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ABSTRACT 

Background: The control and the characterization of semiconductor very fine devices on a wafer are commonly 

performed by mean of a scanning electron microscope (SEM) to derive a critical dimension (CD) from a pair of parallel 

edges extracted from the images. However, this approach is often not very reliable when dealing with complex 2D 

patterns. An alternative is to use SEM contour technique to extract all the edges of the image. This method is more 

versatile and robust but before being implemented in a manufacturing environment, it must demonstrate that it can be 

matched well with traditional CD-SEM. 

Aim: The objective of this work is to present a method to evaluate and optimize the CD matching between a reference 

standard SEM-CD and SEM-Contours. 

Approach: After describing the metric used to assess the matching performance, we propose to screen some important 

influent parameters to give an evaluation of the best matching that we achieved with our experimental data. 

Results: After optimizing the matching calibration parameters and optimizing the selection of the best anchor pattern for 

the matching we could achieve a 3s-Total Measurement Uncertainty of 0.8 nm and 3.2 nm for 1D and 2D patterns. 

Conclusions: We established a method to achieve good matching performance that should facilitate the introduction of 

SEM contour in a manufacturing environment.  

Keywords: SEM, contour, critical dimension, matching, metrology, contour metrology 
 

1. INTRODUCTION 

The characterization and the control of the dimensions of semiconductor very fine devices are commonly performed by 

mean of a scanning electron microscope (SEM) able to generate high-resolution top-down grayscale images. The 

standard approach is to process only a portion of the image restricted to a measurement window to derive a critical 

dimension (CD) from a pair of extracted parallel edges. However, when dealing with complex 2D patterns, the size of 

the measurement window can be very small which often decreases the reliability of the measurements unless spending a 

lot of effort to set up a robust metrology recipe. The increase of complexity and the diversification of the semi-conductor 

applications require always more such patterns to be precisely measured not only for engineering purposes but also in the 

context of manufacturing metrology.  

 

 
Fig.  1: Conventional SEM-CD vs SEM-contour flow. 

 

An alternative approach has emerged, which consists in taking into account all the edge information contained in the 

image by extracting SEM contours as shown in Fig.  1. Capturing more edge information often implies that fewer SEM 

images are needed and so the metrology cycle time can be greatly improved [1]. By construction, SEM contours are 

capable of characterizing very complex 2D-shapes without the restriction of having parallel edge pairs. Besides, SEM 



 

 

 

contour extraction generates polygons to describe a pattern instead of a single CD number. This abstraction opens the 

door to new applications. By describing completely any pattern given by a SEM image, SEM contours are very valuable 

for OPC compact model [2, 3, 4, 5] or rigorous model [6] calibrations because they improve the design space coverage.  

SEM-contours are a very rich data source for any machine learning application [7, 8]. In addition, SEM-contours from 

different images can be combined to characterize the evolution of a pattern upon different process conditions, like micro-

lens reflow [9], litho-etch bias [10] or perform in-situ overlay between patterns measured on different layers during the 

manufacturing [11]. Another advantage is that the contours represented with polygons can be merged with design. 

Hence, the nature of the contours offers new metrics for the metrology like Edge Placement Error [11], the measure of a 

pattern shift [12] or even characterization of pattern topography by considering contours measured at different heights in 

a material [13].  

Even more fascinating applications are to come that stress the necessity to address the many challenges of handling 

SEM-contours, like edge extraction complexity with noisy or multi-pattern images,  like contour post processing to align, 

clean and average contours, like bringing new concepts for pattern sampling and dedicated test pattern generation in the 

context of model calibration…An additional challenge, that we propose to discuss specifically in this work, is the 

question of the matching of SEM-contour to standard SEM-CD [10, 14]. The demonstration of the compatibility of 

SEM-contour with a reference SEM-CD appears to be a pre-requisite to establish SEM-contour as a reliable and mature 

alternative metrology method that can be adopted in a manufacturing environment. 

