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Coherent Particle Structures in High-Prandtl-Number Liquid Bridges

llya Barmak’

Abstract

- Francesco Romano? - Parvathy Kunchi Kannan? . Hendrik C. Kuhimann'

Clustering of small rigid spherical particles into particle accumulation structures (PAS) is studied numerically for a high-
Prandtl-number (Pr = 68) thermocapillary liquid bridge. The one-way-coupling approach is used for calculation of the
particle motion, modeling PAS as an attractor for a single particle. The attractor is created by dissipative forces acting on the
particle near the boundary due to the finite size of the particle. These forces can dramatically deflect the particle trajectory
from a fluid pathline and transfer it to certain tubular flow structures, called Kolmogorov—Arnold—Moser (KAM) tori, in
which the particle is focused and from which it might not escape anymore. The transfer of particles can take place if a KAM
torus, which is a property of the flow without particles, enters the narrow boundary layer on the flow boundaries in which
the particle experiences extra forces. Since the PAS obtained in this system depends mainly on the finite particle size, it can

be classified as a finite-size coherent structure (FSCS).

Keywords Particle accumulation - Finite-size coherent structure - Thermocapillary liquid bridge - High Prandtl number

Introduction

Small rigid neutrally-buoyant particles are frequently
employed in experimental fluid mechanics to visualize the
flow or to measure its velocity, assuming they move like the
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fluid. Such particles are called tracers. However, generally
particle motion differs from that of the surrounding fluid
and particles may cluster in certain regions of the flow.
This has been extensively studied for particles transported
in turbulent flows (see e.g. Peacock and Dabiri 2010; Haller
2015). In this study, on the other hand, we investigate
small particles dispersed in a thermocapillary liquid bridge,
in which the flow is laminar. In such system particles
can cluster rapidly into particle accumulation structures
(PAS) of curious shapes, a phenomenon discovered by
Schwabe et al. (1996). Over the last two decades, PAS in
thermocapillary flows has received increasing attention both
experimentally (Tanaka et al. 2006; Schwabe et al. 2007;
Gotoda et al. 2016; Toyama et al. 2017; Gotoda et al. 2019)
and numerically (Hofmann and Kuhlmann 2011; Mukin and
Kuhlmann 2013; Muldoon and Kuhlmann 2013; Melnikov
et al. 2013; Romano and Kuhlmann 2018; Barmak et al.
2019). It is now clear (Romano and Kuhlmann 2019) that
the rapidly formed PAS observed in experiments depends
mainly on the small but finite size of the particle, which
cannot be neglected during its motion near the free surface,
and on the particular structure of the flow.

PAS in a liquid bridge can only be observed if the
flow arises as a three-dimensional azimuthally traveling
hydrothermal wave. This wave arises due to an instability
of the steady axisymmetric flow (Preisser et al. 1983;
Wanschura et al. 1995; Levenstam et al. 2001). Since



all azimuthal harmonics of a traveling hydrothermal wave
propagate with the same rotation rate (Leypoldt et al.
2000) this flow has the distinguished property to be
steady in a frame of reference rotating with the azimuthal
phase velocity of the wave. This property has important
implications. Bajer (1994) showed that the trajectories of
fluid elements in three-dimensional steady incompressible
flows are equivalent, up to singular points, to the motion
in phase space of a Hamiltonian system with one and
a half degrees of freedom. Therefore, according to the
theory of Hamiltonian systems, the streamlines in the
stationary hydrothermal wave in the rotating frame of
reference must be either regular or chaotic (Ottino 1989).
Accordingly, a regular streamline winds on a torus,
defining a closed streamtube, which corresponds to a so-
called Kolmogorov—Arnold—Moser torus (KAM torus) of
the theory of Hamiltonian systems (Schuster 2005). Like
KAM tori, the closed streamtubes arise as densely nested
sets. Typically, the KAM tori are surrounded by chaotic
streamlines. A chaotic streamline will come arbitrarily close
to any point, except for points inside the KAM tori. The
part of the total volume occupied by the liquid which is
filled with chaotic streamlines is often called chaotic sea.
This chaotic sea of streamlines is typically found along the
boundaries of the flow system, here of the liquid bridge. The
union of all stationary streamlines (trajectories of passive
fluid elements) defines a certain geometry. This geometry is
also important for chaotic mixing (Aref 2002) and has been
called kinematic template by Aref (1990).

