations Axis 1,2 / variables ( U-stat: ∗ 1%, ∗∗ 5%). 

Axis 1 Capacity Power Speed Weight Width Length 

Gini ν∗ = 1 . 4 −2.12 ∗ −2.09 ∗ −1.98 ∗ −1.60 ∗ −2.00 ∗ −1.68 ∗

Variance 0.92 ∗ 0.88 ∗ 0.85 ∗ 0.73 ∗ 0.77 ∗∗ 0.76 ∗

Visentin et al. −0.47 ∗ −0.03 ∗ −0.04 ∗ −0.27 ∗ −0.32 ∗ −0.78 ∗

Brooks et al. −0.47 ∗ −0.03 ∗ −0.04 ∗ −0.26 ∗ −0.32 ∗ −0.78 ∗

Axis 2 capacity power speed weight width length 

Gini ν∗ = 1 . 4 −0.05 −0.22 −0.32 0.53 ∗∗ 0.16 0.42 ∗

Variance −0.12 −0.34 −0.32 0.55 ∗ −0.11 0.48 

Visentin et al. −0.86 −0.08 0.00 −0.07 0.23 0.75 

Brooks et al. 0.85 0.1 0.01 0.07 −0.23 −0.45 
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. Application on cars data 

We propose a simple application with the celebrated cars data 

see our github). 13 The dataset is particularly interesting since 

here are highly correlated variables as can be seen in the Pearson 

orrelation matrix given in Table 10 . 

Also, the dataset is composed of some outlying observations 

 Fig. 2 ): Ferrari Enzo ( x 1 , x 2 , x 5 ), Bentley Continental ( x 2 ), Aston

artin Vanquish ( x 2 ), Land Rover Discovery ( x 5 ), Mercedes Class S

00 CDI ( x 5 ), Smart Fortwo Coupé ( x 5 , x 6 ). 

In what follows, we compare the Gini PCA of optimal parameter 
∗ = 1 . 4 14 with the standard PCA, with Visentin et al. (2016) ( � 1 
CA), and with Brooks et al. (2013) ( � 1 PCA). The information 

variability) captured by the principal components is the following 

 Table 11 ). 

Gini and Variance yield approximately 6.5 times more variabil- 

ty over the first axis compared with the second one, 7.5 times for 

he other � 1 PCA. Two axes may be chosen to analyze the data. 

s shown in the previous Section about the Monte Carlo simula- 
13 A python code for Gini PCA is available https://github.com/mussard974/ 

ini-PCA and also an R markdown https://github.com/freakonometrics/GiniACP/ . 
14 The grid search has been performed over the two first principal components by 

emoving the six most important outliers. 

f

G  

e  

b

i

244 
ions, when the data are highly correlated such that two axes are 

ufficient to project the data, the Gini PCA and the standard PCA 

ield the same share of information on each axis. However, we can 

xpect some differences in absolute contributions ACT and relative 

ontributions RCT . 

The projection of the data is depicted for each method in Fig. 3 .

As depicted in Fig. 3 , the projections are very similar for the 

ini and the variance. The cars with extraordinary (or very low) 

fficiency are in the same relative position in the four projections: 

and Rover Discovery Td5 at the top, Ferrari Enzo at the bottom 

ight, Smart Fortwo Coupé at the bottom left ( Fig. 3 (a) and (b)). In 

rder to analyze the ability of each technique to dilute the outlying 

bservations after projection onto the new subspace, we give be- 

ow the Grubbs test over the two first principal components. Be- 

ore projection, six observations were considered as outliers. Af- 

er projection, we depict in Table 12 the number of outliers (both 

aximum and minimum values) over the two first principal com- 

onents. 

The theoretical Section 4 indicates that the Gini methodology 

or ν = 2 is equivalent to the variance when the variables are 

aussian. About cars data for ν∗ = 1 . 4 , we observe this similarity

xcept over axis 2. Table 13 outlines: Gini correlations ( ν∗ = 1 . 4 )

etween the variables and axis 1 (and axis 2) with their signif- 

cance ( U-statistics tests (9) ), Pearson correlation (Variance PCA), 

https://github.com/mussard974/Gini-PCA
https://github.com/freakonometrics/GiniACP/
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Fig. 3. Projections of the cars. 
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Table 14 

ACT (%) Axis 2. 

