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Abstract

This paper addresses the control of manipulation force in a piezoelectric tube

actuator (piezotube) subjected to temperature variation and input constrains.

To handle this problem a robust output-feedback design is proposed using an

interval state-space model, which permits consideration of the parameter uncer-

tainties caused by temperature variation. The design method is robust in the

sense that the eigenvalues of the interval system are designed to be clustered

inside desired regions. For that, an algorithm based on Set Inversion Via Interval

Analysis (SIVIA) combined with interval eigenvalues computation is proposed.

This recursive SIVIA-based algorithm allows to approximate with subpaving the

set solutions of the feedback gain [K] that satisfy the inclusion of the eigenvalues

of the closed-loop system in the desired region, while at the same time ensuring

the control inputs amplitude is bounded by specified saturation. The effective-

ness of the control strategy is illustrated by experiments on a real piezotube of

which the environmental temperature is varied.

KEYWORDS
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1 INTRODUCTION ronment and especially to ambient temperature variation

[7]. Actually, there are several sources that may cause

this thermal variation during experimentation: the lamps

used to illuminate the tasks at the microscale and related

cameras, the heating of the surrounding devices (volt-

age amplifiers… ), and all other natural sources. This

temperature variation considerably impacts the approxi-

mated model of the actuator and induces the change in

its dynamics and its steady-state behavior. Furthermore,

in micro/nano manipulation, the manipulated object is

usually so fragile that if the desired performance (over-

shoot and rapidity) is not sufficiently respected under

Piezoelectric actuators, such as a piezoelectric tube and 
piezoelectric multimorph cantilever, are among the most 
used actuator in micro/nano-scales applications, par-

ticularly in micro/nano manipulation, Scanning Probe 
Microscopy (SPM), and Atomic Force Microscopy (AFM) 
due to their high speed (large bandwidth up to 1kHz), 
high precision (sub-nanometric), high resolution, and 
multi-degrees of freedom [1–6]. Unfortunately, they are 
characterized by nonlinearities (hysteresis, time varying 
parameters, creep, etc). They are also sensitive to the envi-



this temperature variation, the manipulated object may be

damaged, which makes the control of these systems not a

trivial task.

Nonlinear controller design for piezoelectric actuators

gained much research interest in recent decades. In these

approaches, the piezoelectric actuators are approximated

by uncertain nonlinear models. For instance, in [8], a

nonlinear approach based on the Lyapunov function to

analyze stability has been proposed. A variety of non-

linear control design based on adaptive techniques are
proposed in the literature [9–11]. Moreover, there are also
some predictive approaches, such as the work presented
in [12,13]. Further, Sliding Mode Control (SMC) design

has been widely used in the literature to control piezo-

electric actuators because it provides robust performances

and because it has lower computational costs [14–17]. In

these approaches, the hysteresis is usually divided into a

linear part and a bounded time-varying unknown part.

This bounded part is considered as structured uncertain-

ties and is overcompensated in the control law. Other

approaches based on an adaptive sliding mode controller

are proposed in [17–19]. Robust control techniques have

also been developed when the models of the piezoelec-

tric actuators are linear with uncertainties [20–22]. For

instance, in [23,24], interval techniques have been used

to derive a transfer function model with uncertainties

and to design robust interval controllers for a piezoelec-

tric actuator by using the well-known Kharitonov theorem

[25]. The main advantage of this approach is the fact

that parametric uncertainties could be easily modeled

by bounding them with intervals [23,26–28]. However,

the approach used transfer function representation and

therefore was not adapted to multivariable systems. As

an extension to multivariable, in this paper, a state-space

based interval modeling is studied and the design of

a robust controller using the state/output-feedback is

developed.

The robust state-feedback controller synthesis for inter-

val state-space models has been considered in several

works [29–31]. Indeed, the concept of robust controller

design for interval systems is based on placing the eigen-

values in a specific region rather than choosing an exact

assignment. Among the previous works that deal with

interval feedback control is the method discussed in [32],

which offers a solution for this problem without using

interval arithmetics. However, they are limited to sys-

tems with state and input matrices of special structures

[29]. Notwithstanding, the numerous interval models with

state and input matrices of standard structures have led

to the necessary use of interval arithmetics and compu-

tation. Many works have been conducted in this direc-

tion. For instance [29,33] are based on the properties of

non-standard interval arithmetic and a simple formulae

for regulator synthesis while [29,31] are based on the inter-

val Ackermann's equation, the inner solutions of which are

known to represent robust stabilizing controllers. Further-

more, an analytical method using matrix minors and its

characteristic equation is introduced in [30]. Actually, the

above works are focused on placing all the coefficients of

the system's closed-loop characteristic polynomial within

a desired closed-loop interval characteristic polynomial.