Given the kinematic template made by the KAM
structure of the streamlines in the rotating frame of
reference, Hofmann and Kuhlmann (2011) have first
explained PAS by assuming particles behave like tracers
(fluid elements) in the bulk of the liquid bridge, but are
transferred from chaotic to regular streamlines when they
move near the free surface. Repeated visits to the free
surface can then result in a focusing of particles to a periodic
orbit (limit cycle) to form PAS. This particle transfer, called
streamline hopping by Mukin and Kuhlmann (2013), is
accomplished by extra forces acting on a finite-size particle
near the boundary (Kuhlmann and Hofmann 2011; Romano
et al. 2019). The mechanism can only be operative if the
distance between a KAM torus, or a closed streamline,
and the free surface is of the same order of magnitude
as the spatial range over which the extra forces acting
on the particle are significant (Hofmann and Kuhlmann
2011; Mukin and Kuhlmann 2013; Romano and Kuhlmann
2018). This spatial range is of the order of magnitude of
the particle size. The relation between the particle size
and the location of the closed streamline (KAM torus)
determines the existence and the character of the PAS.
Accordingly, PAS is an attraction of an individual finite-size
particle to an attractor and not a collective (multi-particle)

effect, at least during the initial phase of PAS formation.
Therefore, the dynamics of PAS formation can be studied
numerically by means of one-way-coupled simulations, in
which a sufficient number of non-interacting particles are
initialized at random positions in a given flow. The evolution
of a particle ensemble is then monitored as a function of
time under a suitable bulk transport model, typically either
advection or the Maxey—Riley equation (Maxey and Riley
1983). PAS has formed if eventually many or all of the
particles have clustered on a particular orbit which arrives
very close to the free surface. In order to account for a
finite-size effect near the flow boundaries the particle—
surface interaction (PSI) model proposed by Hofmann
and Kuhlmann (2011) and improved by Romano and
Kuhlmann (2016, 2017) can be implemented. Adopting this
model, which assumes particle-boundary interaction as an
inelastic collision in the direction normal to boundary, PAS
observed in ground experiments for Pr = 28 liquid bridges
was successfully reproduced in numerical simulations by
Romano and Kuhlmann (2018, 2017). PAS-related studies
in low- and moderate-Prandtl-number (Pr < 28) liquid
bridges have been recently reviewed in Romand and
Kuhlmann (2019). However, ground experimental data and
numerical results are lacking for Pr = 68, corresponding
to 5cSt silicone oil to be used as a working fluid in the
joint Japan-European Research Experiment on Marangoni
Instability (JEREMI) planned to fly on the International
Space Station (ISS). A few results previously obtained
on the ISS in the framework of Marangoni Experiment
in Space (MEIS) demonstrated the possibility of PAS for
Pr = 68 under weightlessness (Matsumoto et al. 2014). The
feasibility of PAS under microgravity conditions was also
demonstrated by Schwabe et al. (2006) for Pr = 15 (n-
decane). In the present study we aim to numerically predict
PAS that can be expected for Pr = 68 in future space
experiments.

Problem Formulation

We consider an incompressible Newtonian liquid (den-
sity ¢y, kinematic viscosity v, thermal diffusivity «) held
between two coaxial cylindrical rods of equal radius R,
forming a liquid bridge (Fig. 1). The support rods are kept
at a mutual distance d and have different constant tempera-
tures Teold = Tp and Thor = Ty + AT, so that AT is the tem-
perature difference. The fluid motion is driven by thermo-
capillary stresses caused by the spatial variation of the sur-
face tension o [T (x, t)] along the free surface (thermocap-
illary effect). The governing Navier—Stokes, continuity and
energy equations (for details, see Hofmann and Kuhlmann
2011) are solved subject to no-slip/no-penetration/constant-
temperature boundary conditions on the rods and imposing
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Fig. 1 Sketch of a liquid bridge with cylindrical shape. The hot and
cold solid supports are indicated by color