Gini ( ν∗ = 1 . 4 ) Variance 

– Smart Fortwo Coupé (13.55%) 

Land Rover Discovery (27.95%) Land Rover Discovery (18%) 

Ferrari Enzo (27.14%) Ferrari Enzo (32.5%) 

Renault Clio 3.0 V6 (7.54%) 

Mercedes Class S 400 CDI (4.89%) 

Jaguar S-Type 2.7 V6 Bi-Turbo (4.36%) 

Mini 1.6 170 (4.28%) 

v

r

T

t

s

nd factors loadings for the other � 1 PCA. All correlations with the 

rst principal component are significant. 

Over the second principal component some differences appear: 

eight and length are correlated with axis 2 for the Gini PCA, 

hereas weight is the sole variable correlated with axis 2 in the 

tandard PCA. The other � 1 PCA, in which the variability is lower 

ver axis 2, outline no significant correlation between the variables 

nd axis 2. 15 

Let us now investigate absolute contributions in order to se- 

ect the observations that explain an important part of variabil- 

ty ( Figs. 4 and 5 ). Since there is no absolute contribution for the

 1 PCA, we focus on the Gini PCA and the standard PCA. As ex- 

ected, the difference between both PCA lies in the second princi- 

al component, in which the significance of the variables is differ- 

nt. Over the first principal component, each technique yields the 

ame observations with a contribution higher than 100%/24 cars = 

.17% per car (equal contribution): Citron C2, Smart Fortwo Coupé, 

issan Micra, BMW 745i, Mercedes Class S 400 CDI, Aston Martin 

anquish, Bentley Continental and Ferrari Enzo. 
15 For Gini PCA and standard PCA, the Jackknife variance has been built by with- 

rawing a couple ( f ik , z ik ) and by re-estimating the Gini correlation, for each i = 

 , . . . , N. For the other � 1 PCA, we have removed one observation x i · from the sam- 

le and re-estimated the entire PCA. This may cause some slight differences in the 

-statistics and then in the significance of the variables. 

(

T

o

(

s

d

245 
However, over the second principal component, the results are 

ery different. The standard PCA yields Smart Fortwo Coupé, Fer- 

ari Enzo and Land Rover Discovery with an ACT higher than 4.17%. 

he problem is that Smart Fortwo Coupé is an outlier in the dis- 

ributions of width and length. As a consequence, the outlier ab- 

orbs a large part of the variability of axis 2 in the standard PCA 

13.55%), so that the other observations are judged insignificant. 

able 14 depicts the most important ACT of axis 2. 

The Gini PCA yields length and weight associated with the sec- 

nd axis, and since the method dilute the importance of outliers 

such as Smart Fortwo Coupé), more observations are related to the 

econd principal component compared with the standard PCA. In- 

eed, the Gini PCA outlines cars with important weight and length 
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Fig. 4. ACT (Gini ν∗ = 1 . 4) . 

Fig. 5. ACT (Variance). 
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uch as Mercedes Class S 400 CDI and Jaguar S-Type 2.7 V6 Bi- 

urbo. 

Finally, some cars are not correlated with axis 2 in the standard 

CA, whereas this is the case in the Gini PCA. This example of ap-

lication shows that the use of the Gini metric robust to outliers 

ay involve some interesting changes in the interpretation of the 

esults. 

. Conclusion 

In this paper, it has been shown that the geometry of the Gini 

ovariance operator allows one to perform Gini PCA, that is, a ro- 

ust principal component analysis based on the � 1 norm. 

To be precise, the variance may be replaced by the Gini Mean 

ifference, which captures the variability of couples of variables 

ased on the rank of the observations in order to attenuate the 

nfluence of the outliers. The Gini Mean Difference may be rather 

nterpreted with the aid of the generalized Gini index GGMD ν in 

he new subspace for a better understanding of the variability of 

he components, that is, GGMD ν is both a rank-dependent measure 

f variability in Yaari (1987) sense and also an eigenvalue of the 

ini correlation matrix. 

Contrary to many approaches in multidimensional statistics in 

hich the standard variance-covariance matrix is used to project 
246 
he data onto a new subspace before deriving multidimensional 

ini indices (see e.g. Banerjee (2010) ), we propose to employ the 

ini correlation indices (see Yitzhaki & Schechtman, 2013 ). This 

rovides the ability to interpret the results with the � 1 norm and 

he use of U-statistics to measure the significance of the correla- 

ion between the new axes and the variables. 