However, only the degree of stability of the closed-loop

system with state-feedback was addressed and no perfor-

mance measure was discussed.

On the other hand, piezoelectric actuators are usually

subjected to input constraints due to their physical limi-

tations. These limitations must be considered during the

design of a guaranteed controller in order to avoid the

actuators damage additionally to the guarantee of the sta-

bility and of the desired performances. However, accord-

ing to the best of our knowledge, the guaranteed con-

trol problem for interval system subjected to input con-

straints has received very little attention in the literature.

In fact, in the last decade there are some approaches

reformulating the input constraints as a convex optimiza-

tion problem with Linear Matrix Inequality (LMI) con-

straints under some assumptions [34–36] but these meth-

ods contain a lot of parameters to set which make them

not practical.

This paper provides a simple algorithm to find the

range of the robust and guaranteed feedback gains to con-

trol the manipulation force of piezoelectric tube actua-

tors subjected to input constraints and temperature vari-
ation. Such temperature variation induces variation in
the model parameters. Foremost, we propose describing

the impact of the temperature variation on the piezoelec-
tric tube actuator by interval state-space model. However

since measuring all states of such actuators is very diffi-

cult [37], we restrict the analysis to robust output-feedback

design, which has not been addressed in previous works

that deal with interval systems. The proposed approach

consists in extending the poles assignment techniques

into interval poles assignment techniques. Additionally,

we propose converting the problem of input constraints

into the inclusion problem and solve it using interval

analysis.

The paper is organized as follows. Section 2 is dedi-

cated to brief preliminaries on intervals analysis and inter-

val matrices theory including eigenvalues computation.

Section 3 presents a description of the proposed approach

to synthesize the robust and guaranteed output-feedback

controller itself. An application of the proposed method to

control the manipulation force of a piezoelectric tube actu-

ator is discussed in Section 4. The experimental results and

verification are presented in the same section. Finally, the

conclusion is in Section 5.



2 INTERVAL ANALYSIS AND
MATRIX THEORY PRELIMINARIES

An interval number x = [x, x], x ∈ IR, can be defined by

the set of x ∈ R such that x ≤ x ≤ x. In this paper the stan-

dardized notations in [38] for interval analysis are used,

in which an interval number is denoted by bold font and

sometimes by Lie brackets. The lower and upper bounds of

an interval will be denoted by underline and overline let-

ters respectively. Let us consider two intervals [x] = x =

[x, x] and [y] = y = [y, y]. The result of the algebraic oper-

ations ◊ ∈ {+,−, ·, ∕} between these two intervals is an

interval that envelopes all possible solution:

[x]◊[y] = {x◊y|x ∈ [x], y ∈ [y]} (1)

An interval matrix is a matrix that contains at least one

interval element [30]. Usually an interval matrix is defined

as follow:

A ∶= [A, Ā] =
{
A ∈ Rn×n; A ≤ A ≤ Ā

}
(2)

where A, Ā ∈ Rn×n and A ≤ Ā. The interval matrix is

characterized by its midpoint Ac and its radius A△ :

Ac ∶=
1

2

(
A + Ā

)
, A△ ∶=

1

2

(
A − Ā

)
(3)

2.1 Eigenvalue computation

The interval eigenvalue ofA is the set �(A) such that [30],

�(A) = {� + i�|∃A ∈ A,∃x ≠ 0 ∶ Ax = (� + i�)x)} (4)

for all A ∈ A.

