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ABSTRACT
Starting from an axisymmetric equilibrium distribution function (DF) in action space, repre-
senting a Milky Way thin disc stellar population, we use the linearized Boltzmann equation
to explicitly compute the response to a three-dimensional spiral potential in terms of the per-
turbed DF. This DF, valid away from the main resonances, allows us to investigate a snapshot
of the velocity distribution at any given point in three-dimensional configuration space. More-
over, the first-order moments of the DF give rise to non-zero radial and vertical bulk flows
– namely breathing modes – qualitatively similar to those recently observed in the extended
solar neighbourhood. We show that these analytically predicted mean stellar motions are in
agreement with the outcome of test-particle simulations. Moreover, we estimate for the first
time the reduction factor for the vertical bulk motions of a stellar population compared to the
case of a cold fluid. Such an explicit expression for the full perturbed DF of a thin disc stellar
population in the presence of spiral arms will be helpful in order to dynamically interpret
the detailed information on the Milky Way disc stellar kinematics that will be provided by
upcoming large astrometric and spectroscopic surveys of the Galaxy.

Key words: Galaxy: disc – Galaxy: evolution – Galaxy: kinematics and dynamics – solar
neighbourhood – Galaxy: structure – galaxies: spiral.

1 IN T RO D U C T I O N

The primary objective of the current and future large spectroscopic
and astrometric surveys of the Milky Way, culminating with the
Gaia mission (Prusti 2012), will be to provide a detailed dynamical
model of the Galaxy, including all of its components, and giving us
insight into its structure, its formation and its evolutionary history.

The top-down dynamical approach consists in producing ab initio
simulations of Milky Way-like galaxies in a cosmological context.
This approach can be useful to understand some general features
of galaxy formation (e.g. Minchev et al. 2014). However, it is not
flexible enough to produce an acceptable model for the wide range
of extremely detailed data soon to be available for our own Galaxy.
On the other side, the bottom-up approach for dynamical mod-
elling consists in starting from the actual Galactic data, rather than
from simulations, in order to construct a model of the Galaxy.
To avoid the redundancy and computational waste of represent-
ing the orbits of every single particle in the model, one can use a
phase-space distribution function (DF) to represent each population
of constituent particles (typically, various stellar populations and
dark matter; see e.g. Binney & Piffl 2015; Piffl, Penoyre & Binney
2015). The model-building generally starts from the assumptions of
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dynamical equilibrium and axisymmetry. These assumptions allow
us to make use of Jeans’ theorem constraining the DF to depend
only on three integrals of motion, which can typically be chosen to
be the radial, azimuthal, and vertical action variables. However, one
should remember, especially when modelling the stellar populations
of the Galactic disc, that the Galaxy is obviously not axisymmetric,
as it harbours a central bar as well as spiral arms. Such perturba-
tions can obviously be treated through perturbation theory, whose
foundations in the case of flat 2D discs have been laid down by
Kalnajs (1971). For instance, following up on the work of Bin-
ney & Lacey (1988) who derived the orbit-averaged Fokker–Planck
equation for a 2D stellar disc, recent investigations (e.g. Fouvry,
Binney & Pichon 2015) have focused on the long-term secular evo-
lution of such a flat disc by means of diffusion through action space
at resonances, producing ridges in action space. Here, we are rather
interested in the present-day perturbed DF in the action-angle space
of the unperturbed Hamiltonian, in the presence of a 3D spiral
arm perturber, which could be fitted to a snapshot of the Galaxy
taken by current and upcoming large surveys. Our philosophy is
thus closer to that of McMillan (2013), except that the shape of the
perturbed DF will be computed directly from the linearized Boltz-
mann equation. Moreover, in this paper, we will first concentrate
only on the response away from the main resonances, the extremely
interesting effects expected at resonances, as well as the effect
of resonance overlaps of multiple perturbers (e.g. Quillen 2003;
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Minchev & Famaey 2010), being the subject of further analytical
work.

One potential issue with assuming axisymmetry in order to pro-
duce a benchmark model of the Galaxy from a Galactic survey snap-
shot is that it is not clear that the fundamental parameters entering
the model, such as the peculiar motion of the Sun, will not be biased
by forcing the model to fit observed non-axisymmetric features that
are not present in the axisymmetric model itself. This could for
instance explain why current determinations of the peculiar motion
of the Sun are discrepant with each other when using local or non-
local tracers (Schönrich, Binney & Dehnen 2010; Schönrich 2012).
It would thus be extremely useful, especially when modelling the
Galactic disc stellar populations, to directly include in the model
the response of the stellar DF to the bar or to spiral arms.

In this contribution, we make a step in this direction by ana-
lytically investigating the response of a typical stellar population
representative of the thin disc of the Galaxy to a 3D perturbing
spiral potential. More specifically, we are able to provide the fully
explicit form of the perturbed DF in angle-action variables, which
could later on be used for dynamical modelling of the disc stellar
populations. However, the main problem with including spirals in
our model is that the nature and origin of spiral arms in galactic
discs are still mostly unknown. Recent numerical investigations in-
dicate that spirals might consist of multiple long-lived (∼10 galaxy
rotations) modes (Sellwood & Carlberg 2014), which do not appear
to be strictly static as in the classical density wave picture, but are
nevertheless genuine standing wave oscillations with fixed shape
and pattern speed. The response to these waves away from the main
resonances and the regions where non-linear coupling between the
modes is important can then be computed from perturbation the-
ory, and can in principle be linearly added to each other. Hence, it
is interesting to consider the response of the DF to a single such
mode, which we will assume here to have non-varying amplitude
but which could be later generalized to varying amplitudes too. In
the present work, we will concentrate on the response of a given disc
stellar population in equilibrium to a perturbing spiral potential in
3D, but we do not investigate yet the conditions for self-consistency.

In Section 2, we recall the basics of action-angle variables and
equilibrium distribution functions in action space. The response of
a stellar population, represented by a given equilibrium distribution,
to a perturbing potential is then presented in Section 3, by means
of the linearized collisionless Boltzmann equation. We compute
both the perturbed DF and its first-order moments, giving the mean
stellar motions. The results for the specific case of a spiral perturber
are presented in Section 4, and conclusions are drawn in Section 5.

2 EQU I L I B R I U M D I S T R I BU T I O N F U N C T I O N S
IN AC TIO N SPAC E

It is well-known that, in realistic axisymmetric and time-
independent Galactic potentials, most orbits are regular (i.e. they are
quasi-periodic in the sense that their Fourier transforms have only
discrete frequencies that are integer linear combinations of three
fundamental frequencies) and thus have three isolating integrals of
the motion. Each triplet of them specifies a particular orbit in the
potential of the Galaxy. Jeans’ theorem then tells us that the equi-
librium stellar phase-space DF of any component of the Galaxy,
f0, should depend only on these three integrals, which makes f0

automatically a solution of the collisionless Boltzmann equation:

df0

dt
= 0. (1)

There are in principle an infinity of sets of isolating integrals of the
motion to choose from.