This research may open the way on data analysis based on Gini 

etrics in order to study multivariate correlations with categori- 

al variables or discriminant analyses when outlying observations 

rastically affect the sample. 

ppendix A. Variants of PCA based on the � 2 norm 

The classical formulation of the PCA, to obtain the first compo- 

ent, can be obtained by solving 

 

∗
1 ∈ argmax { Var [ X ω] } subject to ‖ ω‖ 

2 
2 = ω 

� ω = 1 , (A.1) 

r equivalently 

 

∗
1 ∈ argmax 

{
ω 

� �ω 

}
subject to ‖ ω‖ 

2 
2 = ω 

� ω = 1 , (A.2) 

here ω ∈ R 

K , and � is the (symmetric positive semi-definite) K ×
sample covariance matrix. Mardia, Kent, and Bibby (1979) sug- 
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Fig. B1. Joint distribution of a random pair (X k , X � ) such that 

E [ X k h (X � )] � = E [ X � h (X k )] , with non-exchangeable components X k 
L = X � . 
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est to write 

 

∗
1 ∈ argmax 

{ 

K ∑ 

j=1 

Var [ x ·, j ] · Cor [ x ·, j , X ω] 

} 

subject to ‖ ω‖ 2 2 = ω 

� ω = 1 . 

ith scaled variables 16 (i.e. Var [ x ·, j ] = 1 , ∀ j) 

 

∗
1 ∈ argmax 

{ 

K ∑ 

j=1 

Cor [ x ·, j , X ω] 

} 

subject to ‖ ω‖ 

2 
2 = ω 

� ω = 1 . 

(A.3) 

hen a Principal Component Pursuit can start: we consider the 

residuals’, X (1) = X − X ω 

∗
1 
ω 

∗� 
1 

, its covariance matrix �(1) , and we 

olve 

 

∗
2 ∈ argmax 

{
ω 

� �(1) ω 

}
subject to ‖ ω‖ 

2 
2 = ω 

� ω = 1 . 

he part X ω 

∗
1 
ω 

∗� 
1 

is actually a constraint that we add to ensure the

rthogonality of the two first components. This problem is equiv- 

lent to finding the maxima of Var [ X ω] subject to ‖ ω‖ 2 2 = 1 and

 ⊥ ω 

∗
1 
. This idea is also called Hotelling (or Wielandt) deflation 

echnique. On the k -th iteration, we extract the leading eigenvec- 

or 

 

∗
k ∈ argmax 

{
ω 

� �(k −1) ω 

}
subject to ‖ ω ‖ 

2 
2 = ω 

� ω = 1 , 

here �(k −1) = �(k −2) − ω 

∗
k −1 

ω 

∗� 
k −1 

�(k −1) ω 

∗
k −1 

ω 

∗� 
k −1 

(see e.g. Saad, 

998 ). Note that, following Hotelling (1933) and Eckart and Young 

1936) , that it is also possible to write this problem as 

in 

{‖ X − ˜ X ‖ � 

}
subject to rank [ ̃  X ] ≤ k 

here ‖ · ‖ � denotes the nuclear norm of a matrix ( i.e. the sum of

ts singular values). 17 

One extension, introduced in d’Aspremont, Ghaoui, Jordan, and 

anckriet (2007) , was to add a constraint based on the cardinality 

f ω (also called � 0 norm) corresponding to the number of non- 

ero coefficients of ω. The penalized objective function is then 

ax 
{
ω 

� �ω − λcard [ ω] 
}

subject to ‖ ω ‖ 

2 
2 = ω 

� ω = 1 , 

or some λ > 0 . This is called sparse PCA , and can be related to

parse regression, introduced in Tibshirani (1996) . But as pointed 

ut in Mackey (2009) , interpretation is not easy and the compo- 

ents obtained are not orthogonal. Gorban, Kegl, Wunsch, and Zi- 

ovyev (2007) considered an extension to nonlinear Principal Man- 

folds to take into account nonlinearities. 