A real symmetric interval matrices AS corresponding

to the interval matrix A is defined as the family of all

symmetric matrices denoted As in A, that is,

AS =
{
A

S

∈ A
}

(5)

The real symmetric interval matrixA
S
∈ IRn×n has n real

interval eigenvalues. Its ith eigenvalue is given by:

�i(A
S) = [�i(A

S), �i(A
S)] ∶=

{
�i(A)|A ∈ AS)

}
i = 1, ..,n

(6)

The recent advances on interval analysis computation

give the opportunity to calculate the interval eigenvalue of

interval matrices. In fact, the interval eigenvalue compu-

tation does not provide an exact values for all eigenvalues

of the interval matrix, however, it provides an estimation

of an envelope with a box or polygonal shape that bounds

all the eigenvalues of the interval matrix. For example,

[39] and [40] proposed exact bounds that embrace all

the eigenvalues of the symmetric interval matrices. These

approaches are based on hard assumptions, which are not

easy to verify [41]. Moreover, in [42], the authors pro-

posed an approach to estimate the interval eigenvalue of

real and complex interval matrices using Taylor expansion.

On the other side, [43] employed perturbation theory to

make the estimation. A non-complex formula to estimate

the interval eigenvalue is proposed by Rohn's in [44] for

a class of symmetric interval matrices. This latter formula

is extended by Hlaď{k's to generalized interval matrices

in [41]. Finally, another method to compute the interval

eigenvalue of a generalized interval matrix called 'vertex

approach' can be found in [45,46]. The approach is based

on the computation of the characteristic equations of all

edges of the interval matrix, then a convex hull function is

used to estimate the outer bound of the interval eigenvalue.

This method is relatively time consuming. However it pro-

vides valuable results, especially in the case of interval

matrices with large numbers where the previous methods

lead to overestimation most of the time.

3 ROBUST CONTROL DESIGN
USING INTERVAL ANALYSIS

In this paper we will adopt the classical output feedback

structure to design a robust controller using interval anal-

ysis.

3.1 The new structure of output
feedback using interval analysis

Output-feedback control design is among the most studied

in control engineering [47]. Indeed it is much simpler to

implement relative to state-feedback because very few sen-

sors are required. The main objective of output-feedback is

to seek a feedback gain K such that the closed-loop system

satisfies some desired performance. Such problem comes

back to finding a feedback gain K that assigns the eigenval-

ues of the closed-loop system in a desired location within

the complex plane.

Let us consider a linear Multi Input Multi Output

(MIMO) system under uncertainties that are described by

the following interval state-space model:
{ .

x(t) = Ax(t) + Bu(t) ;
y(t) = Cx(t) +Du(t) (7)

where x ∈ Rn, u ∈ Rm, y ∈ Rp, A ∈ IRn×n, B ∈ IRn×m, C ∈

IRp×n, and D ∈ IRp×m. The interval matrices A, B, C, D

are unknown but bounded by elements lying in known

upper and lower bound; that is, A = [A, Ā], B = [B,B],

C = [C,C], and D = [D,D]. It is worth noting that the

real system is non-interval but is assumed to have behavior

inside the above interval model. For this matter, we main-

tain the signals x and y (and u) as non-intervals. [29] The

pair (A,B) is controllable for any system matrices A ∈ A

and B ∈ B if the controllability matrix

Y = [B,A ∗ B, .......An−1 ∗ B] (8)



FIGURE 1 Output-feedback with integral compensator [Colour

figure can be viewed at wileyonlinelibrary.com]

satisfies the condition

0 ∉ Det[Y ] (9)

Let us assume that the interval system with the pairA, B

is controllable. In this paper, we adopt the output-feedback

control design with integral compensator to synthesize a

robust controller for the interval model [48]. The integral

compensator is used here instead of the static feedforward

gain (DC-gain) to nullify the steady-state error in the pres-

ence of system uncertainties. The proposed control schema

is shown in Figure 1 and given by:

u(t) = Ky(y −D .u(t)) + �(t)K i (10)

whereKy andKi are the output-feedback gain and the inte-

gral gain respectively, �(t) is the integral of the tracking

error (i.e.,
.
� = r(t) − y(t), r(t) being the reference input)

The output-feedback controller with the integral com-

pensator may be presented by a (n + 1) dimensional aug-

mented state vector containing the state vector x(t) and the

integrator state �(t). The augmented system is given by:
( .

x(t)
.
�(t)

)
=

(
(A + BKyC) BK i

−(C +DKyC) −DK i

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
[Ac]

(
x(t)
�(t)

)

+

(
0
I

)

⏟⏟⏟
[Bc]

r(t)

y(t) =
(
(C +DKyC) DK i

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
[Cc]

(
x(t)
�(t)

)
(11)

3.2 Problem formulation

The problem of a robust and guaranteed output-feedback

control for the control schema in Figure 1 can be outlined

by:

1. - finding the matrix gain [K] (with [K] = [[Ky] [Ki]]) that

assigns the system eigenvalues to a desired region in

the complex plane under system uncertainties that are

described by interval model. The desired region in the

complex plane is defined relative to the desired perfor-

mance of the closed-loop system including the settling

time, overshoot, and so on.