thermocapillary stresses and adiabatic conditions on the free
surface, while neglecting viscous stresses and heat fluxes in
the ambient atmosphere. The equations are rendered dimen-
sionless by using the thermal-diffusive scales: d - for length,
d?/« - for time, k /d - for velocity, and pr2/d2 - for pres-
sure. 6 = (T — Ty)/AT is the reduced temperature in
dimensionless form. The fluid motion is then determined by
the thermocapillary Reynolds number Re = yATd/py V2,
where y = —00/0T |r—7, > 0 is the negative surface-
tension coefficient, I' = d/R the aspect ratio of the liquid
bridge, and Pr = v/« the Prandtl number. The latter is fixed
to Pr = 68, corresponding to 5 ¢St silicone oil (Shin-Etsu
2004). The critical Reynolds number defined by a linear sta-
bility analysis of the problem is Re, = 917 (Stojanovic
and Kuhlmann 2020). We find the bifurcation to be super-
critical and the flow arises as a three-dimensional traveling
hydrothermal wave (HTW). Since all spectral components
of a fully-developed HTW have the same azimuthal phase
velocity = Qe;, the fully-developed flow field is steady
in the frame of reference rotating with the same angular
velocity. Thus the flow field in the rotating frame U(x) =
u(x, fp) — rS2e, is steady and a single accurate snapshot of
u(x, t) at t = fy together with € is sufficient to characterize
the flow.

To explore the Lagrangian topology of the steady flow
in the rotating frame, streamlines and trajectories of fluid
elements are obtained by integration of the advection
equation

DX—UX 1
= =UX), M

which is invariant under the transformation to a rotating
frame of reference with constant rotation rate. X(¢) denotes
the position of an infinitesimal fluid element at time ¢.
Equation (1) must be solved for the initial condition X(t =
0) = Xy specifying the initial position of the fluid element.

We consider particles density-matched to the liquid
which are so small that inertial effects are negligible.
When such particle moves far from any boundary of the
flow domain it behaves like a fluid element and moves
on a streamline of the flow according to (1). However,
the motion of the particle is hindered by its size near the
flow boundaries. Therefore, the modified particle—surface
interaction (PSI) model of Hofmann and Kuhlmann (2011)
and Romano and Kuhlmann (2018) is employed. Within this
model the particle centroid can approach the boundary up to
some distance A = a + §, comprising of the dimensionless
particle radius @ = a,/d and a dimensionless lubrication
gap width §. When the particle centroid approaches the
boundary from the bulk, the velocity component normal
to the boundary is annihilated at the distance A from the
boundary, and the particle slides parallel to the boundary
until it reaches a point where the normal velocity turns
inward. At this point the particle is released to the bulk, and
it continues to be perfectly advected by the flow.

The existence of a lubrication gap on a smooth
indeformable free surface (it is nearly indeformable due to
the large reference surface tension o (Tp) of 5cSt silicone
oil) that a perfectly wetted particle cannot penetrate is
consistent with experimental observations (Romano et al.
2017). The lubrication gap width § to be used in this model
depends on the flow parameters and on the particle size and
density. It has been determined by Romano and Kuhlmann
(2017) for a similar flow driven by surface stresses by
matching the periodic orbits obtained by the PSI model
to the periodic orbit of a particle which was computed
by two-dimensional simulations of the Navier—Stokes and
Newton’s equations in which all scales were fully-resolved,
including the flow structure in the lubrication layer. This
approach was verified in Romano et al. (2017) by successful
comparison with experimental results for the limit cycle to
which a single particle in the steady axisymmetric flow in a
liquid bridge is attracted. Moreover, using the modified PSI
model with the interaction parameter A determined by the
functional dependence proposed in Romano and Kuhlmann
(2017, 2018) were able to satisfactorily reproduce PAS
observed experimentally for Pr = 28. However, for Pr = 68
there is a lack of experimental data and no fully-resolved
simulations have yet been carried out. Therefore, in order
to identify possible PAS we vary the value of A in the
range [0.001,0.05] roughly corresponding to the particle
radii of interest in experiments, providing thata < A < 2a
(Romano and Kuhlmann 2017, 2018).