Another direction for extensions was to consider Robust Princi- 

al Component Analysis. Candes, Li, Ma, and Wright (2009) sug- 

ested an approach based on the fact that principal component 

ursuit can be obtained by solving 

in 

{‖ X − ˜ X ‖ � + λ‖ ̃

 X ‖ 1 

}
. 

ut other methods were also considered to obtain Robust PCA. A 

atural ‘scale-free’ version is obtained by considering a rank matrix 

nstead of X . This is also called ‘ordinal’ PCA in the literature, see 

orhonen and Siljamäki (1998) . The first ‘ordinal’ component is 

 

∗
1 ∈ argmax 

{ 

K ∑ 

j=1 

R [ x ·, j , X ω] 

} 

subject to ‖ ω‖ 

2 
2 = ω 

� ω = 1 

(A.4) 
16 In most cases, PCA is performed on scaled (and centered) variables, otherwise 

ariables with large scales might alter interpretations. Thus, it will make sense, later 

n, to assume that components of X have identical distributions. At least the first 

wo moments will be equal. 
17 but other norms have also been considered in statistical literature, such as the 

roebenius norm in the Eckart-Young theorem, or the maximum of singular values 

also called 2-(induced)-norm. 
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here R denotes some rank based correlation, e.g. Spearman’s 

ank correlation, as an extension of Eq. (A.3) . So, quite naturally, 

ne possible extension of Eq. (A.2) would be 

 

∗
1 ∈ argmax 

{
ω 

� R [ X ] ω 

}
subject to ‖ ω‖ 

2 
2 = ω 

� ω = 1 

here R [ X ] denotes Spearman’s rank correlation. In this section, 

nstead of using Pearson’s correlation (as in Eq. (A.2) when the 

ariables are scaled) or Spearman’s (as in this ordinal PCA), we 

ill consider the multidimensional Gini correlation based on the 

 -covariance operator. 

ppendix B. Pairwise exchangeability and the Gini-covariance 

Pairwise exchangeability is one property respected by the Gini- 

ovariance as well as the Gini correlation coefficient. Note that it 

s not required for Gini PCA. 

efinition B.1. X is said to be pairwise-exchangeable if for all 

air (i, j) ∈ { 1 , · · · , K} 2 , (X i , X j ) is exchangeable, in the sense that

X i , X j ) 
L = (X j , X i ) . 

Pairwise-exchangeability is a stronger concept than having only 

ne vector with identically distributed components, and a weaker 

oncept than (full) exchangeability. In the Gaussian case where 

 (X k ) = �(X k ) with �(X k ) being the normal cdf of X k for all

 = 1 , . . . , K, pairwise-exchangeability is equivalent to components 

dentically distributed. 

roposition B.1. If X is a Gaussian vector with identically distributed 

omponents, then X is pairwise-exchangeable. 

roof. For simplicity, assume that components of X are N (0 , 1) 

andom variables, then X ∼ N ( 0 , ρ) where ρ is a correlation ma- 

rix. In that case 

X i 

X j 

]
∼ N 

([
0 

0 

]
, 

[
1 ρi j 

ρ ji 1 

])
, 

ith Pearson correlation ρi j = ρ ji , thus (X i , X j ) is 

xchangeable. �

In the very general case of a function h, results can be derived 

n dimension 2. 

roposition B.2. If X = (X 1 , X 2 ) is a Gaussian vector with Pearson 

orrelation r, with N (μ, σ 2 ) margins, then 

ov (X 2 , h (X 1 )) = rσ2 · Cov (Z, h (μ + σZ)) , with Z ∼ N (0 , 1) . 

roof. If X = (X 1 , X 2 ) is a Gaussian vector with Pearson correlation 

, with N (μ, σ 2 ) margins. Then 

 [ X 2 | X 1 ] = μ + rσ
X 1 − μ = μ + rσZ 
σ
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18 We have: 

f̄ ·k = 1 /N 

N ∑ 

i =1 

f ik = 1 /N 

[ 

N ∑ 

i =1 

z � i · b ·k 

] 

= 1 /N 

[ 

N ∑ 

i =1 

z � i ·

] 

b ·k = 0 . 
here Z ∼ N (0 , 1) . Further 

Cov (X 2 , h (X 1 )) = E 

[
( E [ X 2 | X 1 ] − μ) · (h (X 1 ) − h 1 ) 

]
where h 1 = E [ h (X 1 )] , 

hich can be written 

ov (X 2 , h (X 1 )) = rσ2 · Cov (Z, h (μ + σZ)) , with Z ∼ N (0 , 1) . �

In dimension 2, even if we do not assume normality of X 1 and 

 2 , the following property holds 

roposition B.3. If X is a pair of exchangeable variables, and if h is 

 non-decreasing function, then C h ( X ) = Cov ( X , h ( X )) is a symmetric

ositive semi-definite matrix. 

roof. Observe that 

 h ( X ) = Cov ( X , h ( X )) = 

[
Cov (X 1 , h (X 1 )) Cov (X 1 , h (X 2 )) 
Cov (X 2 , h (X 1 )) Cov (X 2 , h (X 2 )) 

]
s a symmetric matrix. 

