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Abstract. Several deep neural ranking models have been proposed in
the recent IR literature. While their transferability to one target domain
held by a dataset has been widely addressed using traditional domain
adaptation strategies, the question of their cross-domain transferability is
still under-studied. We study here in what extent neural ranking models
catastrophically forget old knowledge acquired from previously observed
domains after acquiring new knowledge, leading to performance decrease
on those domains. Our experiments show that the effectiveness of neural
IR ranking models is achieved at the cost of catastrophic forgetting and
that a lifelong learning strategy using a cross-domain regularizer success-
fully mitigates the problem. Using an explanatory approach built on a
regression model, we also show the effect of domain characteristics on
the rise of catastrophic forgetting. We believe that the obtained results
can be useful for both theoretical and practical future work in neural IR.
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1 Introduction
Neural ranking models have been increasingly adopted in the information re-
trieval (IR) and natural language processing (NLP) communities for a wide
range of data and tasks [35,40]. One common underlying issue is that they learn
relationships that may hold only in the domain from which the training data
is sampled, and generalize poorly in unobserved domains1 [6,40]. To enhance
the transferability of neural ranking models from a source domain to a tar-
get domain, transfer learning strategies such as fine-tuning [53], multi-tasking
[29], domain adaptation [41], and more recently adversarial learning [7], have
been widely used2. However, these strategies have by essence two critical limi-
tations reported in the machine learning literature [6,22]. The first one, as can

1 According to Jialin and Qiang [41], a domain consists of at most two components: a
feature space over a dataset and a marginal probability distribution within a task.

2 We consider the definition of transfer learning in [41]. Please note that several other
definitions exist [13].



be acknowledged in the NLP and IR communities [7,29], is that they require
all the domains to be available simultaneously at the learning stage (except the
fine-tuning). The second limitation, under-studied in both communities, is that
the model leans to catastrophically forget existing knowledge (source domain)
when the learning is transferred to new knowledge (target domain) leading to
a significant drop of performance on the source domain. These limitations are
particularly thorny when considering open-domain IR tasks including, but not
limited to, conversational search.In the underlying settings (e.g., QA systems
and chatbots [15,25,33,43]), neural ranking models are expected to continually
learn features from online information streams, sampled from either observed or
unobserved domains, and to scale across different domains but without forgetting
previously learned knowledge.

Catastrophic forgetting is a long-standing problem addressed in machine
learning using lifelong learning approaches [6,42]. It has been particularly stud-
ied in neural-network based classification tasks in computer vision [22,26] and
more recently in NLP [32,37,46,49]. However, while previous work showed that
the level of catastrophic forgetting is significantly impacted by dataset features
and network architectures, we are not aware of any existing research in IR pro-
viding clear lessons about the transferability of neural ranking models across
domains, nor basically showing if state-of-the-art neural ranking models are ac-
tually faced with the catastrophic forgetting problem and how to overcome it
if any. Understanding the conditions under which these models forget accumu-
lated knowledge and whether a lifelong learning strategy is a feasible way for
improving their effectiveness, would bring important lessons for both practical
and theoretical work in IR. This work contributes to fill this gap identified in the
neural IR literature, by studying the transferability of ranking models. We put
the focus on catastrophic forgetting which is the bottleneck of lifelong learning.

The main contributions of this paper are as follows. 1) We show the oc-
currence of catastrophic forgetting in neural ranking models. We investigate
the transfer learning of five representative neural ranking models (DRMM[14],
PACRR[17], KNRM[50], V-BERT[31] and CEDR [31]) over streams of datasets
from different domains3 (MS MARCO [3], TREC Microblog [45] and TREC
COVID19 [47]); 2) We identify domain characteristics such as relevance density
as signals of catastrophic forgetting ; 3) We show the effectiveness of constrain-
ing the objective function of the neural IR models with a forget cost term, to
mitigate the catastrophic forgetting.