Numerical Methods

For the numerical simulations of the fluid flow a
collocated finite-volume solver developed in the open-
source software package OpenFOAM is employed. The
numerical solver is based on the standard pressure-based
solver pisoFoam for the Navier—Stokes and energy
equations in the Boussinesq approximation, extended to
include the thermocapillary stresses along the free surface.
It implements the PISO (Pressure-Implicit with Splitting of
Operators) algorithm with two external correction steps for
the pressure to accomplish the pressure—velocity coupling,
while treating the non-orthogonality of the computational
grid by two additional internal corrections. Second-order
schemes are utilized for both the spatial discretization
(LeastSquares for gradient terms, Gauss QUICK for
divergence terms, and Gauss linear corrected for
Laplacian terms) and for the time integration (implicit
backward scheme). The resulting linear algebraic equations
for the pressure-projection step are solved using the
preconditioned conjugate gradient (PCG) method, whereas
the preconditioned biconjugate gradient (PBICG) method
is employed for the momentum and energy equations. The
simulation proceeds to the next time step once the relative
residuals of less than 10~8 are reached for all dependent
variables, i.e. pressure, velocity, and temperature.

In the recent study of Romano and Kuhlmann (2018)
for Pr = 28, a good agreement between the numerical
results obtained with this solver and the ground experiment
data of Toyama et al. (2017) was demonstrated. Additional
details of the numerical implementation of the solver and
its comprehensive validation can be found in Kuhlmann
and Lemée (2016). All simulations are carried out with a
mesh consisting of 21,504,000 cells. The mesh is refined
near the free surface and the solid walls with the smallest
cell sizes in the radial and axial directions being ~ 0.0011
and =~ 0.0006, respectively. The simulations advance with a
small constant time step A7 = 1078, ensuring the maximal
Courant number based on the maximal local velocity is less
than 0.1, until a fully-developed traveling HTW arises. To
determine the time after which the HTW can be considered
developed, the velocity and temperature are monitored as
functions of time at sixteen points in the liquid bridge. The
peak-to-peak frequency F of these signals determines the
rotation rate 2 = (2w /m) F of the wave, where m is the
fundamental wave number. The HTW is considered fully
developed, once the velocity changes between successive
time steps have become less than 107> Re Pr At in the frame
of reference rotating with the angular velocity €2. In this
case the wave has become steady in the rotating frame of
reference, the frequency F has become stationary, and it can
be identified as the frequency of the fully-developed HTW.

Once the flow field is obtained, streamlines are computed
in the rotating frame by numerically integrating (1) using
the Runge—Kutta Dormand—Prince method (Dormand and
Prince 1980). The absolute and relative numerical errors
estimated as a difference between the fourth- and fifth-order
accurate solutions are kept less than 10~° by an adaptive
time-stepping. An additional approximation is introduced
in the computation of the streamlines by the need to
interpolate the discrete velocity field U to arbitrary points
in the volume. This is accomplished by an interpolation
with the same order of accuracy as the finite-volume solver
implemented in OpenFOAM.

Particle trajectories are computed by solving (1) in the
bulk with a classical 4th-order Runge—Kutta method. It
was checked that the numerical dissipation has a negligible
effect on the results when using a constant time step Ar =
107% and integrating for no longer than r = 5 in thermal-
diffusive units of time. Moreover, to reduce the computa-
tional cost of the simulations, the steady-state velocity field
U is interpolated on a new structured computational grid in
cylindrical coordinates, which consists of 28,848,000 grid
points with (N, Ny, N;) = (200, 240, 601). The viscous
and thermal boundary layers are taken care of by refining
the mesh near the support rods and the free-surface. Since
the structured grid in cylindrical coordinates exactly fits the
cylindrical shape of the liquid bridge, the PSI model for the
particle motion near the free surface can be implemented
without further approximation.

Results and Discussion
Flow Topology for Pr = 68

A fully-developed traveling HTW has been obtained for
I' = 1 and Re = 1500. For these flow parameters, the HTW
has the fundamental wave number m = 1 and an angular
velocity of @ = 835.5 in the units of «/d?. Owing to the
importance of regular streamlines for PAS (Hofmann and
Kuhlmann 2011; Mukin and Kuhlmann 2013; Muldoon and
Kuhlmann 2013) the streamline topology of the steady flow
U(x) is analyzed with focus on streamlines inside KAM
tori.