TABLE 1 The proposed recursive SIVIA-based algorithm to

seek for a set of robust gains

SIVIA (in: [A], [B], [C], [D], [K]=

[intialbox], [kin] = ⊘, [Kout] =

⊘, [KUnfeasibl] = ⊘, [Kguaranteed] =

⊘, �,Y = ΩDesiredragionofEigenvalue)

Step 1 Iteration i

- Calculate Ac([A], [B], [C], [D], [K])

- Calculate eig([Ac]) using eigenvalue computation

step 2 -If eig([Ac]) ⊆ Y Then [kin] = [kin] ∪ [K]

Go to step 6

Step 3 -If eig([Ac]) ∩ Y = ⊘ Then [kUnf] =

[kUnf] ∪ [K]

Go to step 6

Step 4 -If [K] < � Then [kout] = [kout] ∪ [K]

Go to step 6

Step 5 - Else bisect [K] and stack the two resulting

boxes.

Step 6 -If the stack is not empty, then unstack into

[K](i + 1), increment i and go to Step 1.

-Else End.

2. - taking into account the input constraints of the sys-

tem in such a way that the control input will not exceed

predefined amplitudes.

In this paper we propose to use the interval analysis to

handle these two problems. For this matter, we propose to

reformulate the problem as follows.

Problem: find the set of gains [K] of the closed-loop

system such that the following inclusions are satisfied:
{

u∗([A], [B], [C], [D], [K]) ⊆ [Us,Us]

eig [Ac([A], [B], [C], [D], [K])]⊆ ΩDesired region
(12)

where [Ac] is the augmented closed-loop state matrix of the

system (11), ΩDesired region is the desired subregion of eigen-

values, u* is the control input of the interval system. which

will be detailed in the following subsection, and [Us,Us]

are the lower and upper bounds of the control input mag-

nitude that refers to the physical limitation of the actuator.

They are constant and correspond to the maximal and

minimal voltages that we can apply to the actuator.

3.3 Finding the set of gains that satisfy
the pole assignment specifications

In this subsection, the process of searching for a set of

robust gains is transformed into a set inversion problem.

Solving this latter problem permits finding the gains that

assign the interval eigenvalue in the desired region.

A set inversion operation consists of searching the recip-

rocal image called subpaving of a compact set. In our case,

in order to solve this set inversion problem, we consider

the Set Inversion Via Interval analysis (SIVIA) algorithm

introduced in [38], which we propose to modify. We call the



FIGURE 2 Recursive SIVIA-based algorithm with interval eigenvalues computation [Colour figure can be viewed at

wileyonlinelibrary.com]

suggested modified algorithm the recursive SIVIA-based

algorithm. In this recursive SIVIA-based algorithm, the

aim is to approximate with subpaving the set solutions [K]

that satisfy the inclusions (12).

The recursive SIVIA-based algorithm is outlined in

Table 1 and depicted in Figure 2. To use this algorithm,

we need to define an initial box [K0] that may contain

the solutions. Moreover, we should have as well the inter-

val state-space matrices, the desired region of eigenvalues

(specifications), and the accuracy for the paving �. Since

the closed-loop matrix of our system is non-symmetrical,

we are obliged to use the Hlaď{k formula [41] or the vertex

approach [46] in the proposed SIVIA-based algorithm to

calculate the interval eigenvalue. The proposed algorithm

provides a complete information about the ranges of the

feedback gains including: inner (solution), outer (unde-

fined), and unfeasible (no solution) subpavings where all

the sets' subpavings were initially empty. The inner solu-

tion is the set of gains that ensure all the eigenvalues of

the interval system are inside the desired region, whereas,

the outer solution is the set of gains that guarantee that

the inclusion condition is not satisfied. Finally, the unfea-

sible solution is the border set where we do not have any

conclusion.