2 Background and Related Work

From Domain Adaptation to Lifelong Learning of Neural Networks.
Neural networks are learning systems that must commonly, on the one hand,
exhibit the ability to acquire new knowledge and, on the other hand, exhibit ro-
bustness by refining knowledge while maintaining stable performance on existing
knowledge. While the acquisition of new knowledge gives rise to the well-known

3 In our work, different domains refer to different datasets characterized by different
data distributions w.r.t. to their source and content as defined in [41].



domain shift problem [18], maintaining model performance on existing knowl-
edge is faced with the catastrophic forgetting problem. Those problems have
been respectively tackled using domain adaptation [41] and lifelong learning
strategies [6,42]. Domain adaptation, commonly known as a specific setting of
transfer learning [41], includes machine learning methods (e.g., fine-tuning [49]
and multi-tasking [29]) that assume that the source and the target domains from
which are sampled respectively the training and testing data might have differ-
ent distributions. By applying a transfer learning method, a neural model should
acquire new specialized knowledge from the target domain leading to optimal
performance on it.
One of the main issues behind common transfer learning approaches is catas-
trophic forgetting [11,12]: the newly acquired knowledge interfers with, at the
worst case, overwrites, the existing knowledge leading to performance decrease
on information sampled from the latter. Lifelong learning [6,42] tackles this issue
by enhancing the models with the ability to continuously learn over time and
accumulate knowledge from streams of information sampled across domains, ei-
ther previously observed or not. The three common lifelong learning approaches
are [42]: 1) regularization that constrains the objective function with a forget
cost term [22,26,49]; 2) network expansion that adapts the network architecture
to new tasks by adding neurons and layers [5,44]; and 3) memory models that
retrain the network using instances selected from a memory drawn from different
data distributions [2,32].

On the Transferability of Neural Networks in NLP and IR. Transfer-
ability of neural networks has been particularly studied in classification tasks,
first in computer vision [4,54] and then only recently in NLP [19,38,39]. For
instance, Mou et al. [39] investigated the transferability of neural networks in
sentence classification and sentence-pair classification tasks. One of their main
findings is that transferability across domains depends on the level of similarity
between the considered tasks. Unlikely, previous work in IR which mainly in-
volves ranking tasks, have only casually applied transfer learning methods (e.g.,
fine-tuning [53], multi-tasking [29] and adversarial learning [7]) without bring-
ing generalizable lessons about the transferability of neural ranking models. One
consensual result reported across previous research in the area, is that tradi-
tional retrieval models (e.g., learning-to-rank models [28]) that make fewer dis-
tributional assumptions, exhibit more robust cross-domain performances [7,40].
Besides, it has been shown that the ability of neural ranking models to learn
new features may be achieved at the cost of poor performances on domains not
observed during training [35]. Another consensual result is that although em-
beddings are trained using large scale corpora, they are generally sub-optimal
for domain-specific ranking tasks [40].
Beyond domain adaptation, there is a recent research trend in NLP toward life-
long learning of neural networks, particularly in machine translation [46], and
language understanding tasks [37,49,51]. For instance, Xu et al. [51] recently
revisited the domain transferability of traditional word embeddings [34] and
proposed lifelong domain embeddings using a meta-learning approach. The pro-



posed meta-learner is fine-tuned to identify similar contexts of the same word in
both past domains and the new observed domain. Thus, its inference model is
able to compute the similarity scores on pairs of feature vectors representing the
same word across domains. These embeddings have been successfully applied to
a topic-classification task. Unlikely, catastrophic forgetting and lifelong learning
are still under-studied in IR. We believe that a thorough analysis of the trans-
ferability of neural ranking models from a lifelong learning perspective would be
desirable for a wide range of emerging open-domain IR applications including
but not limited to conversational search [15,33,25,43].

3 Study Design
Our study mainly addresses the following research questions:
RQ1: Does catastrophic forgetting occur in neural ranking models?
RQ2: What are the dataset characteristics that predict catastrophic forgetting?
RQ3: Is a regularization-based lifelong learning method effective to mitigate
catastrophic forgetting in neural ranking models?

3.1 Experimental Set Up
Given a neural model M designed for an ad-hoc ranking task, the primary objec-
tives of our experiments are twofold: O1) measuring the catastrophic forgetting
of model M while applying a domain adaptation method D, in line of RQ1 and
RQ2; and O2) evaluating the effect of a lifelong learning method L to mitigate
catastrophic forgetting in model M , in line of RQ3. We assume that model M
learns a ranking task across a stream of n domain datasets {D1, . . . , Dn} coming
in a sequential manner one by one. At a high level, our experimental set up is:

1. Set up an ordered dataset stream setting D1 → . . . Dn−1 → Dn

2. Learn oracle models M∗i , i = 1 . . . n, with parameters θ̂i∗ by training the neural
ranking model M on training instances of dataset Di, i = 1 . . . n.