As mentioned in Yitzhaki (2003) , page 150, terms on the di- 

gonal Cov (X i , h (X i )) are positive since h is an increasing func-

ion. Thus trace [ C h ( X )] ≥ 0 . Further, because diagonal elements 

re identical in the matrix (namely Cov (X 1 , h (X 1 )) = Cov (X 2 , h (X 2 ))

nd Cov (X 1 , h (X 2 )) = Cov (X 2 , h (X 1 )) ), the determinant can be writ-

en 

et [ C h ( X )] = Cov (X 1 , h (X 1 )) 
2 − Cov (X 2 , h (X 1 )) 

2 . 

ut from Hardy-Littlewood-Polya inequality, Cov (X 2 , h (X 1 )) is max- 

mal when components are comonotonic, and 

max 
 2 : X 2 

L = X 1 
{ Cov (X 2 , h (X 1 )) } = Cov (X 

� 
2 , h (X 1 )) 

here X � 
2 

is comonotonic with h (X 1 ) , meaning X � 
2 

= X 1 . So

ov (X 1 , h (X 1 ) ≥ Cov (X 2 , h (X 1 )) 
2 , and the determinant is positive. 

So, since C h ( X ) is a symmetric matrix, with trace [ C h ( X )] ≥ 0

nd det [ C h ( X )] ≥ 0 , then C h ( X ) is positive semi-definite. �

ppendix C. Proofs 

Theorem 2.1: 

(i) In the Gaussian case, if h is the cumulative distribution func- 

ion of the X k ’s, then Cov (X k , h (X � )) = rσ · Cov (Z, �(Z)) , where �

s the normal cdf, see Yitzhaki and Schechtman (2013) , Chapter 3. 

bserve that Cov (X k , h (X k )) = σ · Cov (Z, �(Z)) , if h is the cdf of X k .

hus, λ := Cov (Z, �(Z)) yields: 

C F ((X k , X � )) = λ

[
σ ρσ
ρσ σ

]
= λσ

[
1 ρ
ρ 1 

]
= 

λ

σ
Var ((X k , X � )) . 

ii) We have Cov (Z, �(Z)) ≥ 0 , then it follows that C F ((X k , X � )) ≥
 : 

 

� C F ( X ) x = x 

� Cov (Z, �(Z)) 

σ
Var ( X ) x ≥ 0 , 

hich ends the proof. 

Proposition 2.1: We have GMD ν ( Z ) ≡ [ GMD ν (z ·k , z ·� )] being a

 × K matrix. The extra diagonal terms may be rewritten as, 

MD ν (z ·k , z ·� ) = − 2 

N − 1 
νCov (z ·k , r 

ν−1 
z ·� ) 

= − 2 

N − 1 
νCov 

(
x ·k − x̄ ·k 1 N 

GMD ν (x ·k , x ·k ) 
, r ν−1 

z ·� 

)
= − 2 

GMD ν (x ·k , x ·k ) 

[
νCov (x ·k , r 

ν−1 
z ·� ) 

N − 1 
− νCov ( ̄x ·k 1 N , r 

ν−1 
z ·� ) 

N − 1 

]
= 

GMD ν (x ·k , x ·� ) 
GMD ν (x , x ) 

= GC ν (x ·k , x ·� ) . 

·k ·k 

248 
inally, using the same approach as before, we get: 

MD ν (z ·k , z ·k ) = − 2 

N − 1 

νCov (z ·k , r 
ν−1 
z ·k ) 

= 

GMD ν (x ·k , x ·k ) 
GMD ν (x ·k , x ·k ) 

= GC ν (x ·k , x ·k ) = 1 . 

y Property 2.1 (iv), since r x ·k = r z ·k , then GC ν (x ·k , x ·� ) =
C ν (z ·k , z ·� ) . Thus, 

MD ν ( Z ) = − 2 ν

N(N − 1) 
Z 

� R 

c 
z = GC ν ( X ) = GC ν ( Z ) , 

hich ends the proof. 