 

 
Fig.  2 Standard SEM-CD vs SEM-Contour matching. 

The objective of this work is to present a method to evaluate and optimize the CD matching (see Fig.  2) between a 

reference standard SEM-CD (CD_Ref) and SEM-Contour (CD_contour). After describing the metric used to assess the 

matching performance, we propose to screen some important influent parameters to give an evaluation of the best 

matching that we achieved with our experimental data.  

 

 

2. METHODS 

2.1 SEM Contour to SEM matching 

 

❖ SEM-CD image acquisition and CD algorithms 

The raw image produced by a scanning electron microscope (SEM) depends on many parameters (e-beam intensity, 

voltage, scanning direction, the field of view, pixel size, number of frames, distortion…) that have a direct impact on the 

quality and shape of the signal. A SEM image is basically, a grayscale image highlighting the edges of the measured 

pattern. Fig.  3 shows an example of the amplitude and derivative of the signal of a cutline for a line and space pattern. 

The measurement is restricted to a portion of the image, the measurement box (orange rectangle) inside which the signal 

is analyzed line by line along a cutline. To improve the signal-to-noise ratio, the signal extracted by each cutline (b) is 

first smoothed (typically low-pass filter) and then averaged with a few neighbor cutlines. Finally, various cleaned 

cutlines sampled within the metrology window are averaged again to give the final signal that can be processed by the 

metrology algorithm to derive a pair of edge positions using either the amplitude or the derivative of the signal. 



 

 

 

 

Fig.  3 From SEM image to CD. a) Grayscale SEM image showing a cutline of the signal (amplitude in blue, derivative in 

red). b) The signal is cleaned and extracted inside a measurement box (orange rectangle). c) A metrology algorithm is 

applied to the signal to derive the edge position of the pattern and the CD. 

 

❖ Matching conditions and definition 

SEM contours are extracted by processing the signal of the same raw SEM image but with a more sophisticated 

algorithm to be more robust and versatile because the edge detection is not limited to a portion of the image. Note that a 

CD measured from contours is just a distance between polygons. Since a critical dimension of a pattern is derived by 

processing the signal of a SEM image then one can only compare CDs from images of the same substrate acquired with 

the same settings. In other words, the matching is only valid for a given process and metrology recipe.  

More precisely, the matching can be defined for a given SEM image as the difference between a CD measured with the 

contour and the reference CD (see equation 1). This supposes to work with the same raw SEM image and make sure that 

the CD derived from the extracted contours is based from the same pixels delimited by the reference measurement box, 

i.e. with the same size and location (see Fig.  4). 

 

∆𝐶𝐷𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔 =  𝐶𝐷𝑐𝑜𝑛𝑡𝑜𝑢𝑟 − 𝐶𝐷𝑟𝑒𝑓       (1) 

 

 

Fig.  4 The matching procedure implies using the same SEM image to derive the CD from the conventional SEM-CD 

(CD_Ref) and the CD measured from the extracted contour (CD_contour). The size and the position of the measurement box 

(orange rectangle) must be perfectly matched. 



 

 

 

 

❖ Contour matching flow: calibration and anchoring 

The outcome of the matching is ruled not only by the contour extraction process itself, i.e. the effective position of the 

detected edges, but also by the method to derive the CD from the contours, i.e. the geometry of the measurement box and 

the cutline sampling. The ASELTA’s contour extraction technology, that we use for this work, has a dedicated flow to 

ensure enough degrees of freedom for the various matching steps (see Fig.  5).  The matching process is divided into two 

main steps to generate a matching model. First, the contour extraction is calibrated by adjusting a few parameters having 

an impact on the edge detection position, the contour smoothing, and cleaning. Then, the position of the contour is finely 

adjusted with a model-based approach to fit a given reference CD, called anchor, using an equivalent measurement box 

in terms of size, position, and cutline sampling. Several measurements from one or more images may be used for 

matching, increasing the number of anchors to potentially improve the matching accuracy and its robustness to noise. 