3. Measure the retrieval performance R∗i,i of each oracle model M∗i on testing in-
stances of the same dataset Di.

4. Launch a domain adaptation method D w.r.t. to objective O1 (resp. a lifelong
learning method L w.r.t. to objective O2) along the considered setting as follows:

– Initialize (k = 1) model Mk, with θ̂1∗, parameters of model M∗1 (trained on
the dataset base D1).

– Repeat
• Apply to model Mk a method D w.r.t to objective O1 (resp. method L

w.r.t. to objective O2) to transfer knowledge to the right dataset Dk+1

(forward transfer). The resulting model is noted Mk+1 with parameters
θ̂k+1. Its performance on dataset Dk+1 is noted Rk+1,k+1.

• Measure the retrieval performance Rk+1,k of model Mk+1 obtained on the
testing instances of left dataset Dk (backward transfer)

• Move to the next right dataset : k = k + 1
– Until the end of the dataset stream setting (k = n).

5. Measure catastrophic forgetting in model M .

This experimental pipeline, illustrated in Figure 1, follows general guidelines
adopted in previous work [2,20,26]. We detail below the main underlying com-
ponents highlighted in bold.



Fig. 1: Experimental pipeline using a 3-dataset stream setting for a given model M

Neural ranking models We evaluate catastrophic forgetting in five (5) state-
of-the-art models selected from a list of models criticallly evaluated in Yang et
al. [52]: 1) interaction-based models: DRMM [14] and PACRR [17] and KNRM
[50]; 2) BERT-based models: Vanilla BERT [31] and CEDR-KNRM [31]. We use
the OpenNIR framework [30] that provides a complete neural ad-hoc document
ranking pipeline. Note that in this framework, the neural models are trained by
linearly combining their own score (SNN ) with a BM25 score (SBM25).

Datasets and settings. We use the three following datasets: 1) MS MARCO
(ms) [3] a passage ranking dataset which includes more than 864 K question-
alike queries sampled from the Bing search log and a large-scale web document
set including 8841823 documents; 2) TREC Microblog (mb) [27], a real-time
ad-hoc search dataset from TREC Microblog 2013 and 2014, which contains a
public Twitter sample stream between February 1 and March 31, 2013 includ-
ing 124969835 tweets and 115 queries submitted at a specific point in time; 3)
TREC CORD19 (c19 ) [47] an ad-hoc document search dataset which contains
50 question-alike queries and a corpora of 191175 published research articles
dealing with SARS-CoV-2 or COVID-19 topics. It is worth mentioning that
these datasets fit with the requirement of cross-domain adaptation [41] since
they have significant differences in both their content and sources. Besides, we
consider four settings (See Table 1, column ”Setting”) among which three 2-
dataset (n = 2) and one 3-dataset (n = 3) settings. As done in previous work
[2,26], these settings follow the patterns (D1 → D2) or (D1 → D2 → D3) where
dataset orders are based on the decreasing sizes of the training sets assuming
that larger datasets allow starting with well-trained networks.

Domain adaptation and lifelong learning methods. We adopt fine-
tuning (training on one domain and fine-tuning on the other) as the representa-
tive domain adaptation task D since it suffers from the catastrophic forgetting
problem [2,22]. Additionally, we adopt the Elastic Weight Consolidation (EWC)
[22] as the lifelong learning method L. The EWC constrains the loss function
with an additional forget cost term that we add to the objective function of
each of the five neural models studied in this work. Basically speaking, EWC



constrains the neural network-based model to remember knowledge acquired on
left datasets by reducing the overwriting of its most important parameters as:

L(θ̂k) = L(θ̂k) +Σ1≤i<k
λ

2
Fi(θ̂

k − θ̂i)2 (1)

where L(θ̂k) is the loss of the neural ranking model with parameters θk obtained
right after learning on (Dk), λ is the importance weight of the models parameters
trained on left datasets (Di, i < k) with the current one (Dk), F is the Fisher
information matrix.