3.4 Finding the set of gains that satisfy
the control input constraints

All physical systems should generally operate within

bounds on the control input in order to avoid overpowering

of the actuators because otherwise they may be damaged.

It is therefore essential to consider these limitations, called

input constraints, during the controller design. In this sub-

section we will convert the problem of input constrains

into the inclusion problem by using the interval analysis

technique [38]. Foremost, to streamline the notation let us

start by redefining the closed-loop system (11) as descried

by equations (3.4):
( .

x(t)
.
�(t)

)
= (A∗ + B∗K∗C∗)

(
x(t)
�(t)

)
+

(
0n×m

Im×m

)
r(t)

.
X(t) = Ac X(t) + Bc r(t)

y(t) = (C∗ +D∗K∗C∗)

(
x(t)
�(t)

)
(13)

Cc

such that

A∗ =

(
A 0n×p

−C 0p×p

)
; B∗ =

(
B

−D

)
; C∗ =

(
C 0p×m

0m×n Im×m

)
;

K∗ =
(
ky ki

)
; D∗ =

(
D

0p×m

)
;

The control input (10) can be reformulated as follows:

(I + kyD)u(t) = kyCc

(
x(t)
�(t)

)
+ �(t)K i ⇔

u(t) = (I + K∗D∗)−1K∗
(
Ctc Bc

)t
X(t) (14)

Since the closed-loop system will be asymptotically sta-

ble for acceptable design, the maximum of the control

input is observed when the derivative of the control input

is equal to zero (i.e.,
.
u = 0). Thus,

.
u = (I + K∗D∗)−1K∗

(
Ctc Bc

)t .
X(t) = 0 ⇔

.
u = (I + K∗D∗)−1K∗

(
Ctc Bc

)t
(AcX(t)

∗ + Bcr(t)) = 0 (15)



For(I + K∗D∗)−1K∗
(
Ctc Bc

)t
= � and Ac are

non-singular matrices (i.e., 0 ∉ � ,Ac), we have:

X∗(t) = −A−1
c Bcr(t) (16)

The condition on non-singularity ofAc can be easily sat-

isfied using an eigenvalues assignment technique in which

all the eigenvalues of the interval closed-loop matrixAc can

be assigned to be strictly negative.

In certain applications of piezoelectric actuators, such

as in micro/nano manipulation, the input force reference

is always a step or a sequence of steps signal. Hence we

assume r as constant reference or constant within an inter-

val described by r ⊂ [r, r]. Actually piezoelectric actu-

ators have a badly damped step response. Therefore in

closed-loop, the input control is also oscillating in order

to compensate for the system's oscillation. The idea here

is to find the interval that embraces all possible values of

the maximum input control when the reference trajectory

takes a value inside the range [r, r]. The interval (the lower

and upper bounds) of the input control can be calculated

easily using the following interval computation.

With the help of equations (14) and (16) we derive the

formula of the control input u* for the interval system (17):

u∗ = (I + K∗D∗)−1K∗
(
Ct

c Bc

)t
(−A−1

c Bcr) (17)

The interval formula of the input constraint (17) is used

to convert the problem of inputs constraint to inclusion

problem (18) that can be solved easily using the inversion

algorithms as explained in the following subsection.

u∗([A], [B], [C], [D], [K]) ≡ [u, ū] ⊆ [U, Ū] (18)

3.5 Summary of the search of a robust
and guaranteed gains

In this subsection, the overall framework to find the set of

gains that are robust and, at the same time that guaran-

tee the input constraint is provided. The overall framework

is depicted in Figure 3. The search for a set of robust

and guaranteed gains is done in cascade as shown in the

diagram of Figure 3. In practice, this can be done by

adding the inclusion equation of the input constraint (18)

in the second line of "step 2" of the recursive SIVIA-based

algorithm (Table 1).

Furthermore, if one is only interested in finding the set of

robust gains without input constraints, the searching pro-

cess is stopped after the recursive SIVIA-based algorithm

as shown in the diagram of Figure 3.