 

Fig.  5 Aselta’s contour matching flow. During the calibration step, the contours are optimized for the edge detection of the 

pattern. In a second step, a model-based approach allows a fine adjustment of the contour position to fit a given reference 

CD (anchor) within the same measurement box (orange). 

 

2.2 Data Preparation 

Once a matching calibration model is available, it is used to extract the contours and derive the CDs of a batch of images 

processed and measured exactly like the anchor. All the matching values coming from each image of the batch are 

aggregated to evaluate the matching performance and validate the quality of the anchoring model as discussed more in 

detail in the next section §2.3. For this work, we measured around 200 patterns of various 1D and 2D geometries after 

lithography and after etch with a dedicated SEM tool. The lithography measurements were also augmented with positive 

and negative focus conditions. Fig.  6 gives an overview of the patterns, grouped according to their basic geometry. Each 

group is made of sub-groups representing parametric dimension variations of the group like pitch or linearity 

modulations. Finally, each single pattern is measured multiple time across wafer at different locations. 



 

 

 

 

Fig.  6 Overview of the data patterns. Each group contains sub-groups generated by geometric parametric variations. 

A valid matching necessitates a pair of reliable reference and contour measurements. As illustrated in Fig.  7b, any edge 

detection error from either the reference or the contour could disqualify the matching value. When looking more into 

details the variances of the CD_Ref and CD_contour measurement per feature group after lithography (see in Fig.  7a), it 

appears that in general 2D patterns are showing more CD variation than 1D patterns and the reference measurements 

suffer more from edge detection problems. This example highlights the importance of identifying and removing outliers 

before starting a matching analysis. For large image batch, it is not feasible to perform a manual inspection of the pair of 

measurements. Moreover, the distinction between outliers and valid data points is not obvious. Instead, we propose to 

remove automatically the outliers based on the property of the matching distribution as shown in Fig.  8. The idea is to 

keep only the 2%-98% inter-quantiles part of the distribution, with the assumption motivated by the observation that this 

arbitrary 2% threshold was enough to discriminate between obvious and not obvious measurement errors. This 

corresponds approximately to removing all measurement pairs with more than +/-6nm of matching value. 

 

Fig.  7: Matching data screening. a) Comparing the variances of the reference and contour measurements for each pattern 

group. b) Showing that both reference and contour quality measurements matter to get a reliable matching value. 



 

 

 

 

Fig.  8: Outliers removal. The distribution of all the matching pairs shows the presence of outliers that can be detected by 

considering all the value outside the 2-98% of the inter-quartile range. Inside this range, we observed no obvious 

measurement errors. 

 

2.3 Matching metrics 

Given the CD_Ref and CD_contour measurements of all the SEM images after removal of the outliers and calibration of 

the anchor model, it is possible to estimate the matching performance by evaluating the correlation between the two 

components of the dataset. A common method is to use the ordinary least square regression, but it has the drawback to 

consider that only one variable (y) is subject to error when performing the linear fit (see Fig.  9). A more appropriate 

method is to recognize that both x and y variables are subject to measurement errors and to take into account their 

relative variances when performing the regression. Such regression is known as Mandel’s [15, 16]  or Deming’s 

regression [17] and will minimize both x and y errors according to the variance ratio. 

 

Fig.  9: Ordinary Least Square regression considers only error for the y variable, i.e. minimizing the vertical distance 

between the points and the fitted line. Mandel Regression takes into account both x and y errors, minimizing a distance at 

any angle [0,90°] between the points and the fitted line. Note that if =1 then the distance is orthogonal to the line. 