On the other hand, if one of the configuration space variables of
a dynamical system is absent from the Hamiltonian, then its conju-
gate momentum is itself an integral of the motion, as is evident from
Hamilton’s equations. Conversely, if an integral of the motion has a
canonically conjugate variable, the Hamiltonian does not depend on
that variable. Hence by choosing three isolating integrals of the mo-
tion having canonically conjugate variables, the Hamiltonian can be
written in its simplest form, purely as a function of the three integrals
of the motion. This makes such a choice of integrals particularly
appealing. Such integrals are called the ‘action variables’ J , and
correspond to new generalized momenta. Their canonically conju-
gate variables are called the ‘angle variables’ θ , because they can
be normalized such that the position in phase-space is 2π-periodic
in them.

The equations of motion (Hamilton’s equations) are conveniently
expressed as

θ̇ = ∂H0

∂ J
= ω( J), J̇ = −∂H0

∂θ
= 0. (2)

For a star in an axisymmetric disc galaxy, for which the usual phase-
space coordinates are the cylindrical coordinates (R, φ, z) and their
associated velocities (vR, vφ, vz) ≡ (Ṙ, Rφ̇, ż), J = (JR, Jφ, Jz)
are the actions, θ = (θR, θφ, θz) the angles, and H0( J) is the Hamil-
tonian corresponding to the axisymmetric time-independent poten-
tial �0. The motion is as simple as one can imagine, since the
actions J are constant in time, and define orbital tori on which the
angles just evolve linearly with time, i.e. θ (t) = ωt + θ0, where
ω( J) ≡ ∂H0/∂ J are the orbital fundamental frequencies.

One of the drawbacks is that we can write analytical relations
between the action-angles ( J, θ ) and the usual phase-space coor-
dinates (x, v) only in some rare cases1 of potentials �0. But the
advantages are numerous. First of all, in an equilibrium configu-
ration for the Galaxy, the phase of the stars, θ , is uniformly dis-
tributed (phase mixed) on orbital tori specified by J alone, and the
phase-space density of stars f0( J)d3 J is just the number of stars
dN in a given infinitesimal action range divided by a factor (2π)3.
Secondly, the actions are adiabatically invariant for a slow secular
evolution of the Galactic potential. And, finally, they are very natu-
ral coordinates for perturbation theory: the linearized collisionless
Boltzmann equation takes a rather simple form with these variables
(see Section 3).

For simplicity, we are going to work here in the epicyclic and
adiabatic approximations (for various more rigorous ways of eval-
uating the actions, see e.g. McGill & Binney 1990; McMillan &
Binney 2008; Binney & McMillan 2011; Binney 2012; Bovy & Rix
2013; Sanders & Binney 2014), assuming separable motion in the
vertical and horizontal directions. The epicyclic approximation is
roughly valid for the thin disc we want to model here, i.e. for not too
eccentric orbits and close enough to the Galactic plane. It consists
in locally approximating the radial and vertical motions of an orbit

1 Note that, for any choice of integrals, the third integral cannot, in general,
be written analytically for a disc galaxy, apart when the vertical motion
is considered separable from the horizontal one as assumed here, or if
the potential is of Stäckel form (e.g. Famaey & Dejonghe 2003). Bienaymé,
Robin & Famaey (2015) provide typical analytic approximations for the third
integral in more realistic potentials, based on the Stäckel approximation, but
the corresponding actions are not analytic either.
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of angular momentum Lz ≡ Rvφ with harmonic motions, i.e. with
an effective potential in the meridional plane of the form

�0,eff = �0 + Lz

2R2
� Ec + �0,R + �0,z, (3)

where �0,R ≡ κ2(R − Rg)2/2, �0,z ≡ ν2z2/2, and the radial and
vertical epicyclic frequencies, κ and ν, are evaluated at Rg, the radius
of a circular orbit of angular momentum Lz, whose energy is Ec.
The techniques and results developed in this paper are nevertheless
in principle generalizable to more precise and general estimates of
the actions for a wider range of orbits, which will be the topic of
further papers. Within the adiabatic and epicyclic approximations,
the actions (JR, Jφ , Jz) are approximated by the following explicit
analytic form:

Jφ = 1

2π

∫ 2π

0
dφLz = Lz,

Jz � 1

π

∫ zmax

zmin

dz
√

2[Ez − �0,z] = Ez

ν
,

JR � 1

π

∫ Rmax

Rmin

dR
√

2(ER − �0,R) = ER

κ
, (4)

where ER = v2
R/2 + κ2(R − Rg)2/2 is the radial epicyclic energy

and Ez = v2
z /2 + ν2z2/2 is the vertical energy. The canonically con-

jugate angle variables can then also be expressed explicitly (Dehnen
1999; Binney & Tremaine 2008) as:

θφ � φ + �φ,

θz � tan−1

(
− vz

νz

)
,

θR � tan−1

(
− vR

κ(R − Rg)

)
, (5)

where2

�φ ≡ − γ

Rg

√
2JR

κ
sin θR − JR

2

d ln κ

dJφ

sin(2θR), (6)

with

γ ≡ 2
/κ, (7)

and 
 the angular circular frequency evaluated at Rg(Jφ). Finally,
the orbital frequencies are approximated by

ωφ � 
 + (dκ/dJφ)JR,

ωz � ν,

ωR � κ. (8)

The possible choices of realistic DFs to represent the different
components of the Galactic disc are again numerous (see e.g. Bin-
ney 2010; Binney et al. 2014). Here we will make the simplest
assumption, i.e. that the axisymmetric thin disc is well represented
by a Schwarzschild DF (Binney & Tremaine 2008), i.e.

f0(JR, Jφ, Jz) = γ �̃0exp(−Rg/hR)

4 (2π)3/2 σ̃ 2
Rσ̃zz0

exp

(
−JRκ

σ̃ 2
R

− Jzν

σ̃ 2
z

)
, (9)

where �̃0, σ̃R, σ̃z, κ , ν, and γ are all functions of Jφ through a
chosen dependence on Rg(Jφ). Note, however, that most results in
Section 3 will be fully independent of this particular choice for f0.

2 Rigorously speaking θφ , the canonical conjugate of Jφ , should also include
a term dependent on the vertical motion −Jz(d ln ν/dJφ )cos θz sin θz which
in typical thin disc situations is tiny, much smaller than the already small
−JR(d ln κ/dJφ) sin (2θR), and which therefore we omit.

3 LI NEARI ZED COLLI SI ONLESS
B O LT Z M A N N E QUAT I O N

3.1 General solution

In this section, we will consider a small perturbation to the potential,
denoted as ε�1 where ε � 1, �1 has the same order of magnitude as
the axisymmetric background potential �0, and the total potential is
� = �0 + ε�1. Instead of searching for new action-angle variables
for the perturbed Hamiltonian H1 = H0 + ε�1, we will continue here
to work with the variables defined within the unperturbed Hamil-
tonian H0. These are obviously no longer action-angle variables
within H1, but they remain canonical. The following calculations
in this section are fully independent from the specific action-angle
estimate and choice of DF mentioned at the end of Section 2. We
will move to specific predictions involving our specific choice of
variables only in Section 3.2.

With such a perturbation, the DF becomes, to first order in ε,
f = f0 + εf1, which should still be a solution of the collisionless
Boltzmann equation, equation (1). To first order in ε (i.e. dropping
higher-order terms), this leads to the linearized collisionless Boltz-
mann equation, which reads (equations 5.13 and 5.14 of Binney &
Tremaine 2008):

df1

dt
+ [f0, �1] = 0, (10)

where the time-derivative of f1 is a total derivative and [f0, �1] is
the Poisson bracket estimated along the unperturbed orbits. It thus
appears immediately that for a given axisymmetric equilibrium DF,
f0, and a given perturbing potential, �1, the response f1 can be
computed.