Proposition 3.1: 

(i) The result comes from the rank-nullity theorem. From the 

igenvalue Eq. (7) , we have: 

 

� 
·k GC ν ( Z ) b ·k = λ·k / 2 = μ·k . 

et f be the linear application issued from the matrix GC ν ( Z ) . 

henever λ·k = 0 , two columns (or rows) of GC ν ( Z ) are collinear, 

hen the dimension of the image set of f is dim ( f ) = K − 1 . Hence,

 ·k = 0 . Since b 

� 
·k GC ν ( Z ) � b ·k = GGMD ν (f ·k , f ·k ) for all k = 1 , . . . , K,

hen for λ·k we get: 

 

� 
·k GC ν ( Z ) � b ·k = GGMD ν (f ·k , f ·k ) = λ·k / 2 = μ·k = 0 . 

n the other hand, since f ·k = 0 , it follows that GGMD ν (f ·k , f ·� ) = 0

or all � = 1 , . . . , K. Also, if f ·k = 0 then the centered rank vector

 

c 
f ·k 

= 0 , and so GGMD ν (f ·� , f ·k ) = 0 for all � = 1 , . . . , K. 

(ii) The proof comes from the Rayleigh-Ritz identity: 

max := max 
b 

� 
·1 [ GC ν ( Z ) + GC ν ( Z ) � ] b 1 

b 

� 
1 

b 1 

= λ1 . 

ince b 

� 
1 

GC ν ( Z ) b ·1 = λ1 / 2 and because b 

� 
1 

GC ν ( Z ) b 1 =
GMD ν (f 1 , f 1 ) , the result follows. 

(iii) Again, the Rayleigh-Ritz identity yields: 

min := min 

b 

� 
·K [ GC ν ( Z ) + GC ν ( Z ) � ] b ·K 

b 

� 
·K b ·K 

= λK . 

hen, b 

� 
·K GC ν ( Z ) b ·K = GGMD ν (f ·K , f ·K ) = λ·K / 2 . 

roposition 3.2: 

rom Theorem 2.2 : 

C ν ( X ) = σ−1 Cov (Z, �(Z)) V ar ( X ) . 

rom Abramowitz and Stegun (1964) (Chapter 26), when Z ∼
 (0 , 1) , 

ov (Z, �(Z)) = 

1 

2 

√ 

π
≈ 0 . 2821 . 

hen the results (i), (iii), and (iv) follow directly. (ii) Since 

y Proposition 3.1 GGMD ν (f ·k , f ·k ) = μ.k , and because GC ν ( Z ) +
C ν ( Z ) � is positive semi-definite, then μ.k ≥ 0 for all k = 1 . . . , K. 

Remark 3.1: Note that GMD ν (f ·k , f ·k ) = − 2 ν
N (N −1) 

(f ·k − f̄ ) � r ν−1 
c, f ·k 

, 

here r ν−1 
c, f ·k 

is the k th column of the centered (decumulative) rank 

atrix R 

c 
f . Since f ·k = Z b ·k and f̄ = ( ̄f ·1 , . . . , ̄f ·K ) = 0 then: 18 

 

� 
·k GC ν ( Z ) b ·k = − 2 ν

N(N − 1) 
b 

� 
·k Z 

� R 

c 
z b ·k (C.1) 
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Y

Z  
= − 2 ν

N(N − 1) 
b 

� 
·k Z 

� r ν−1 
c, f ·k 

( by r ν−1 
c, f ·k 

= R 

c 
z b ·k ) 

= − 2 ν

N(N − 1) 
f � ·k r 

ν−1 
c, f ·k 

= GMD ν (f ·k , f ·k ) . 

hen, maximizing the multidimensional variability b 

� 
·k GC ν ( Z ) b ·k 

ields from (7) : 

b 

� 
·k [ GC ν ( Z ) + GC ν ( Z ) � ] b ·k = b 

� 
·k λ·k b ·k 

⇒ b 

� 
·k GC ν ( Z ) b ·k + b 

� 
·k GC ν ( Z ) � b ·k = λ·k . 

ince b 

� 
·k GC ν ( Z ) b ·k = b 

� 
·k GC ν ( Z ) � b ·k , then 

 

� 
·k GC ν ( Z ) � b ·k = λ·k / 2 = μ·k , 

nd so GMD ν (f ·k , f ·k ) = λ·k for all k = 1 , . . . , K. The results (ii) and

iii) are straightforward. 
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