Regular and chaotic streamlines are, indeed, found to
coexist for the case considered. The high spatial resolution
of the simulation enables to identify various sets of KAM
tori. In order to uniquely define the location of the closed
streamlines and KAM tori their phase relative to the phase of
the HTW needs to be determined. To that end the azimuthal
angle ¢ is defined relative to the angle ¢@g_, at which the
reduced temperature 8 on the free-surface r = 1/T in
the mid-plane z = 0.5 reaches its global maximum 6,
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Fig. 2 Temperature distribution 6(r = 1/T, ¢,z = 0.5) on the free
surface in the mid-plane for I' = 1 and Re = 1500. Here ¢ is the phase
angle in the rotating frame up to an arbitrary phase

in the rotating frame. This condition translates to Opmax =
maxg; 0(r = 1/T,¢,z = 05) = 60(r = 1/T, ¢ =
0,z = 0.5), where ¢ is the original azimuthal coordinate
which contains an arbitrary shift. This is illustrated in Fig. 2
showing the free-surface temperature along the circle at
mid-plane.

The flow topology is analyzed using a Poincaré section
on the plane defined by ¢ = —0.35218 and —0.35218 +
7. It is shown in Fig. 3. The coordinate x’ denotes the
horizontal coordinate in the Poincaré plane with ¢ =
—0.35218 being equivalent to the positive half-axis. Two
major regular regions (KAM structures) shown in color can
be identified. They are organized around two central closed
streamlines (L1, and Li;) which wind once about the z

axis, as expected for a flow with m = 1. The subscript
i of L; (streamline) and 7; (KAM torus) stands for the
number of azimuthal periods of the structure, while an
additional letter distinguishes between structures with the
same azimuthal period. The system of KAM tori which
encompasses L1, is extremely squeezed and stretched near
the free surface as can be seen in the upper right (hot)
corner of Fig. 3. These KAM tori also partly wrap about
the system of KAM tori associated with L1, and L,. Axial
projections as well as three-dimensional views of the closed
streamlines L1, and L, are shown in Fig. 4 together with
the Poincaré section at ¢ = —0.35218 and —0.35218 + 7.
The closed streamline L, in Fig. 4a approaches the free
surface relatively closely, up to a distance Ars = 0.02794
(see Table 1). This is a hint at its potential importance for
PAS when suitably-sized particles are added to the liquid
(see Section “Particle Accumulation for Pr = 68”). There
also exist more complex closed streamlines. An example is
L~ which closes after seven revolutions about the z axis. It
is shown in Fig. 5. These examples illustrate the complexity
of the streamline structures for high-Prandtl number (Pr =
68) hydrothermal waves. The intricate streamline structure
also demonstrates the high numerical accuracy required, and
achieved, in order to resolve it. In particular, the residual
divergence error of the numerically calculated flow field
must be minimized to find closed streamlines which are
periodic, under integration, for a sufficiently long time.

In order to quantify the properties of the flow topology
for ' = 1 and Re = 1500, characteristic data of the
most prominent closed streamlines (L) and KAM tori (T)
are gathered in Table 1. Given are the closest approaches
of the closed streamline/KAM torus to the free surface

0.8

0.6

0.4

02 |-

Fig.3 Poincaré section of streamlines in the (x’, z)-plane (p = —0.35218, —0.35218 + 7) for Pr = 68, ' = 1, and Re = 1500. Gray (colored)
Poincaré points indicate chaotic (regular) streamlines. Some of the closed streamlines (L) are indicated by labels



Fig.4 Three-dimensional view (left) and axial projection (right) of the
closed streamlines L1 (a) and L, (b) for I' = 1 and Re = 1500. They
wind once and two times, respectively, about the z axis. The Poincaré
section shown in Fig. 3 is included (in small) in the three-dimensional
views (left). The location of the Poincaré plane is indicated by the
straight black line (right)

Ars and to the hot solid wall Aw. The cold wall is never
approached by the regular streamlines as close as the hot
wall. Therefore, these data are not provided. In addition,
the locations of the closed streamlines are specified by
providing one intersection point (rg, zo) (fixed point) in the
half-plane ¢ = —0.35218 for each streamline. In case of
a torus, we specify a point which defines the torus by the
streamline originating from this point. As can be seen from