Integrating equation (10) within angle-action coordinates leads
to

f1( J, θ , t) =
∫ t

−∞
dt ′ ∂f0

∂ J ′ ( J ′) · ∂�1

∂θ ′ ( J ′, θ ′, t ′), (11)

where the coordinates ( J ′, θ ′) correspond to the orbits in the unper-
turbed potential. Note that the perturbing potential �1 is assumed
to have an explicit dependence on time.

Since the angle variables are defined such that the position in
phase-space is 2π-periodic in them, we consider only cases where
�1 is cyclic in the angle coordinates, i.e.

�1|θi
= �1|θi+2π, (12)

where θ i is any of the angle coordinates and the vertical line means
that �1 is evaluated keeping constant all the other variables. Then,
�1 can be expanded in a Fourier series as

�1( J, θ , t) = Re

{
G(t)

∑
n

cn( J)ein·θ
}

, (13)

where G(t) controls the strength of the perturbation as a function
of time. It is convenient to factorize this function into two factors,
G(t) = g(t)h(t), where g(t) is a well behaved function controlling
the general amplitude of the perturbation, and h(t) is a periodic sinu-
soidal function of frequency ωp, which can account for a perturbing
potential rotating with a fixed pattern speed. Here, n is a triple of
indexes running from −∞ to ∞. Then equation (11) becomes

f1( J, θ , t) = Re

{
i
∂f0

∂ J
( J) ·

∑
n

ncn( J)

×
∫ t

−∞
dt ′g(t ′)h(t ′)ein·θ ′(t ′)

}
. (14)
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Integrating by parts, the solution of the integral in equation (14) is∫ t

−∞
dt ′g(t ′)h(t ′)ein·θ ′(t ′) =

∞∑
k=0

[
(−1)k

h(t ′)ein·θ ′(t ′)g(k)(t ′)
(in · ω + iωp)k+1

]t

−∞
.

(15)

We assume that the perturbation and its time derivatives are null
far back in time, i.e. g(k)(−∞) = 0. Moreover, we assume in the
following that the amplitude of the perturbation is constant at the
present time t, hence g(0)(t) = 1, and g(k)(t) = 0, for k = 1, ..., ∞.
This finally leads to

f1( J, θ , t) = Re

{
∂f0

∂ J
( J) ·

∑
n

ncn( J)
h(t)ein·θ

n · ω + ωp

}
. (16)

Within the above assumption of a currently non-varying amplitude
of the perturbation, this solution is completely general and indepen-
dent of any choice of action-angle coordinates and of any choice of
a particular form of the axisymmetric equilibrium DF f0. Note that
Carlberg & Sellwood (1985) and Carlberg (1987) have on their side
investigated the lasting changes in the DF after a transient spiral
has come and gone. While similar in spirit to the present work, the
goal was very different and needed to consider the second-order
response, since to first-order, after the spiral has vanished, the DF
goes back to its initial state through phase-mixing. Our approach
is rather approximating what happens when the amplitude of the
spiral wave reaches a plateau at its maximum.

3.2 Fourier modes perturbing potential within the
epicyclic approximation

To be more specific, we now consider a perturbing potential of the
form

�1(R, φ, z, t) = Re
{
�a(R, z)eim(φ−
pt)

}
, (17)

i.e. a pure Fourier mode in φ, which is a good approximation for
the potential of a given spiral arm mode, or the bar (at least away
from the centre of the Galaxy). Note that we only consider hereafter
plane-symmetric potentials �a(R, |z|), thereby not addressing per-
turbations such as corrugation waves. Here, 
p is simply the pattern
speed, while m is the azimuthal wavenumber (e.g. m = 2 for the bar
or a two-armed spiral, m = 4 for a four-armed spiral).

At this point, in order to specify the above solution f1 (equation
16) within that perturbing potential, we have to rewrite �1 as in
equation (13). To do so, we approximate �a(R, z) close to the plane
as

�a(R, z) ≈ �a(R, 0) + 1

2

∂2�a

∂z2
(R, 0)z2, (18)

which is valid in the same range of z as the epicyclic approximation.
So, �1 becomes

�1 ≈ �1,R(R, φ) + �1,z(R, φ, z), (19)

where

�1,R ≡ Re
{
�a(R, 0)eim(φ−
pt)

}
,

�1,z ≡ Re

{
∂2�a(R, 0)

∂z2

z2

2
eim(φ−
pt)

}
. (20)

We start with �1,R. The radial motion in the epicyclic approximation
is written as

R = Rg (1 − e) cos θR, (21)

where

e(JR, Jφ) ≡
√

2JR/(κR2
g) (22)

is the eccentricity of the orbit. We consider orbits with low e, for
which the epicyclic approximation holds. Using the definition of e
and the mapping of equations (4) and (5), we can rewrite �1,R and
expand it in powers of e, dropping all the terms that are O(e2), to
obtain (e.g. Weinberg 1994)

�1,R = Re
{
�a(R, 0)eim(θφ−�φ−
pt)

}
≈ Re

{[
�a(Rg, 0)(1 + imeγ sin θR) +

− ∂�a

∂R
(Rg, 0)e cos θR

]
eim(θφ−
pt)

}
, (23)

where γ is defined as in equation (7). Note that the function h(t)
in equation (13) is just h(t) = exp(−im
pt) in this case, and the
frequency ωp in equations (15)–(16) is thus ωp = −m
p. We can
now evaluate the Fourier coefficients for �1,R in the traditional way

cR
jkl(JR, Jφ, Jz) = 1

(2π)3

∫ 2π

0
dθR

∫ 2π

0
dθφ

×
∫ 2π

0
dθz�a(R, 0)eim(θφ−�φ)e−i(jθR+kθφ+lθz)

≈ δkmδl0

{[
δj0 + δ|j |1

k

2
sgn(j )γ e

]
�a(Rg, 0)

− δ|j |1
Rg

2
e
∂�a

∂R
(Rg, 0)

}
, (24)

where δ is the Kronecker delta. We can now also treat �1,z in the

same way, replacing �a(R, 0) by ∂2�a(R,0)
∂z2

z2

2 . From equation (5), we
note that z2 can be expressed as

z2 = 2Jz

ν
cos2 θz = Jz

ν

1∑
l=−1

ei2lθz

2|l| . (25)

The Fourier coefficients for �1,z are then

cz
jkl(JR, Jφ, Jz) = 1

(2π)3

∫ 2π

0
dθR

∫ 2π

0
dθφ

×
∫ 2π

0
dθz

∂2�a(R, 0)

∂z2

z2

2
eim(θφ−�φ)e−i(jθR+kθφ+lθz)

≈ 1

2
δkm

(
δl0 + δ|l|2

2

)
Jz

ν

{[
δj0 + δ|j |1

k

2
sgn(j )γ e

]

×∂2�a

∂z2
(Rg, 0) − δ|j |1

Rg

2
e

∂3�a

∂R∂z2
(Rg, 0)

}
. (26)

We can now rewrite f1 (equation 16) as

f1 = f1,R + f1,z, (27)

where

f1,R ≡ Re

{
1∑

j=−1

cR
jm0Fjm0ei[jθR+m(θφ−
pt)]

}
, (28)

f1,z ≡ Re

{
1∑

j,l=−1

cz
jm2lFjm2le

i[jθR+m(θφ−
pt)+2lθz]
}

, (29)
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Perturbed distribution functions 2573

where the Fourier coefficients cR
jkl and cz

jkl are given by equations
(24) and (26), and

Fjkl(JR, Jφ, Jz) ≡
j ∂f0

∂JR
+ k ∂f0

∂Jφ
+ l ∂f0

∂Jz

jκ + k
(
ωφ − 
p

) + lν
. (30)

3.3 Moments of the distribution function

One of the main motivations of the present work is to understand
the present response of a disc stellar population, represented by
a DF f0 in an axisymmetric potential, to a quasi-static perturbing
non-axisymmetric potential in terms of radial and vertical mean
motions (e.g. Faure, Siebert & Famaey 2014). Such mean motions
can be computed through the zeroth- and first-order moments of the
perturbed DF f = f0 + εf1. Here, we will assume a given form for
f0, namely the Schwarzschild DF of equation (9).