Measures. Given the setting (D1 → · · · → Dn), we use the remembering
measure (REM) derived from the backward transfer measure (BWT) proposed
by Rodriguez et al. [10] as follows:
• BWT: measures the intrinsic effect (either positive or negative) that learn-

ing a model M on a new dataset (right in the setting) has on the model per-
formance obtained on an old dataset (left in the setting), referred as backward
transfer. Practically, in line with a lifelong learning perspective, this measure av-
erages along the setting the differences between the performances of the model
obtained right after learning on the left dataset and the performances of the
oracle model trained and tested on the same left dataset. Thus, while positive
values handle positive backward transfer, negative values handle catastrophic
forgetting. Formally, the BWT measure is computed as:

BWT =

∑n
i=2

∑i−1
j=1(Ri,j −R∗

j,j)
n(n−1)

2

(2)

Ri,j is the performance measure of model Mi obtained right after learning on on
dataset Dj . R

∗
j,j is the performance of the oracle model M∗

j trained on dataset Dj

and tested on the same dataset. To make fair comparisons between the different
studied neural models, we normalize the differences in performance (Ri,j −R∗

j,j)
on model agnostic performances obtained using BM25 model on each left dataset
Dj . In our work, we use the standard IR performance measures MAP, NDCG@20
and P@20 to measure Ri,j but we only report the REM values computed using
the MAP measure, as they all follow the same general trends.
• REM: because the BWT measure assumes either positive values for posi-

tive backward transfer and negative values for catastrophic forgetting, it allows
to map with a positive remembering value in the range [0, 1] as follows:

REM = 1− |min(BWT, 0)| (3)

A REM value equals to 1 means that the model does not catastrophically forget.
To better measure the intrinsic ability of the neural ranking models to re-

member previously acquired knowledge, we deploy in the OpenNIR framework
two runs for each neural model based on the score combination (scoreG =
α × SNN + (1 − α) × SBM25). The first one by considering the neural model
after a re-ranking setup (0 < α < 1) leading to compute an overall REM
measure on the ranking model. The second one by only considering the neural
ranking based on the SNN score by totally disregarding the BM25 scores (α = 1).
REMN denotes the remembering measure computed in this second run.



3.2 Implementation details

We use the OpenNIR framework with default parameters and the pairwise hinge
loss function [8]. To feed the neural ranking models, we use the GloVe pre-trained
embeddings (42b tokens and 300d vectors). The datasets are split into training
and testing instance sets. For MS MARCO, we use the default splits provided
in the dataset. For TREC CORD19 and TREC Microblog, where no training
instances are provided, we adopt the splits by proportions leading to 27/18 and
92/23 training/testing queries respectively. In practice, we pre-rank documents
using the BM25 model. For each relevant document-query pair (positive pair),
we randomly sample a document for the same query with a lower relevance
score to build the negative pair. We re-rank the top-100 BM25 results and use
P@20 to select the best-performing model. For each dataset, we use the optimal
BM25 hyperparameters selected using grid-search. In the training phase, we
consider a maximum of 100 epochs or early-stopping if no further improvement
is found. Each epoch consists of 32 batches of 16 training pairs. All the models are
optimized using Adam [21] with a learning rate of 0.001. BERT layers are trained
at a rate of 2e−5 following previous work [31]. For the EWC, we fixed λ = 0.5.
The code is available at https://github.com/jeslev/OpenNIR-Lifelong.

4 Results

4.1 Empirical Analysis Of Catastrophic Forgetting in Neural
Ranking Models

Within- and Across-Model Analysis (RQ1). Our objective here is to inves-
tigate whether each of the studied neural models suffer from catastrophic forget-
ting while it is fine-tuned over a setting (D1 → D2 or D1 → D2 → D3). To carry
out a thorough analysis of each model-setting pair, we compute the following
measures in addition to the REM/REMN measures: 1) the MAP@100 perfor-

mance ratio (PR = 1
(n−1)

∑n
i=2

Ri,i

R∗
i,i

) of the model learned on the right dataset

and normalized on the oracle model performance; 2) the relative improvement
in MAP@100 ∆MAP (resp. ∆MAPN ) achieved with the ranking based on the
global relevance score ScoreG (resp. ScoreNN ) trained and tested on the left
dataset over the performance of the BM25 ranking obtained on the same testing
dataset. Table 1 reports all the metric values for each model/setting pairwise. In
line with this experiment’s objective, we focus on the ”Fine-tuning” columns.