From the Mandel regression, four metrics can be derived to serve as a figure of merits to evaluate and optimize the 

matching performance between reference measurements and a measurement system under test (TuT): 

Mandel Regression Slope (𝜷)̂: it evaluates the difference of sensitivity between TuT and Ref. Unity slope guarantees a 

good relative accuracy 

TMU: From the Mandel regression, one can measure the scatter of the point around the optimal fit line, by computing 

the RMS of the residuals, to measure the matching performance of a dataset. However, to evaluate the pure contribution 

of the SEM-contour measurement uncertainty to the matching error, one has to remove the contribution from the 



 

 

 

reference measurement uncertainty. This idea illustrates the concept of TMU (Total Measurement Uncertainty) [18, 19, 

16, 20] that was introduced to measure both the precision and the relative accuracy of a tool or system under test (TuT).  

The relative accuracy refers to the capability of the TuT to follow closely changes in the reference measurement. TMU is 

a 3-sigma quantity describe by the following equation: 

𝑇𝑀𝑈 = 3√𝜎𝑅𝑒𝑔
2̂ − 𝜎𝑅𝑒𝑓

2̂  ~ 3
𝜎𝑇𝑢𝑇

�̂�

̂
      (2) 

 

Where 𝜎𝑅𝑒𝑔 
2 , 𝜎𝑅𝑒𝑓

2 , 𝜎𝑇𝑢𝑇
2  are the estimations of the variances of the regression, reference measurement, TuT measurement 

and �̂� the estimation of the regression slope. The measure of the TMU supposes a good estimation of the Ref and TuT 

measurement variances (or their ratio) which was not available for this work. Instead, we assumed both measurement 

variances to be equal which is probably a conservative statement especially for 2D patterns which are obviously more 

prone to measurement errors (see Fig.  7a). To make the estimation of the TMU effective, it is important to restrain it to a 

particular pattern but with relevant geometric variations potentially affecting the measurement accuracy. For this reason, 

in this work, the TMU values are computed for each pattern group. 

Dataset offset and Std Deviation of the matching: Independently of the regression, these 2 metrics capture any 

constant bias in the CD matching distribution. 

 

 

 

In the experimental section §3, we explore different experiments varying either the batch of SEM images (different 

processes) or the matching calibration model (model parameters or anchor pattern). Each time, we follow the same 

methodology to evaluate the matching performances based on the 4 metrics (see above and Fig.  10).  First, we plot for a 

given anchor pattern the matching distribution of all the patterns to identify systematic offset. More details are given by 

the box-plots representing the matching values per pattern group. Then we run a Mandel regression for each of these 

groups, to derive the TMU, slope, and offset separating 1D and 2D patterns. Finally, all the metrics can be summarized 

in a synthetic graph showing in box-plot format, the distribution of the TMU, slope and offset of all pattern groups. 

 

 
Fig.  10 Matching performance evaluation flow. For each experiment, the TMU, slope, offset and stdD of the matching 

dataset is derived per pattern group. Then all the group results are aggregated in a box-plot to get a synthetic view of the 

matching performance. 

𝑂𝑓𝑓𝑠𝑒𝑡 =  𝑦𝑟𝑒𝑓̅̅ ̅̅ ̅ − 𝑥𝑇𝑢𝑇̅̅ ̅̅ ̅̅       (3) 𝑆𝑡𝑑𝐷 = √∑
((𝐶𝐷𝑐𝑜𝑛𝑡,𝑖 −  𝐶𝐷𝑟𝑒𝑓,𝑖) − 𝑂𝑓𝑓𝑠𝑒𝑡)

2

𝑁 − 1

𝑁

𝑖=1

       (4) 



 

 

 

3. EXPERIMENTAL RESULTS 

In this section, we will investigate the influence of various parameters on the matching performance. In order to get a 

meaningful comparison, all the matching experiments are run with the same pattern dataset, i.e. measuring always the 

same patterns at the same location on a wafer. 