We will focus on the mean motions projected on the plane (for
the radial motion) and on both sides of the plane (for the ver-
tical motion). Indeed, it was already shown numerically (Faure,
Siebert & Famaey 2014; Monari, Famaey & Siebert 2015) that
spiral or bar perturbations typically lead to a breathing mode re-
sponse of the disc, i.e. a density response that has even parity
with respect to the Galactic plane (i.e. is plane-symmetric), and
a mean vertical velocity field that has odd parity. Hence, we will
concentrate hereafter on the projected surface density �(R, φ),
the projected mean radial velocity field 〈vR〉(R, φ), and the differ-
ence between the mean vertical velocity field above and below the
plane

�〈vz〉(R, φ) ≡ 〈vz〉(z > 0) − 〈vz〉(z < 0). (31)

These can be computed by integrating the perturbed DF over all z
(or half of them in the case of the vertical motion) and all velocities,
i.e.

�(R, φ) ≡
∫ ∞

−∞
dz

∫
d3v(f0 + εf1), (32a)

�(R, φ)〈vR〉(R, φ) ≡
∫ ∞

−∞
dz

∫
d3vvR(f0 + εf1), (32b)

�(R, φ)�〈vz〉(R, φ) ≡ 4
∫ ∞

0
dz

∫
d3vvz(f0 + εf1), (32c)

where

d3v = dvφdvRdvz. (33)

Note that, by integrating over half of the z for �〈vz〉, we
get only half of the surface density, and have to multiply by
two again to get the subtraction between the mean vertical
velocities above and below the plane, hence the factor of 4.
Now, using the parity of the functions, equation (32) simplifies
to

�(R, φ) =
∫ ∞

−∞
dz

∫
d3v (f0 + εf1), (34a)

�(R, φ)〈vR〉(R, φ) = ε

∫ ∞

−∞
dz

∫
d3v vR f1, (34b)

�(R, φ)�〈vz〉(R, φ) = 4ε

∫ ∞

0
dz

∫
d3v vz f1,z. (34c)

These integrals have to be solved at constant (R, φ, t). To com-
pute the integrals over all velocities, we pass from the inte-
gration coordinates (vR, vφ , vz) (where vR and vz range from
−∞ to ∞, and vφ from 0 to ∞) to (θR, θz, Jφ) (where θR

and θz range from −π/2 to π/2, and Jφ from 0 to ∞) via the
transformations

vR = −κ(R − Rg) tan θR, (35a)

vφ = Jφ/R, (35b)

vz = −νz tan θz, (35c)

and

JR = (R − Rg)2κ

2 cos2 θR
, (36a)

Jz = z2ν

2 cos2 θz

, (36b)

θφ = φ + �φ(θR). (36c)

The Jacobian of the transformation is

dvRdvφdvz = κν(R − Rg)z

R cos2 θR cos2 θz

dθRdθzdJφ. (37)

Using these transformations, as well as the approximations ωφ ≈

, exp (im�φ) ≈ (1 + im�φ), �φ ≈ −γ /Rg

√
2JR/κ sin θR (i.e.

up to the first order in e), we compute the integrals of equation (34),
and the DF f0 of equation (9), to obtain3

� = �0 + ε�1, (38a)

where

�0 = (2π)3/2

R

∫ ∞

0
dJφ

σ̃Rσ̃ 2
z

ν
e

ψR
σ̃2

R f0(0, Jφ, 0), (38b)

�1 = Re

{
(2π)3/2eiφ̂

R

1∑
j=−1

∫ ∞

0
dJφ

σ̃z

ν
e

ψR
σ̃2

R
(
�̂j + �̂′

j0

)

×
[
δj0 − δ|j |1

(
δR − j

mγ σ̃ 2
R

κ2R2
g

)] }
. (38c)

For the mean radial velocity, we get

�〈vR〉 = Re

{
− iε

(2π)3/2eiφ̂

R

1∑
j=−1

∫ ∞

0
dJφ

σ̃zσ̃
2
R

νκRg
e

ψR
σ̃2

R

× (
�̂j + �̂′

j0

) [
δj0mγ − δ|j |1 (j + mγδR)

] }
. (39)

Finally, for the difference of mean vertical velocities above and
below the plane, we get

��〈vz〉 = Re

{
− iε

8πeiφ̂

R

1∑
j=−1

1∑
l=−1

∫ ∞

0
dJφ

σ̃ 2
z

ν
e

ψR
σ̃2

R
l

2|l|

×�̂′
j2l

[
δj0mγ − δ|j |1

(
δR − jmγ

σ̃ 2
R

κ2R2
g

)] }
, (40)

where

δR ≡ R − Rg

Rg
, (41a)

φ̂ ≡ m
(
φ − 
pt

)
, (41b)

3 Actually, the explicit results of equations (38)–(40) are valid not only
for the Schwarzschild DF of equation (9) but also for any DF that has a
dependence on JR and Jz of the form exp(− JRκ

σ̃ 2
R

− Jzν

σ̃ 2
z

).
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ψR ≡ −κ2
(
R − Rg

)2

2
(41c)

�̂j ≡ σ̃Rσ̃zc
R
jm0

(
κ2Rg

2
, Jφ, 0

)
Fjm0

(
0, Jφ, 0

)
, (41d)

�̂′
j l ≡ σ̃Rσ̃zc

z
jml

(
κ2Rg

2
, Jφ,

σ̃ 2
z

ν

)
Fjml

(
0, Jφ, 0

)
. (41e)

The mean vertical stellar motion is thus non-zero because the factor
�̂′

j2l is not the same for l = 1 and l = −1 in the integrand of
equation (40).

4 R ESULTS

4.1 Spiral arm model

We now wish to obtain explicit results in the case of a given 3D
spiral arm perturbation of the Galactic potential. The parameters of
the axisymmetric Galactic potential �0, the equilibrium DF f0, and
the spiral perturbation �1 can all be varied in order to get different
responses for different parameters, and they could all be used as
free parameters when fitting a DF to observed stellar kinematics
from large Galactic surveys. Here we fix these parameters in order
to illustrate the typical behaviour of f1.

For �0(R, z), we choose a realistic potential for the Galaxy,
namely the Model I of Binney & Tremaine (2008), fitting several
observed properties of the Milky Way (see also Dehnen & Binney
1998). It has a spheroidal dark halo and bulge, as well as three
components for the disc potential: thin, thick, and ISM disc. The disc
densities decrease exponentially with both Galactocentric radius
and height from the Galactic plane.