Looking first at the PR measure reported in Table 1, we notice that it is
greater than 0.96 in 100% of the settings, showing that the fine-tuned mod-
els are successful on the right dataset, and thus allow a reliable investigation
of catastrophic forgetting as outlined in previous work [38]. It is worth recall-
ing that the general evaluation framework is based on a pre-ranking (using the
BM25 model) which is expected to provide positive training instances from the
left dataset to the neural ranking model being fine-tuned on the right dataset.
The joint comparison of the REM (resp. REMN) and ∆MAP (resp.∆MAPN )
measures lead us to highlight the following statements:
• We observe that only CEDR and VBERT models achieve positive im-

provements w.r.t to both the global ranking (∆MAP : +19.6%, +17.4% resp.)

https://github.com/jeslev/OpenNIR-Lifelong


Table 1: Per model-setting results in our fine-tuning and EWC-based lifelong learning
experiments. All the measures are based on the MAP@100 metric. The improvements
∆MAP (MAPN) and ∆REM(REMN) are reported in percent (%).

Model Setting Fine-tuning EWC-based lifelong learning
REM(REMN) ∆MAP (MAPN) PR REM(REMN) ∆REM(REMN) PR

DRMM

ms→ c19 1.000(1.000) +2.2(-73.6) 1.008 1.000(1.000) 0(0) 1.005
ms→ mb 0.962(0.943) +2.2(-73.6) 1.021 0.971(0.974) +0.9(+3.3) 1.011
mb→ c19 1.000(0.965) -1.7(-7.7) 0.993 1.000(0.662) 0(-31.4) 0.995
ms→ mb→ c19 0.976(0.938) +2(-73.6) 1.011 0.979(1.000) +0.3(+6.6) 1.004

PACRR

ms→ c19 1.000(0.760) +2.5(-30.1) 1.000 1.000(0.756) 0(-0.5) 1.000
ms→ mb 1.000(1.000) +2.5(-30.1) 0.999 1.000(1.000) 0(0) 1.014
mb→ c19 1.000(0.523) 0(+10) 1.000 1.000(0.940) 0(+79.7) 1.002
ms→ mb→ c19 1.000(0.759) +2.5(-30) 1.000 1.000(0.874) 0(+15.2) 1.015

KNRM

ms→ c19 1.000(1.000) -12.1(-89) 1.069 1.000(1.000) 0(0) 1.058
ms→ mb 1.000(1.000) -12.1(-89) 0.991 1.000(1.000) 0(0) 0.991
mb→ c19 1.000(0.810) -2(-13.8) 1.135 1.000(0.902) 0(+11.4) 1.141
ms→ mb→ c19 1.000(1.000) -12.1(-89) 1.086 1.000(0.963) 0(-3.7) 1.087

VBERT

ms→ c19 0.930(1.000) -10.6(0) 1.028 1.000(1.000) +7.5(0) 0.990
ms→ mb 1.000(0.883) -10.6(0) 1.030 1.000(1.000) 0(+13.3) 0.992
mb→ c19 0.913(1.000) +17.4(+25.8) 0.963 1.000(1.000) +9.5(0) 1.010
ms→ mb→ c19 0.989(0.922) -10.6(0) 1.011 1.000(1.000) +1.1(+8.5) 0.987

CEDR

ms→ c19 0.826(1.000) +2.6(+14.2) 1.013 1.000(1.000) +21.1(0) 1.008
ms→ mb 0.510(0.920) +2.6(+14.2) 1.003 1.000(1.000) +96.1(+8.7) 0.976
mb→ c19 0.940(1.000) +19.6(+29.2) 1.011 1.000(1.000) +6.4(0) 0.984
ms→ mb→ c19 0.771(0.946) +2.6(+14.2) 0.996 0.891(1.000) +15.6(+5.7) 0.961

and the neural ranking (∆MAP : +29.2%, +25.8% resp.), particularly under the
setting where mb is the left dataset (mb→ c19). Both models are able to bring
effectiveness gains additively to those brought by the exact-based matching sig-
nals in BM25. These effectiveness gains can be viewed as new knowledge in
the form of semantic matching signals which are successfully transferred to the
left dataset (c19) while maintaining stable performances on the left dataset (mb)
(REMN=0.940 and 0.913 for resp. CEDR and VBERT). This result is consistent
with previous work suggesting that the regularization used in transformer-based
models has an effect of alleviating catastrophic forgetting [23].

• We notice that the CEDR model achieves positive improvements w.r.t to
the neural ranking score (∆MAPN : +14.2%) in all the settings (3/4) where ms
is the left dataset while very low improvements are achieved w.r.t. to the global
score (∆MAP : +2.6%). We make the same observation for the PACRR model
but only for 1/4 model-setting pair (∆MAPN : +10% vs. ∆MAPN : 0%) with
mb as the left dataset. Under these settings, we can see that even the exact-
matching signals brought by the BM25 model are very moderate (leading to
a very few positive training instances), the CEDR and, to a lower extent, the
PACRR models, are able to inherently bring significant new knowledge in terms
of semantic matching signals at however the cost of significant forget on the
global ranking for CEDR (REM is the range [0.510; 0.826]) and on the neural
ranking for PACRR (REM=0.523).