 

3.1 Influence of the model calibration parameters 

In section §2.1, we described the flow to calibrate a matching model with the help of an anchor image. The model can be 

tuned with a few parameters that need to be optimized in the first place because they have a strong influence on the 

matching performance. For that, we run around 500 experiments after lithography with the same anchor to explore the 

parameter space, allowing each parameter to vary between roughly 0 and 200% of the best guess starting point. The 

corresponding responses of the matching indicators (TMU, slope, offset, stdD) are compiled in Fig.  11. We can observe 

a strong spread of the matching performance, highlighting the importance of this first optimization step. Note that this 

was a blind optimization, meaning no prior knowledge of the reference metrology algorithm. 

 

 
Fig.  11: Influence of the model calibration parameters. 

 

3.2 Influence of the SEM image pixel size 

The purpose of this experiment is to understand how the SEM image pixel sizes influence the matching performance, 

keeping all other SEM parameters identical. The same isoline pattern was measured after lithography, with rectangular 

and square pixels (see Fig.  12a). Each image is then used as an anchor to calibrate a “square pixel” and a “rectangular 

pixel” models (see Fig.  12b). Each model is then cross-validated by measuring the CDs of a limited batch of SEM image 

with rectangular and square pixels. Fig.  12c shows that there is a very good correlation between the two calibration 

models, meaning that the pixel size has no significant impact on the matching performance. Note that the pixel size has 

still a strong impact on the CDs because of the resist shrinkage induced by the SEM e-beam. 

 

3.3 Influence of the pattern geometry: 1D vs 2D 

The matching experiments run on section §3.2, after lithography, establish clearly that the 1D pattern groups perform 

much better than the 2D pattern group. It is interesting to have a closer look at the TMU because it is supposed to 

measure only the variance of the measurement system and not that of the pattern dimension itself, which is expected to 

be generally higher for complex shape more difficult to print during lithography (see Fig.  13c). Fig.  13 gives a 



 

 

 

comparison of the TMU analysis between a 1D and a 2D pattern groups. The Mandel regression for 1D pattern is around 

3 times better than for 2D patterns. This was expected because we observed a much higher rate of measurement errors 

for 2D patterns, especially for the reference measurement. where the measurement box is much smaller and there are 

much fewer pixels available to get reliable statistics (see Fig.  13b).  For the TMU derivation, we assumed the variances 

of the reference and contour measurements to be identical (see section §2.3). This is mostly true for 1D patterns where 

the SNR of the measurement is improved thanks to the large measurement box (see Fig.  13b). However, the TMU is 

overestimated for 2D pattern because we noticed much more measurement errors of the reference caused by the limited 

amounts of pixels available to derive the CD. Therefore, in the case of noisy SEM images, 1D images are better 

candidates to serve as a matching anchor.  

 

 

 

Fig.  12: Influence of the SEM image pixel size: (a) The same pattern measured with rectangular or square pixels used to 

calibrate 2 models. (b) Each model is validated with a batch of rectangular or square pixel images. (c) The cross-validation 

of the models shows a good matching.  

 

 

 
Fig.  13: Influence of the pattern geometry. 



 

 

 

3.4 Influence of the calibration anchor image 

In our dataset, we made sure to have always a few repetitions (8 times) of the very same pattern (see Fig.  6) measured at 

different locations on the wafer. This gives us the possibility to estimate the influence of the calibration anchor image 

itself on the matching performance, by calibrating a specific instance of a pattern but with different SEM images with the 

same matching dataset each time. Fig.  14 shows a significant performance variation between 2 anchors. The Anchor2 is 

showing clearly a double distribution of the matching values that could be attributed to a symmetrical separation between 

line and space patterns. By overlaying the available reference edge points (in white in Fig.  14) and the contours (in 

magenta in Fig.  14) from each anchor image, we can see a very good matching of the edge detection for the first anchor, 

whereas the second anchor image reveals a few locations with high discrepancy (see orange arrows in Fig.  14 ). Note 

that the measurement error shifts with the same amplitude the matching distribution of the line and space patterns but 

with opposite values, which is to be expected because the sum of neighbor line and space -equal to a pitch- remains per 

definition constant. 