For f0(JR, Jφ , Jz), we choose the Schwarzschild DF of equation (9)
with hR = 2 kpc, z0 = 0.3 kpc, and

σ̃R(R) = σ̃R(R0)e− R−R0
5hR , (42a)

σ̃z(R) = σ̃z(R0)e− R−R0
5hR , (42b)

where σ̃R(R0) = 35 km s−1 and σ̃z(R0) = 15 km s−1.
As a perturbation �1(R, z, φ, t) we wish to use a tightly wound

logarithmic spiral. Expressing an analytic potential-density pair for
a 3D spiral is not trivial. For instance, if we consider a logarithmic
spiral with radial wavenumber k(R) = m/(R tan p), where p is the
pitch angle, one could multiply the 2D potential by exp(−|kz|), but
this would have the drawback that the vertical force field would
be discontinuous in the plane. Instead, we use here the spiral arms
potential-density pair of Cox & Gómez (2002), which closely re-
sembles arms with a sech2 vertical fall-off. With this potential-
density pair, our �a(R, z) in equation (12) corresponds to a loga-
rithmic spiral with radially varying amplitude and radially varying
scale-height, which reads

ε�a(R, z) = − A

KD
e

im
[
−φs+ ln(R/Rs)

tan p

] [
sech

(
Kz

β

)]β

, (43)

where

K(R) = 2

R sin p
, (44a)

β(R) = K(R)hs [1 + 0.4K(R)hs] , (44b)

D(R) = 1 + K(R)hs + 0.3 [K(R)hs]
2

1 + 0.3K(R)hs
. (44c)

For the length and height parameters of this spiral potential, we
choose Rs = 1 kpc and hs = 0.1 kpc. We also fix a phase φs = −26◦

and consider our following results at present time t = 0. The spiral
is chosen to be tightly wound with p = −9.9◦, and the amplitude
parameter is chosen to be A = 683.7 km2 s−2. Finally, we choose to
consider a two-armed spiral with 
p = 18.9 km s−1 kpc−1, so that
the main resonances are relatively away from the solar neighbour-
hood. The inner Lindblad resonance would be hidden in the central
bar region of the Galaxy (ILR = 1.56 kpc) and the corotation is in
the outer galaxy (CR = 11.49 kpc). These parameters have been
partly inspired by the 2D spiral potential considered in Siebert et al.
(2012), and produce at (R, z) = (8 kpc, 0) a maximum radial force
of the spiral that is 1 per cent of the force due to the axisymmetric
background.

With this form of the background potential, axisymmetric equi-
librium DF, and spiral potential, we can now compute the Fourier
coefficients of equations (24) and (26), as well as the perturbed DF
of equation (27) and its moments of equations (38)–(40).

4.2 Moments of the distribution function

4.2.1 Radial velocity gradient

We first consider the integrals in equations (38) and (39), which have
to be computed numerically. In practice, for a given R, the integral
on Jφ is computed in the interval of angular momenta corresponding
to circular orbits at the radii where the circular velocity is vc ± 2σ̃R

(we tested that the results obtained in this way are stable on larger
integration ranges.). The moments are actually Fourier modes them-
selves, i.e. they have the form q(R, φ) = Re{qa(R) exp(iφ̂)} where
φ̂ is defined as in equation (41b). We evaluate qa(R) numerically on
a grid of R values between 1 and 10 kpc with a step 0.25 kpc, and
use a third-order polynomial interpolation on this grid to obtain the
value qa(R) at a generic R point.

In Fig. 1 we plot �1/�0 and �〈vR〉/�0 as obtained from equa-
tions (38)–(40). As we see, the maxima of the response density wake
�1/�0 closely follow the loci of the spiral arm potential (dashed
red curves), as one expects. On the other hand, stars on the arms
tend to move towards the centre of the Galaxy (〈vR〉 < 0), while
those in the interarm regions tend to move outside (〈vR〉 > 0).

In order to illustrate how our analytic calculations allow us to
physically interpret the outcome of simulations, we compare the
moments induced by the perturbation derived analytically with those
computed with a numerical test-particle simulation. The initial con-
ditions are drawn from f0, and with the same potential �0 + ε�1

(where �1 grows slowly with time, until it reaches the final ampli-
tude used for the analytical predictions). The details of this simula-
tion can be found in Monari et al. (2015), where the only difference
with the present simulations is that, in that previous work, �1 was
a bar potential instead of the spiral arms that we use here. The re-
sults of this simulation are depicted in Fig. 1. We find a very good
agreement between the position of the maxima and minima of the
moments and the loci of the spiral arms. Moreover, the amplitude
of the perturbed density and motions appear to be similar to the
analytical predictions. A closer look to this comparison with the
simulation is presented in Fig. 2. Here the comparison is made at
three different radii, in the neighbourhood of R0 = 8 kpc: R = 7 kpc,
R = 8 kpc, and R = 9 kpc. These plots confirm the agreement be-
tween the simulation and the analytical predictions. Some small
discrepancies are of course present, and are due to a combination of
different effects. One of them is the discrete nature of the simula-
tions, and the fact that they never reach complete phase-mixing. The
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Perturbed distribution functions 2575

Figure 1. Moments induced by the potential perturbation equation (43) on the Binney & Tremaine (2008) Model I potential. Top left: density wake �1/�0

obtained from equation (38). Top right: average radial speed �〈vR〉/�0 obtained from equation (39). Bottom left: density wake �1/�0 obtained from the
simulation. Bottom right: average radial speed 〈vR〉 obtained from the simulation. �0 is computed in the simulation averaging � over φ at a certain R. The
dashed red curves represent the loci of the arms.

second is that, although the area covered is away from the ILR and
CR, there still are non-linear effects due to the resonances of higher
order than the Lindblad resonances that our analytical method does
not describe (e.g. due to the 4: 1 inner ultra-harmonic resonance
between 
 − 
p and κ , which in our case falls at R = 7.61 kpc).
The third is the presence of very eccentric orbits, especially in the
inner regions of the Galaxy, while equation (38) and equation (39)
are valid only for moderate eccentricities.

All this is especially interesting in view of the large-scale radial
velocity gradient first observed in the Galaxy by Siebert et al. (2011)
with the RAdial Velocity Experiment (RAVE) survey. This was in-
terpreted as the possible effect of either a m = 2 spiral (Siebert
et al. 2012) or the Galactic bar (Monari et al. 2014). In this respect,
it is interesting to note that the amplitude of the radial velocity
fluctuations generated by our spiral potential here is of the same
order of magnitude as those observed. It should, however, be noted
that subsequently observed large-scale line-of-sight velocity fluctu-
ations with a few red clump stars from the APOGEE survey seem

to be more compatible with the effect of the bar (Bovy et al. 2015;
Grand et al. 2015).