• All the models (DRMM, PACRR, KNRM and VBERT (for 3/4 settings)
that do not significantly beat the BM25 baseline either by using the global score
(∆MAP in the range [−12.1%; +2.2%]) nor by using the neural score (∆MAPN

in the range [−89%; +0%]), achieve near upper bound of remembering (both
REM and REMN are in the range [0.94; 1]). Paradoxically, this result does not
allow us to argue about the ability of these models to retain old knowledge.
Indeed, the lack or even the low improvements over both the exact matching
(using the BM25 model) and the semantic-matching (using the neural model)
indicate that a moderate amount of new knowledge or even no knowledge about
effective relevance ranking has been acquired from the left dataset. Thus, the
ranking performance of the fine-tuned model on the left dataset only depends
on the level of mismatch between the data available in the right dataset for
training and the test data in the left dataset. We can interestingly see that
upper bound remembering performance (REM = 1) is particularly achieved
when ms is the left dataset (settings ms → c19, ms → mb, ms → mb → c19).
This could be explained by the fact that the relevance matching signals learned
by the neural model in in-domain knowledge do not degrade its performances
on general-domain knowledge.

Assuming a well-established practice in neural IR which consists in linearly
interpolating the neural scores with the exact-based matching scores (e.g., BM25
scores), these observations give rise to three main findings: 1) the more a neural
ranking model is inherently effective in learning additional semantic matching
signals, the more likely it catastrophically forgets. In other terms, intrinsic ef-
fectiveness of neural ranking models comes at the cost of forget; 2) transformer-
based language models such as CEDR and VBERT exhibit a good balance be-
tween effectiveness and forget as reported in previous work in NLP [38]; 3) given
the variation observed in REM and REMN, there is no clear trend about which
ranking (BM25-based ranking vs. neural ranking) impacts more importantly the
level of overall catastrophic forgetting of the neural models

Across Dataset Analysis (RQ2). Our objective here is to identify catas-
trophic forgetting signals from the perspective of the left dataset. As argued
in [1], understanding the relationships between data characteristics and catas-
trophic forgetting allows to anticipating the choice of datasets in lifelong learning
settings regardless of the neural ranking models. We perform a regression model
to explain the REM metric (dependent variable) using nine datasets character-
istics (independent variables). The latter are presented in Table 2 and include
dataset-based measures inspired from [1,9] and effectiveness-based measures us-
ing the BM25 model. To artificially-generate datasets with varying data char-
acteristics, we follow the procedure detailed in [1]: we sample queries within
each left dataset in the settings presented in Table 1 (15 for mb and 50 for
ms) to create sub-datasets composed of those selected queries and the 100 top
corresponding documents retrieved by the BM25 model.

Then, we replace in each setting the left dataset by the corresponding sub-
dataset. We estimate for each model-setting pair the REM value as well as
the characteristic values of the left sub-dataset. We repeat this procedure 300



Table 2: Linear regression explaining catastrophic forgetting (REM metric) at the left
dataset level. Significance: ∗ ∗ ∗ : p ≤ 0.001; ∗∗ : 0.001 < p ≤ 0.01; ∗ : 0.01 < p ≤ 0.5

Characteristic Description Coeff

R2 0.544

In
d
ep

en
d
en

t
va

ri
a
b
le

s
D

a
ta

se
t

Constant 0.7014∗ ∗ ∗
RS Retrieval space size: log10(D ×Q) -0.1883

RD Relevance density: log10
Qrels
D×Q

-0.3997∗
SD Score relevance divergence: KL(RSVD+, RSVD−) 0.0009
Vocab Size of the vocabulary -0.0932∗
DL Average length of documents -0.0349
QL Average length of queries 0.1803∗
QD Average query difficulty: avgq( 1

|q|
∑

w∈q idfw) 0.0044

E
ff

. MAP Effectiveness of the BM25: MAP -0.0220∗
std-AP Variation of BM25 effectiveness (AP metric): σq(APq) 0.0543∗