Remark. To search for the set of guaranteed gains

that satisfy the input constraints, we should first ver-

ify the poles assignment specification to be sure that

the closed-loop matrix Ac is non-singular as needed in

(17). Therefore, the interval control input inclusion (18)

is checked only inside the solution boxes [Kin] that sat-

FIGURE 3 Overall framework to obtain the set of robust and

guaranteed gains [Colour figure can be viewed at

wileyonlinelibrary.com]

isfy the eigenvalues inclusion (12) where the closed-loop

eigenvalues are certainly inside the desired region.

4 APPLICATION TO
PIEZOELECTRIC TUBE ACTUATORS

In this paper we apply the proposed modeling and con-

trol technique to a piezoelectric tube actuator. An appli-

cation of this actuator is the manipulation of miniatur-

ized objects, see Figure 4. Such manipulation application

(micromanipulation) requires micrometric precision and

millisecond of response time. Unfortunately, the manip-

ulator (the actuator) is often in an environment where

the temperature could vary due to the surrounding exper-

imental setup (camera lamp, devices,..) or to other natural

sources [1]. The aim of this section is to use the proposed

recursive SIVIA-based algorithm to find the robust and

guaranteed controller gains to further control the manip-

ulation force of the piezoelectric tube under these thermal

variation conditions.



FIGURE 4 The use of piezoelectric tube actuator to manipulate a

micro-object [Colour figure can be viewed at

wileyonlinelibrary.com]

4.1 Experimental setup

The experimental setup is represented in Figure 5. It is

composed of a piezoelectric tube actuator (PT230.94), an

optical displacement sensors (LC2420 from Keyence com-

pany), a voltage amplifier (up to ±200V), a force sensor

from femtotools-company (FT-S10000, max-10mN) and a

computer with Matlab-Simulink for the implementation

of the controller and for generating/acquiring the signals.

A dSPACE-1103 acquisition board is used as an interface

between the computer and the rest of the setup. The piezo-

electric tube is made of lead-zirconate-titanate (PZT) mate-

rial coated by one inner electrode (in silver) that serves

as ground and four external electrodes (in copper-nickel

alloy) for the electrical potentials. In addition, in order to

stimulate an external variation of the ambient tempera-

ture, we use a controllable heating resistance wire around

the piezoelectric actuator as shown in Figure 5 and we

use a precision reference thermometer (Eurolec RT161)

to measure the temperature. In this experimental part,

instead of manipulating micro-objects, we manipulate the

cantilever of the force sensor as shown in Figure 5.

In order to inflect the tube along the X-axis or Y-axis,

we apply a potential +U on one electrode and the oppo-

site potential −U to the counterpart electrode as depicted

in Figure 6 and . Furthermore, if we apply potentials with

the same sign on the four electrodes we will cause a relative

displacement on the Z-axis. In the terminal of the piezo-

FIGURE 5 Presentation of the experimental setup [Colour figure

can be viewed at wileyonlinelibrary.com]

FIGURE 6 Structure and operation of the piezoelectric tube

actuator [Colour figure can be viewed at wileyonlinelibrary.com]

electric tube, we have placed a small cube with perpendic-

ular and flat sides to serve as reflector for the displacement

sensor.

4.2 Modeling of piezoelectric tube
actuator

During the experimental process we focus on the control of

the manipulation force in one axis only (one degree of free-

dom: 1-DoF). We will note Ux the related applied voltage,

and �x and Fx the resulting deflection (displacement) and

the applied force to the manipulated micro-object respec-

tively in x direction. The relation between Ux, �x and Fx
can be expressed by the linear equation in (19), whereas

the sensitivity of the actuator to the temperature variation

will be modeled by parametric uncertainties bounded by

intervals [1].

�x = (dpUx − sp.Fx).� (s) (19)



where sp and dp are the compliance and the piezoelec-

tric constant respectively of the piezoelectric actuator.� (s)

represents the dynamics (with � (0) = 1 ). A second

order model has been chosen for the dynamic � (s) as it

includes the first resonance of the actuator and because of

its simplicity [1].

The dynamics of the manipulated micro-object is rep-

resented by a second order model represented by a

spring-mass-damper system with an effective mass me, a

viscous damping coefficient ce and a stiffness ke as shown

in Figure 6 and given by (20):

�x = s0.Fx.Ψ(s) (20)

where s0 is the micro-object compliance and 	 (s) is its

dynamics part.