In Siebert et al. (2012), a comparison between the RAVE data
and various spiral models was made by using the traditional re-
duction factor F of Lin & Shu (1964, 1966), Lin et al. (1969) –
see also Binney & Tremaine (2008). In the case of a cold, pres-
sureless fluid it can indeed be shown that the linear response to a
non-axisymmetric rotating density perturbation ε�1 in the radial
velocity on the Galactic plane is

εuR,1(R, φ) = εRe
{
ua

R(R)eim(φ−
pt)
}

, (45)

where

ua
R(R) = i

m

�(R)

{ [

p − 
(R)

] d�a

dR
(R, 0) − 2
(R)�a(R, 0)

R

}
,

(46)
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2576 G. Monari, B. Famaey and A. Siebert

Figure 2. Comparison between the moments induced by the potential perturbation equation (43) on the Binney & Tremaine (2008) Model I potential as a
function of φ at three different radii computed with a numerical test-particle simulation (solid lines) and equations (38) and (39) (dashed lines). Left panel:
�1/�0. Right panel: 〈vR〉. Blue lines: R = 7 kpc. Orange lines: R = 8 kpc. Green lines: R = 9 kpc. The moments of the simulation are computed inside x − y
square bins of 0.25 kpc side, smoothed with a Gaussian filter on a scale of 0.5 kpc, and polynomial interpolated on the x − y grid.

and �(R) ≡ κ(R)2 − m2[
p − 
(R)]2. When the perturbing po-
tential is a tightly wound spiral, the second term in the r.h.s. of
equation (46) is much smaller than the first term, and can be omit-
ted, so that equation (46) simplifies to

ua
R(R) ≈ i

m
[

p − 
(R)

]
�(R)

d�a

dR
(R, 0). (47)

Lin & Shu (1964, 1966) and Lin et al. (1969) offer a way to rewrite
equation (47) in the case of a stellar disc, i.e. by multiplying it by
a reduction factor F whose derivation is reported in appendix K
of Binney & Tremaine (2008). In Fig. 3 we compare all these pre-
dictions with equation (39) of this work and the outcome of our
numerical simulations at R = R0. Since F was derived for tightly
wound spirals only, we use the best fit tightly wound spiral poten-
tial with the same pitch angle p to ε�1 of this work in the range of
R, 6 < R < 8 kpc (left panel), 7 < R < 9 kpc (central panel), and
8 < R < 10 kpc (right panel). We notice that there is a noticeable
difference in the amplitude predicted by the Lin–Shu approxima-
tion, even with the reduction factor (a factor of ∼2 or more), and
the results obtained using equation (39) of the present work: the
latter case actually describes much better the numerical simulation,
calling for a re-investigation of non-axisymmetric kinematic fea-
tures in future surveys with our present DF-based method rather
than a simple reduction factor. There are several likely reasons for
this difference. First of all, our approach is three-dimensional, and
takes explicitly into account the vertical velocity dispersion of stars
in the response to the perturbation. Secondly, we do not neglect the
tangential force term which is usually neglected for tightly wound
spirals. Thirdly, we use the guiding radius to evaluate our quanti-
ties instead of the present position which is used as a proxy in the
Lin–Shu approach. Finally, the Lin–Shu approach assumes for the
time-variation of the azimuthal angle that of a circular orbit, which
is a good approximation only for very small eccentricities. It is a
combination of these effects which leads to the present difference
with the Lin–Shu reduction factor.

4.2.2 Vertical bulk motions: breathing mode of the disc

One of the immense advantages of working with a 3D spiral model
is that it allows us to investigate the effect of the spiral on mean

stellar vertical motions. This is especially interesting given that
recent Milky Way large spectroscopic surveys have consistently
indicated that the mean vertical motion of stars above and below
the plane was typically non-zero (Widrow et al. 2012; Carlin et al.
2013; Williams et al. 2013). Such a behaviour was originally asso-
ciated uniquely with external excitations of the disc by a passing
satellite galaxy or a dark matter substructure (Widrow et al. 2012;
Gómez et al. 2013; Yanny & Gardner 2013; Feldmann & Spolyar
2015; D’Onghia et al. 2015). It is, however, useful to separate such
stellar bulk motions into two types of vertical oscillations. If the
density perturbation has odd parity with respect to the Galactic
plane, and the vertical velocity field has even parity, the disc it-
self is subject to a corrugation pattern which is called a ‘bending
mode’. These are indeed mostly caused by external perturbers (de
la Vega et al. 2015; Gómez et al. 2016; Xu et al. 2015). On the
other hand, if the density wake has even parity while the vertical
velocity field has odd parity (i.e. a rarefaction–compression pat-
tern), the oscillation is called a ‘breathing mode’. Such breathing
modes have been shown through test-particle simulations and ap-
proximate analytical considerations to be natural consequences of
internal non-axisymmetries such as the bar and spiral arms (Faure
et al. 2014; Monari et al. 2015). The same effect was also found
in self-consistent simulations of isolated galaxies developing spiral
instabilities (Debattista 2014). It was even shown that the breath-
ing mode present in the simulation of a Milky Way like galaxy
bombarded by satellites, which was analysed by Widrow et al.
(2014), was actually most probably linked to the bar formation
rather than induced by the satellites themselves (Monari et al. 2015).

Our present analytic calculations allow for the first time a rig-
orous and fully dynamical understanding of spiral-induced breath-
ing modes away from the main resonances (and in the absence of
resonance overlaps of multiple patterns, which will be the topic
of further work). For this, it suffices to integrate equation (40) in
a similar manner as equation (39). The resulting ��〈vz〉/�0 is
plotted in Fig. 4. As can be seen, stars tend to vertically move
away from the Galactic plane at the outer edge of spiral arms
(�〈vz〉 > 0) and towards the plane at the inner edge (�〈vz〉 < 0),
with a clear phase-shift w.r.t. the mean radial motion, already
noted in Faure et al. (2014). Again, we compare this to the re-
sults of our test-particle simulation (Figs 4 and 5) and find a good
agreement.
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Perturbed distribution functions 2577

Figure 3. Several predictions for the response of mean vR of a stellar
system or a cold fluid to the potential model used in this work. Predictions by
(predictions by Lin & Shu 1964, 1966; Lin, Yuan & Shu 1969): red dashed
line equation (46), red solid line equation (47), green line equation (47)
multiplied by the reduction factor F by Binney & Tremaine (2008). Blue
dashed line equation (39), blue solid line simulation. Top panel: R = 7 kpc.
Central panel: R = 8 kpc. Bottom panel: R = 9 kpc.

If we assume again a pressureless fluid as in the 2D case, if we
additionally assume that ∂�0/∂z � ∂ε�1/∂z (which is of course
a wrong assumption to make in the present case), and that

εuz,1(R, φ, z) = εRe
{
ua

z(R, z)eim(φ−
pt)
}

, (48)

the third of Euler’s equation (without any reduction factor) to the
first order in ε leads to (as first shown in Faure et al. 2014)

ua
z(R, z) = i

∂�a(R, z)/∂z

m
[

(R) − 
p

] . (49)

We compare equation (49) with the predictions of equation (40)
in Fig. 6. This comparison is made by averaging uz(R, φ, z) over

z with weight exp
(−ν2z2/2/σ̃ 2

z

)
(i.e. in the case where the verti-

cal density is isothermal like in the case of Schwarzschild’s DF).
The predictions of equation (49) are an order of magnitude larger
than the predictions of equation (40) and the simulation (so much
that we do not show, for readability, the complete range of Fig. 6).
The phases are instead in prefect agreement. A more sophisticated
(albeit not fully dynamical) approach was taken by Monari et al.
(2015), relating the radial and tangential motions for a very cold
stellar disc or fluid to the vertical motions via the continuity equa-
tion. The predictions of Monari et al. (2015) (again, averaged along
z with weight the isothermal density distribution) are also shown
in Fig. 6, allowing to show the typical reduction factor (as well as
some phase-shift related to missing terms in the cold fluid approxi-
mation). We note that the breathing modes are qualitatively similar
to those observed in the extended solar neighbourhood (Williams
et al. 2013), but that the amplitude of these motions is much lower
than observed. It nevertheless remains to be seen how the coupling
of multiple perturbers will affect these vertical motions (Monari
et al., in preparation).