R
es

id
u
a
l

V
a
ri

a
b
le

s

Dataseti
MSmarco 0.18038
Microblog 0.5211∗∗

Mj

DRMM 0.1798∗ ∗ ∗
PACRR 0.1965∗ ∗ ∗
KNRM 0.1924∗ ∗ ∗
VBERT 0.1313∗ ∗ ∗
CEDR 0.0014

times to obtain 300 new settings per model, based on the 300 sampled sub-
datasets. This leads to 300 (sub-setting-model) pairs with a variation for both
the dependent and the independent variables. Finally, we build the following
explanatory regression model, referring to the ”across dataset analysis” in [1]:

REMij =
∑
k

Ckfik +Dataseti +Mj + εi (4)

where i denotes the ith sub-setting and j refers to the neural ranking model Mj .
Ck and fik denote respectively the weight and the value of the kth characteristic
of the left dataset in the ith sub-setting. Please note, that dataset feature values
are independent of the model Mj . Dataseti and Mj are the residual variables of
resp. the left dataset and the model. The characteristic values fik are centered
before the regression as suggested in Adomavicius and Zhang [1].

Table 2 presents the result of the regression model. From R2 and Constant,
we can see that our regression model can explain 54.4% of the variation of the
REM metric, highlighting an overall good performance in explaining the remem-
bering metric with a good level of prediction (0.7014). From the independent
variables, we can infer that the difficulty of the dataset positively impacts the
remembering (namely, decreasing the catastrophic forgetting). More precisely,
lower the relevance density (RD), the BM25 effectiveness (MAP) and higher the
variation in terms of BM25 performances over queries (std-AP) are, the higher
the REM metric is. This suggests that relevance-matching difficulty provides
positive feedback signals to the neural model to face diverse learning instances,
and therefore to better generalize over different application domains. This is
however true to the constraint that the vocabulary of the dataset (V ocab) is



not too large so as to boost neural ranking performance as outlined in [16,36].
Looking at the residual variables (Datasetj and Mj), we can corroborate the
observations made at a first glance in RQ1 regarding the model families clearly
opposing (DRMM-PACRR-KNRM-VBERT) and CEDR since the former statis-
tically exhibit higher REM metrics values than CEDR.

4.2 Mitigating Catastrophic Forgetting (RQ3)

From RQ1, we observed that some models are more prone to the catastrophic
forgetting problem than others. Our objective here is to examine whether an
EWC-based lifelong strategy can mitigate the problem. It is worth mentioning
that this objective has been targeted in previous research in computer vision
but without establishing a consensus [24,46,48]. While some studies reveal that
EWC outperforms domain adaptation strategies in their settings [24,46], others
found that it is less effective [48]. To achieve the experiment’s objective, we
particularly report the following measures in addition to the REM/REMN
measures: 1) ∆REM(REMN) that reveals the improvement (positive or negative)
of the REM/REMN measures achieved using an EWC-based lifelong learning
strategy over the REM/REMN measure achieved using a fine-tuning strategy;
2) the PR measure introduced in Section 4.1. Unlikely, our aim through this
measure here, is to highlight the performance stability of the learned model on
the right dataset while avoiding catastrophic forgetting on the left dataset.

We turn now our attention to the ”EWC-based lifelong learning”
columns in Table 1. Our experiment results show that among the 9 (resp. 11)
settings that exhibit catastrophic forgetting in the combined model (resp. neural
model), EWC strategy allows to improve 9/9 i.e., 100% (resp. 9/11 i.e., 88%) of
them in the range [+0.3%,+96.1%] (resp.[+3.3%,+79.7%]). Interestingly, this
improvement in performance on the left dataset does not come at the cost of a
significant decrease in performance on the right dataset since 100% of the models
achieve a PR ratio greater than 0.96. Given, in the one hand, the high variability
of the settings derived from the samples, and in the other hand, the very low
number of settings (10% i.e., 2/20) where a performance decrease is observed
in the left dataset, we could argue that the EWC-based lifelong learning is not
inherently impacted by dataset order leading to a general effectiveness trend
over the models. We emphasize this general trend by particularly looking at the
CEDR model which we recall (See Section 4.1, RQ1), clearly exhibits the catas-
trophic forgetting problem. As can be seen from Table 1, model performances
on the left datasets are significantly improved (+6.4% ≤ ∆REM ≤ +96.1%;
0% ≤ ∆REMN ≤ +8.7% ) while keeping model performances on the right
dataset stable (0.961 ≤ PR ≤ 1.008). This property is referred to as the stability-
plasticity dilemma [42].