 

 
Fig.  14: Influence of the calibration anchor image. 

 

The TMU is not affected too much because the main consequence of the localized and limited edge detection errors is to 

bias the calibration which can be seen as an offset shift in the Mandel regression with limited impact on the correlation 

itself.  

 

 
Fig.  15: Correcting the anchor reference measurement to improve the matching performance. 



 

 

 

This observation suggests that reciprocally the matching could be improved by biasing on purpose the reference CD of 

the anchor. Indeed, any measurement error is equivalent to biasing the true CD_Ref of the anchor as illustrated in Fig.  

15a. It is then possible to recover the true CD by monitoring the evolution of the matching indicator as a function of the 

added bias (Fig.  15b, c). The minimum of the curve corresponds to the optimal bias that would compensate at best the 

edge detection errors. Note: for the sake of the demonstration, we assumed only a measurement error of the reference, 

but the biasing compensation works actually by combining both contributions of the reference and contour measurement 

errors. 

 

3.5 Influence of the calibration anchor design 

In this section, we want to investigate whether the matching performance can be further improved by selecting an 

optimal anchor among all the measured patterns. The objective is to determine if specific pattern designs are more 

suitable for calibration. The study is restrained to 1D patterns, measured after lithography, giving more reliable 

measurements than 2D patterns. In section §3.4, we have seen that for a given pattern, the matching performance can 

vary significantly from one SEM image to another. To mitigate this effect, we run around 900 matching calibrations, 

taking sequentially all the 1D SEM images as an anchor, with a repetition of 8 images per pattern (see Fig.  6). For the 

sake of clarity, only the matching standard deviations (stdD) are compiled per 1D-pattern group in the box-plot graph of 

Fig.  16. Confirming the observation of §3.4, it shows that the calibration performance can vary significantly within the 

same pattern or pattern group.  The interesting point is that with enough SEM images, it is always possible to find a good 

anchor for a given pattern. In addition, this experiment demonstrates that the design of the 1D anchor has no noticeable 

influence on the matching performance whereas the quality of the measurement for a SEM image does. 

 

 
Fig.  16 Influence of the anchor pattern design. (a) Plotting the matching standard deviation (stdD) distributions for every 

single image of 1D pattern of the dataset taken as an anchor. The box-plots compile the stdD per pattern group. (b) Details 

of the pattern group ”Double” by plotting the box-plots of the stdD per pattern.  

 

 

 

 

 

 

 

 

  



 

 

 

3.6 Influence of the calibration anchor sampling 

This brute force analysis of all the possible anchors is not a valid option to optimize the matching because it takes too 

long to run, but it demonstrates that with enough SEM images, good anchors can be found. Indeed, we propose methods 

to take advantage of the CD matching distribution to identify the best anchors. 

 

The first method requires 2 iterations of matching calibration with a single anchor and is particularly suited for noisy 

images with a higher rate of edge detection failure. The first iteration is performed with a random anchor with a given 

matching distribution signature. Depending on the dataset, it is possible to identify one or two normal distributions 

corresponding to the line and space patterns. Any pattern with a matching value close to the center of a distribution can 

be selected as a good anchor candidate for an effective second matching calibration (see Fig. 17b, c). 

 

The second method (see Fig. 17d) is only applicable if the line and space patterns are used and their respective matching 

distribution centers can be clearly separated because of significant edge detection errors (see §3.4). Following the 

observations made in section §3.4, we can derive that the distance between the two distribution centers is equal to 2 

times the bias that needs to be applied to the reference measurement to compensate exactly for the measurement errors. 

After biasing the initial anchor CD, the optimized calibration can be run. 