4.3 Distribution function at a point in configuration space

Our computation of the exact form of the perturbed DF away from
the main resonances also allows us to study the detailed behaviour
of f = f0 + εf1 at a given point in configuration space (R, φ, z), in
terms of the actions and angles, and compare it with the unperturbed
version of the DF, f0. First, let us note that the dimensions of phase-
space, given the constraint of a fixed point in configuration space,
(R, φ, z) = constant, decrease from 6 to 3, even when the DF depends
both on actions and angles. We focus on the case (R, φ, z) = (8 kpc,
0, 0) (i.e. the typical position of the Sun in our model) and we add
the constraint Jz = 0, additionally decreasing the dimensionality of
phase-space to two dimensions.

The two variables that we choose to display are (θR, JR).
The other angles and actions are constrained by R = Rg(Jφ) −√

2JR/κ(Jφ) cos θR, Jz = 0, θφ = φ + �φ(Jφ , JR, θR), and θz = π/2
(because z = 0). In practice we solve numerically the first of this
constraints for each pair (θR, JR) to get Jφ , and it is then trivial to
get θφ . In the case of the unperturbed DF, f0, the true dependence is
obviously on JR and Jφ , but we can translate it in terms of (θR, JR)
in terms of the above constraints at a fixed point in configuration
space.

The comparison between f0(θR, JR) and f(θR, JR) is shown in
Fig. 7. As is apparent from this figure, both f0 and f decrease with
JR, but f0 is symmetric with respect to θR = π while f not, which
is due to the exp (±iθR) terms. The asymmetries in Fig. 7 can be
directly translated to features in the (vR, vφ) velocity space. To
visualize this transformation, we are helped by the map in Fig. 8,
which shows how to associate (θR, JR) with (vR, vφ) at (R, φ,
z) = (8 kpc, 0, 0). This figure displays curves of constant JR and θR

in the (vR, vφ) space (see also McMillan 2011). Each of the central
circular curves represents a value of JR, while the lines that radiate
from (vR, vφ) = (0, 220 km s−1) represent constant values of θR.

It is then interesting to check the behaviour of the velocity DF
at such a particular point in space, i.e. f(vR, vφ , vz) at constant
(R, φ, z), as we can e.g. compare it to the velocity of the stars in
the solar neighbourhood (the small volume around the Sun where,
to date, detailed enough kinematic data are present). As a matter
of fact, velocity-space substructures in the solar neighbourhood,
called moving groups, have observationally been shown to be com-
posed of stars of different ages and chemical compositions (e.g.
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2578 G. Monari, B. Famaey and A. Siebert

Figure 4. Mean vz motions induced by the potential perturbation equation (43) on the Binney & Tremaine (2008) Model I potential. Left panel: north–south
difference between the average vertical speed ��〈vz〉/�0 obtained from equation (40). Right panel: north–south difference between the average vertical speed
computed from the simulation. For the simulation �〈vz〉 is computed inside x − y square bins of 0.25 kpc side, and smoothed with a Gaussian filter on a scale
of 0.5 kpc The dashed red curves represent the loci of the arms.

Figure 5. Comparison between the north–south difference in mean vz mo-
tion �〈vz〉 induced by the potential perturbation equation (43) on the Binney
& Tremaine (2008) Model I potential as a function of φ at three different
radii computed with a numerical test-particle simulation (solid lines) and
equation (40) (dashed lines). Blue lines: R = 7 kpc. Orange lines: R = 8 kpc.
Green lines: R = 9 kpc. The quantity for the simulation is computed inside
x − y square bins of 0.25 kpc side, smoothed with a Gaussian filter on a
scale of 0.5 kpc, and polynomial interpolated on the x − y grid.

Dehnen 1998; Chereul, Crézé & Bienaymé 1999; Famaey et al.
2005; Famaey, Siebert & Jorissen 2008; Pompéia et al. 2011). For
this reason, they are most likely associated with perturbations from
the bar and spiral arms (e.g. Dehnen 2000; Minchev et al. 2010;
Antoja et al. 2011; Quillen et al. 2011). Our model is based on a
single spiral perturber, and is valid only away from the main reso-
nances, so we do not expect the model to reproduce all the observed
features. Nevertheless, it is interesting to look at the trend (note that
the ‘solar neighbourhood’ in our model is indeed away from the
main resonances as we chose parameters such that ILR = 1.56 kpc
and CR = 11.49 kpc).

In Fig. 9 (top panel) we show the perturbed DF f(vR, vφ) at
(R, φ, z) = (8 kpc, 0, 0), and vz = 0. We see how the effect of
the perturbation is to deform the density contours so that the stars

are not anymore distributed symmetrically between positive and
negative vR. In particular, there is an excess of stars slightly lag-
ging rotation and moving outwards around vR � 30 km s−1 and
vφ = 210 km s−1. This particular configuration of the density con-
tours is reminiscent of that created by the Hyades moving group in
the solar neighbourhood.4 These features can be easily interpreted
in light of Figs 7 and 8. For example, fixing JR = 30 km s−1 kpc
and moving clockwise from θR = 0, we first encounter in Fig. 7
an underdensity at θR ≈ π/5. Then the density increases again at
θR = π/2, forming in Fig. 9 (top) the Hyades-like distortion. At
θR ≈ π the density is almost constant, to slightly decrease again for
θR > π. The general velocity distribution is slightly skewed towards
negative radial velocities. In the bottom panel of Fig. 9, we then also
show f(vR, vφ) at (R, φ, z) = (6 kpc, 0, 0), and vz = 0. Here we find
more stars than in the previous case at vφ < 220 km s−1. Moreover,
the two configurations in the DFs of Fig. 9 explain why there is
a net 〈vR〉 < 0 motion at (R, φ, z) = (8 kpc, 0, 0) in the Galaxy,
while 〈vR〉 > 0 at (R, φ) = (6 kpc, 0, 0), due to the asymmetry of
the general velocity distribution.