Finally, after replacing the deflection in (19) with that of

(20), we obtain the following linear transfer between the

voltage and the force:

Gxx =
Fx

Ux
=

sp.� (s)

s0.Ψ(s) + sp.� (s)

The previous model is a point model, that is, the param-

eters are point. However, as we said before, these param-

eters strongly depend on the temperature evolution. The

model is therefore uncertain. We suggest here to transform

this model into an uncertain model where the uncertain

parameters are bounded by intervals. To do that, we apply

a step voltage Ux of amplitude 10 V and capture its corre-

sponding Fx under several values of the ambient temper-

ature varying between 22oC to 29oC with an increment of

1oC, as shown in Figure 7. It is worthy noting that the ambi-

ent temperature variation has an impact on the actuator as

well as on the force sensor. For each step response taken

at a given temperature Ti we use System Identification

MatlabToolbox with Box-Jenkins method [49] to identify

Gxx(Ti). Note that for each temperature, the actuator is

in contact with the object (the force sensor in this case).

Finally, to derive the interval model [Gxx] of the piezo-

electric actuator under temperature variation, we replace

FIGURE 7 Open-loop step response under several ambient

temperatures [Colour figure can be viewed at

wileyonlinelibrary.com]

each parameter of Gxx by intervals as shown in (21). These

intervals embrace all obtained values of each coefficient of

Gxx(Ti) under different temperature conditions:

[Gxx] (s) =

[
b0

]
s2 +

[
b1

]
s +

[
b2

]

s2 + [a1] s + [a2]
(21)

where

[b0] = [346.5632, 423.5774] ; [a1] = [267.3284, 326.7348];

[b1] = [6.4855, 7.9268] ∗ 1e5; [a2] = [1.2419, 1.5180] ∗ 1e7;

[b2] = [2.7233, 3.3286] ∗ 1e9;

In fact, there is a compromise between the widths of

the intervals parameters and the chance to find the ade-

quate feedback controller. For example, if we augment the

range of the temperature variation, larger parameter inter-

vals are obtained, which makes the search for adequate

robust gains impossible.

It is worth noting that the interval model can also

be obtained under only one temperature condition, for

example 25oC. Then, the identified parameters under this

single temperature are considered as the center of the

further interval parameters while the radius is imposed

as 10%, see for instance [28,50]. This approach is sim-

pler to implement than the above approach because the

experimental characterization is carried out with one tem-

perature only. However it does not guarantee that the real

parameters with the various temperature will be bounded

by the 10% that belong in this intervals radius.

Finally, from our interval transfer function model in

(21), we derive the following state-space model in control

canonical form:
{ .

x(t) = Ax(t) + Bu(t)
y(t) = Cx(t) +Du(t) (22)

A =

[
0 1

−[a2] −[a1]

]
; B =

[
0
1

]
; D = [b0]

C =
[
[b2] − [a2][b0] [b1] − [a1][b0]

]

4.3 Controller calculation
and experimental tests

The use of the interval model of the piezoelectric tube

allows us to find a robust and guaranteed output-feedback

controller that satisfies the desired performance under

temperature variation. The following desired perfor-

mances are adopted: negligible overshoot (1%) and with a

settling time Ts ≤ 20ms. We found � = �.!n = 149.8

and � = sin−1(�) = 55, 7o, where � and !n are the damp-

ing ratio and natural pulsation respectively. Indeed, in

micromanipulation and assembly applications, overshoots

and oscillations are undesirable because they may cause

micro/nano objects damage as well as instability in the

tasks.



To calculate the set solutions [K] (with [K] = [[Ky] [Ki]])

we use the proposed recursive SIVIA-based algorithm

described in Table 1. Foremost we choose an initial box

[Ko] = [Ky]×[Ki] = [−10×10−1, 10×10−1]×[−6×10−3, 6×

10−3] and an accuracy of paving � = 10−4. The choice of

the initial box Ko is by trial and error. If there is no solu-

tion within a given initial box, a different box is tested.

Generally the initial box has not to be too small in order

to be sure we have a large enough span. Meanwhile, a too

large initial box results in time-consuming problem solv-

ing. Regarding the input constraint Ux, it is supposed to be

between [−20V, 20V], and the range of the input reference

is r ⊂ [−10mN, 10mN].