 

Finally, a more rigorous approach consists in considering multiple anchors for the matching calibration. Doing so, the 

influence of measurement errors of the anchors can be minimized as a result of the statistical effect -assuming the errors 

to be random. This method is effective only if enough images are sampled to get a good estimation of the matching 

distribution as illustrated in Fig. 17e, f, g. The best matching performance can be achieved with 900 anchors giving a 

TMU of around 0.8nm for 1D patterns and 3.2nm for 2D patterns with stdDev of 0.44 nm and 1.52 nm. The regression 

slope per feature group is also very well centered around unity. 

 

 

 

 
Fig.  17: Influence of the calibration anchor sampling. (a) Taking advantage of a 2 steps calibration to first analyze the 

matching distribution to select (b, c) optimal anchors close to the matching distribution centers or (d) assessing a corrective 

bias for the anchor CD. (e, f, g) Taking advantage of multiple anchor calibration. 

 

 

  



 

 

 

3.7 Influence of the lithography focus 

In this section, we want to understand whether SEM images measured on patterns printed with different lithography 

focus conditions are compatible in terms of matching. This question is legitimate as we expect a change of the resist 

profile as well as a roughness increase for large defocus. For that, we measured the same dataset again on wafers 

exposed at large positive and negative defocus with identical SEM image acquisition parameters as in the previous 

experiments. Each time, we compared the matching performance of the dataset measured at a given defocus by using the 

same anchor pattern measured either at nominal focus or at defocus (see Fig.  18 and Fig.  19). For each run, we selected 

the best anchor available for the pattern under investigation (see section §3.6). Fig.  18 and Fig.  19 indicate that 

whatever the defocus, there is no significant difference of the matching performance when using the anchor at nominal 

focus. This implies that there is no need to redo the matching calibration when changing the lithography focus condition. 

Note that the overall matching performance is anyhow reduced at defocus because the SEM images are more difficult to 

measure.  

 
Fig.  18: Influence of lithography negative defocus on the matching performance. 

 
Fig.  19 Influence of lithography positive defocus on the matching performance. 



 

 

 

3.8 Influence of the process 

The purpose of this last experiment is to compare the matching performance of the very same pattern dataset measured 

after lithography and after etch. The SEM magnification and the image size are identical in both cases, but the e-beam 

and frame settings are very different what triggered a preliminary re-calibration of the matching parameters for the post-

etch images (see §3.1). Then we evaluated the matching performance with an optimal single anchor selected with a 

method presented in section §3.6. After etch, we observe much less variability of all the matching indicators, roughly 4 

times better matching performance (See Fig.  20) because the patterned edges after etch are much smoother and the 

image noise much reduced compared to the post lithography condition. The measurement quality is so improved that 

even 2D patterns measured with a small measurement box can serve as an anchor. Indeed, the example of Fig.  21 shows 

similar matching performances for 1D and 2D patterns. 

 

Fig.  20: Influence of the process on the matching performance. 

 

 

 
Fig.  21:  Influence of the anchor pattern design after etch. 



 

 

 

4. CONCLUSIONS 

In this work, we used a comprehensive dataset of 1D and 2D patterns to investigate the matching between CD-SEM and 

SEM-contour after lithography and etch. As metrics to evaluate the matching performance, we used the Total 

Measurement Uncertainty, the slope of the Mandel regression, and the analysis of the matching CD distribution. After 

running many experiments to assess the parameters influencing the matching performances, we observed that the 

performances are largely driven by the quality of the SEM measurements (both CD-SEM and SEM-contour) rather than 

the pattern geometry (pitch, dimension…) of the anchor pattern used to calibrate the matching model. We also  noticed 

that the matching performance is marginally impacted by the lithography defocus but strongly improved after etch. 

Finally, we propose a few methods to find an optimal matching. They are based either on the analysis of the matching 

CD distribution of a preliminary calibration or involve multiple anchors for the calibration. Lastly, we have established a 

method to achieve good matching performance that should facilitate the introduction of SEM contour in a manufacturing 

environment. 
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