To get a better overview of the effect of the EWC strategy, we compare in
Figure 2 the behavior of the CEDR and KNRM models which exhibit respec-
tively low level (REM = 0.510) and high level of remembering (REM = 1)
particularly in the setting ms→ mb. The loss curves in Figure 2(a) highlight a
peak after the 20th epoch for both CEDR and KNRM. This peak denotes the
beginning of the fine-tuning on the mb dataset. After this peak, we can observe
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Fig. 2: Impact of the EWC strategy on loss and performance for the ms→ mb setting.

that the curve representing the EWC-based CEDR loss (in purple) is slightly
above the CEDR loss (in orange), while both curves for the KNRM model (green
and blue resp. for with and without EWC) are overlayed. Combined with the
statements outlined in RQ1 concerning the ability of the CEDR model to accu-
mulate knowledge, this suggests that EWC is able to discriminate models prone
to catastrophic forgetting and, when necessary, to relax the constraint of good
ranking prediction on the dataset used for the fine-tuning to avoid over-fitting.
This small degradation of knowledge acquisition during the fine-tuning on the
ms dataset is carried out at the benefit of the previous knowledge retention to
maintain retrieval performance on the mb dataset (Figure 2(b)). Thus, we can
infer that the EWC strategy applied on neural ranking models plays fully its
role to mitigate the trade-off between stability and plasticity.

5 Conclusion

We investigated the problem of catastrophic forgetting in neural-network based
ranking models. We carried out experiments using 5 SOTA models and 3 datasets
showing that neural ranking effectiveness comes at the cost of forget and that
transformer-based models allow a good balance between effectiveness and re-
membering. We also show that the EWC-based strategy mitigates the catas-
trophic forgetting problem while ensuring a good trade-off between transferabil-
ity and plasticity. Besides, datasets providing weak and varying relevance signals
are likely to be remembered. While previous work in the IR community mainly
criticized neural models regarding effectiveness [35,40,52], we provide comple-
mentary insights on the relationship between effectiveness and transferability
in a lifelong learning setting that involves cross-domain adaptation. We believe
that our study, even under limited setups, provides fair and generalizable results
that could serve future research and system-design in neural IR.

6 Acknowledgement
We would like to thank projects ANR COST (ANR-18-CE23-0016) and ANR JCJC

SESAMS (ANR-18- CE23-0001) for supporting this work.



References

1. Adomavicius, G., Zhang, J.: Impact of data characteristics on recommender sys-
tems performance. ACM Trans. Manage. Inf. Syst. 3(1) (2012)

2. Asghar, N., Mou, L., Selby, K.A., Pantasdo, K.D., Poupart, P., Jiang, X.:
Progressive memory banks for incremental domain adaptation. In: ICLR. vol.
abs/1811.00239 (2020)

3. Bajaj, P., Campos, D., Craswell, N., Deng, L., Gao, J., Liu, X., Majumder, R., Mc-
Namara, A., Mitra, B., Nguyen, T., et al.: Ms marco: A human generated machine
reading comprehension dataset. arXiv preprint arXiv:1611.09268 (2016)

4. Bengio, Y.: Deep learning of representations for unsupervised and transfer learning.
In: UTLW’11. p. 17–37 (2011)

5. Cai, H., Chen, H., Zhang, C., Song, Y., Zhao, X., Yin, D.: Adaptive parameter-
ization for neural dialogue generation. In: EMNLP-IJCNLP. pp. 1793–1802 (Nov
2019)

6. Chen, Z., Liu, B.: Lifelong Machine Learning, Second Edition. Synthesis Lectures
on Artificial Intelligence and Machine Learning (2018)

7. Cohen, D., Mitra, B., Hofmann, K., Croft, W.B.: Cross domain regularization for
neural ranking models using adversarial learning. In: ACM SIGIR (May 2018)

8. Dehghani, M., Zamani, H., Severyn, A., Kamps, J., Croft, W.B.: Neural ranking
models with weak supervision. In: Proceedings of the 40th International ACM
SIGIR Conference on Research and Development in Information Retrieval. pp.
65–74 (2017)

9. Deldjoo, Y., Di Noia, T., Di Sciascio, E., Merra, F.A.: How dataset characteristics
affect the robustness of collaborative recommendation models. In: ACM SIGIR. p.
951–960 (2020)
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