After applying the proposed recursive SIVIA-based

algorithm described, we obtain the subpaving as depicted

in Figure 8. The red boxes correspond to the inner sub-

pavings [Kin], that is, the set solutions [Ky] and [Ki] that

satisfy the eigenvalue inclusion (12). The white boxes cor-

respond to the subpavings [KUnfeasible] where the inclusion

condition is guaranteed to be not satisfied. The yellow

boxes refer to [Kout] where no decision on the inclusion is

taken. The boxes in green correspond to the guaranteed set

solution [Kguaranteed] in which both the inclusions condi-

tion of the eigenvalue (12) and the input constraints (18)

are verified.

Actually any choice inside the solutions [Kguaranteed] will

ensure certainly the specified performances under temper-

ature variation and input constraints. It could be possible

to choose the optimal gains that ensure the best behaviors

of the closed-loop among these solutions but this is out of

the scope of this paper and is a future work.

We test now the obtained solutions in simulation and

in experiments. For that we select arbitrary values of con-

troller parameters from the set solutions in Figure 8: Ky =

−0.1 × 10−3 and Ki = 0.3. The experimental and simula-

tion step response for the closed-loop system are depicted

in Figures 9 and 10.

FIGURE 8 Resulting subpaving of [Ky]and [Ki] [Colour figure

can be viewed at wileyonlinelibrary.com]

FIGURE 9 Step response of piezoelectric tube for the closed-loop

system (Simulation using Matlab) [Colour figure can be viewed at

wileyonlinelibrary.com]

FIGURE 10 Step response of piezoelectric tube for the

closed-loop system (Experimental test) [Colour figure can be

viewed at wileyonlinelibrary.com]

To perform the simulation, we take three different val-

ues of the system matrices (A,B,C,D) inside the interval

system ([A], [B], [C], [D]): the sup(), inf(), and mid() refer

to the superior, inferior, and middle values of these inter-

val matrices. Then the chosen controller above is applied

to these three systems. Figure 9 displays the step response

of the closed-loop system. It is clearly shown that the con-

troller always ensures the desired performances (negligible

overshoot (1%) and settling time less then 20ms) whenever

the values of the matrices system (A,B,C,D) lie inside the

interval system ([A], [B], [C], [D]).

Figure 10 represents the experimental results of the

closed loop response acquired in various temperature con-

ditions ( 22oC to 28oC). The figure also shows that the spec-

ified performances (negligible overshoot (1%) and settling

time less then 20ms) are also satisfied by the closed-loop

for these various temperatures.

In order to verify the locations of the closed-loop eigen-

values, we identify the closed-loop system of the experi-

mental step responses given in Figure 10 ( 22oC to 28oC)

using the Box-Jenkins method. We get second order mod-

els with eigenvalues of negligible imaginary part and a

real part within the interval of [−3500,−170]. It is evident

that these obtained eigenvalues of the closed-loop system

are included inside the desired region (Real(eig([Ac])) <

−�). Indeed, we have: [−3500,−170] ⊂] − ∞,−�], with

� = 120.



FIGURE 11 Pursuit responses to series of steps for the closed-loop

system [Colour figure can be viewed at wileyonlinelibrary.com]

We now test the tracking performance of the closed-loop

system to follow a series of steps of input reference. The

result is depicted in Figure 11 where it is clearly shown

that the piezoelectric tube actuator tracks successfully the

desired performances.

The simulation and the experimental results presented

in Figures 9, 10 and 11 show that the proposed controller

provided very good performances compared with works

[23,28]. Furthermore, the controllers presented in [23,28]

were only tested under a fixed ambient temperature. How-

ever, in this paper the proposed controller was tested under

temperature variation and input constraints.

5 CONCLUSIONS

In this paper, a simple algorithm to synthesize the robust

and guaranteed controller to control the manipulation

force of a piezoelectric tube actuator under tempera-

ture variation and input constraint is proposed using

output-feedback schema with integral compensator. The

algorithm suggested to solve the problem is called a recur-

sive SIVIA-based algorithm and is based on the combi-

nation of the Set Inversion Via Interval Analysis (SIVIA)

approach, intervals eigenvalues computation, and interval

input inclusion techniques. Simulation tests and experi-

mental applications on a piezoelectric tube actuator were

carried out and demonstrated the efficiency of the pro-

posed approach.
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