In Fig. 10 we now show f(vR, vz) fixing vφ = vc(7.5 kpc) and (R, φ,
z) = (7.5 kpc, 0, 0.3 kpc) (top panel) and vφ = vc(9.5 kpc) and (R, φ,
z) = (9.5 kpc, 0, 0.3 kpc) (bottom panel), hence at z = 0.3 kpc height
from the Galactic plane.5 The former case has �〈vz〉 < 0 and 〈vR〉 >

0, while the latter �〈vz〉 > 0 and 〈vR〉 < 0. The consequence of the
perturbation is a tilt of the velocity ellipsoid in the vR − vz space,
which has opposite sign in the two points. Such a tilt would be
impossible, by construction, with the unperturbed f0 DF which is
plane-parallel, and has a similar amplitude of that found by studies
of stars in the solar neighbourhood (e.g. Pasetto et al. 2012). The
velocity ellipsoid is thus clearly influenced by the spiral potential,
and this intuitively explains why there is a transition from positive to
negative mean vertical motion precisely in between the arms and in

4 However, it is likely that the Hyades moving group is a resonant feature
(Sellwood 2010; Hahn, Sellwood & Pryor 2011; McMillan 2011, 2013),
thereby not precisely reproduced by the present model.
5 To obtain the DFs at z = −0.3 kpc it is sufficient to flip vz with −vz.
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Perturbed distribution functions 2579

Figure 6. Several predictions for the response of mean vz of a stellar
system or a cold fluid to the potential model used in this work [red solid line
equation (49), green line method by Monari et al. (2015) for a cold stellar
disc, blue dashed line equation (40), blue solid line simulation]. Top panel:
R = 7 kpc. Central panel: R = 8 kpc. Bottom panel: R = 9 kpc.

the middle of the arms (where the mean radial motion is maximal),
because the ellipsoid becomes plane-parallel again. Nevertheless, a
tilt of the ellipsoid alone cannot cause a net vertical motion, as the
average vz would still be 0. But this tilt is actually accompanied by a
lopsidedness of the vz distribution, which is maximal when the tilt is
maximal.

5 C O N C L U S I O N A N D P E R S P E C T I V E S

This work presents a general way to calculate the effects of a non-
axisymmetric gravitational disturbance on an axisymmetric DF, f0,

Figure 7. Isocontours of the DFs in the (θR, JR) space at the point (R, φ,
z) = (8 kpc, 0, 0) of the Galactic plane. Top panel: f0(θR, JR). Bottom panel:
f(θR, JR). The contours enclose (from bottom to top) 12, 21, 33, 50, 68, 80,
90, 95, and 99 per cent of the stars.

describing the phase-space density of stars in a collisionless stellar
system (i.e. governed by the collisionless Boltzmann equation).
We assume that the axisymmetric f0 alone solves the collisionless
Boltzmann equation in an axisymmetric potential �0 where the
relationship between the ordinary positions and velocities and the
action and angle variables are known (Section 2).

We apply this method to construct a 3D model of the Milky Way’s
thin disc, where the non-axisymmetric gravitational disturbance
ε�1 is a Fourier mode in azimuth (Section 3). In particular, we
chose to describe bisymmetric spiral arms with a ∼sech2 vertical
falloff (Section 4.1). As a result, we obtain formulas for the DF
and its zeroth- and first-order moments (density and mean motions)
that are shown to be in agreement with a numerical test-particle
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Figure 8. Curves of constant θR and JR in velocity space at (R, φ,
z) = (8 kpc, 0, 0) for the Binney & Tremaine (2008) Model I potential.
See also McMillan (2011).

simulation representing the effect of the same bisymmetric spiral
arms on the Milky Way’s thin disc (Section 4.2). In particular, we
estimate for the first time the reduction factor for the vertical bulk
motions of a stellar population compared to the case of a cold fluid.

An inspection of the DF at given points in 3D configuration space
(Section 4.3) also helps to interpret these macroscopic properties
of the stellar system. One interesting result is that the spiral arms
induce a tilt and a lopsidedness in the vR − vz velocity ellipsoid that
changes of sign and magnitude as a function of the position of the
point where it is calculated w.r.t. the spiral arms. In addition, it is
shown that distortions typical of moving groups such as the Hyades
are naturally reproduced in velocity space.

We nevertheless point out that our results here are only valid
away from the main resonances. Indeed, our method consists in
a linear treatment of the collisionless Boltzmann equation, i.e. it
assumes that the non-axisymmetric gravitational disturbance ε�1

and DF response εf1 are small. In particular, f0 should always be
larger than εf1 in order to preserve physical meaning. While most
of the non-axisymmetric gravitational disturbances of the Milky
Way are indeed much smaller than its background axisymmetric
gravitational potential, certain regions of phase-space are particu-
larly affected by the perturbations. These are the resonances, where
the rotational, radial, and vertical frequencies and the perturbation
pattern speed are commensurable. The linear regime breaks down
at the resonances, as is evident from equation (30), whose denom-
inator vanish at the resonances. Even if there is an infinite number
of resonances, those that affect a significant portion of phase-space
are rare. In our treatment they appear, for example, at the corotation
and Lindblad resonances that, in the case of the spiral arms we
chose in this paper, are all quite far from the solar neighbourhood.
The same cannot be stated in the case of the bar, where the outer
Lindblad resonance is probably close to the Sun. One way to treat
the resonances that we will explore in forthcoming work is to pass,
in their vicinity, to another system of angle-action variables (fast
and slow variables), that allows us to focus on the librations around

Figure 9. Isocontours of the velocity DFs f(vR, vφ ) at two points of the
Galactic plane, and vz = 0. Top panel: (R, φ, z) = (8 kpc, 0, 0). Bottom
panel: (R, φ, z) = (6 kpc, 0, 0). The contours enclose (from the inner to the
outer) 12, 21, 33, 50, 68, 80, 90, 95, and 99 per cent of the stars.

the resonant orbits, neglecting all the high-frequency motions (see
Binney & Tremaine 2008).

Another future issue, even more complex to treat, is related to the
non-linear effects due to the presence of more than one perturber.
In the linear perturbation theory presented here, the effect of more
than one perturber would simply be the linear combination of the
single responses. However, from numerical studies (Monari et al.,
in preparation), it can be shown that non-linear effects arise simply
by superposing different perturbers, as the bar and spiral arms (see
also Vera-Ciro & D’Onghia 2015). This is especially important in
terms of the amplitude of the vertical breathing mode generated by
the spirals in this work, which is qualitatively similar to observa-
tions (Williams et al. 2013), but not quantitatively. The effect of
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Figure 10. Isocontours of the velocity DFs f(vR, vz) at two points at
z = 0.3 kpc from the Galactic plane, and vφ = vc(R). Top panel: (R, φ,
z) = (7.5 kpc, 0, 0.3 kpc). Bottom panel: (R, φ, z) = (9.5 kpc, 0, 0.3 kpc).
The contours enclose (from the inner to the outer) 12, 21, 33, 50, 68, 80, 90,
95, and 99 per cent of the stars.

multiple perturbers could be especially important in that case. Fu-
ture analytic calculations should investigate this question. Also, in
the present work, we concentrated on the response of a given disc
stellar population in equilibrium to a perturbing three-dimensional
spiral potential, but we did not investigate yet the conditions for self-
consistency, which, especially in 3D, is a more complex problem
than the present one, to be treated in the future too.

Finally, we note that, while we used the adiabatic and epicyclic
approximations to estimate the angle and action variables in this
work, the method to obtain the DF that we present at the begin-
ning of the paper is completely general (Section 3.1). Our choice
of using a Schwarzschild DF to represent the axisymmetric equi-
librium configuration can trivially be generalized to other forms of

the DF. Moreover, our results can also, in principle, be used with
more sophisticated approximations of the angles and actions in the
Milky Way potential already present in the literature. For this rea-
son, the method presented in this paper will be helpful in the future
to dynamically characterize the Milky Way disc stellar kinematic
information that will be provided by upcoming large astrometric
and spectroscopic surveys of the Galaxy, as it offers the possibility
to interpret the latter in the dynamical sense (rather than just sub-
tracting the residuals from a fiducial axisymmetric model), using a
rather low number of free parameters.
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