Table 1 Characteristic data for some of the closed streamlines L and
KAM tori T near which PAS is found. The coordinates (rg, zg) in
the half-plane ¢ = —0.35218 define either a closed streamline or
a streamline on the largest reconstructible KAM torus. The angle
@omx = —1.0098 characterizes the location of the plane ¢ = 0
with respect to the original computed flow field in the rotating frame.
I' = 1,Re = 1500 and Pr = 68

Streamline/KAM AFs Aw (ro, z0)

Ly 0.02794 0.06237 (0.69335, 0.36228)
Ly 0.03701 0.07743 (0.71323, 0.72928)
L3, 0.05608 0.10804 (0.82372, 0.82374)
L3y 0.02507 0.05620 (0.85351, 0.55273)
Ls 0.04525 0.09136 (0.77317,0.78124)
L7 0.04103 0.08447 (0.74495, 0.66562)
Lo 0.02423 0.05463 (0.83682, 0.54726)
Ly 0.02581 0.05839 (0.71165, 0.37000)
T 0.02278 0.05267 (0.68729, 0.37264)

Fig. 5 Three-dimensional view (a) and axial projection (b) of the
closed streamline L7 for I' = 1 and Re = 1500 which winds seven
times about the z axis. Also shown in (a) is the Poincaré section. The
location of the Poincaré plane is indicated by the straight black line (b)

Table 1 the closed streamlines and KAM tori are located
much closer to the free surface than to the hot wall.

Particle Accumulation for Pr = 68

In this study PAS is investigated for small spherical particles
density matched to the fluid, ie. 0 = pp/pr = 1 and
particle Stokes number St = (2/9)a> < 0(107).
For such particles suspended in the liquid with the flow
velocity, inertia has a negligible effect on the PAS formation
as was demonstrated in Muldoon and Kuhlmann (2016)
and Romano and Kuhlmann (2018). This is confirmed for
the motion of density-matched particles considered. For
instance, the trajectory X(¢) of a particle with o = 1 and
St = 107> initialized at 1 = 0 velocity matched to the
flow at x = (0.26031, 0.77518, 0.84837) and advanced
using the simplified Maxey—Riley equation (Babiano et al.
2000) deviates, at t = 5 in thermal-diffusive units of time,
only by 0.001 from the trajectory of a particle advanced
by the advection (1) and initiated at the same point. In
fact, the PAS resulting from the two models are visually
indistinguishable. Therefore, retaining the inertia term in the
transport model is not required and the particle motion in
the bulk of the liquid bridge can be obtained integrating (1),
while near the free surface and the solid walls the particle—
surface interaction (PSI) model of Hofmann and Kuhlmann
(2011) is implemented. In this approach, the only parameter
characterizing the particles is the thickness A of the layer on
the boundaries (the free surface and the solid walls) which
is not accessible by the centroids of the particles. Since the
PAS obtained this way is formed solely due to the finite
particle size, it represents a finite-size coherent structure
(FSCS) (Romano and Kuhlmann 2019). To improve the
statistics, the motion of 4,000 non-interacting particles
is computed. These particles are initialized at + = 0
at random positions within the volume accessible to the
particle centroids.

As an example, the axial projection of the particle
distribution for I' = 1, Re = 1500 and A = 0.037



is shown in Fig. 6 as it evolves in time. Particles which
have undergone at least one collision with the free surface
or the solid walls (particle—surface interaction, PSI) are
colored red, while particles which have not interacted with
the boundaries up to the time displayed are colored blue.
The time 7, which has passed since the initialization of the
particle motion is given in units of the thermal diffusion
time d?/k. Also given is the time #, in units of the viscous
diffusion time d? /v (t, = Prt,). Note that the dots indicate
the particle centroid, but not the particle size.

The dynamics of clustering can be quantified by the box
counting measure K (#) (Muldoon and Kuhlmann 2013).
This measure is defined by dividing the liquid bridge into
Ncenis cells of equal volume. For a given total number
N of particles the accumulation measure K () can then
be defined as the normalized sum over all cells of the
deviations of the number of particles k; (¢) in each cell from
the average number of particles in each cell N=N / Neells

Neells
1 -
Kit)y= —— ki(ty —N| €10, 1]. 2
(1) 2(N—N)§|l() | )
For convenience we selected the number of cells equal to
the number of particles N, thus N = N/Neys = 1.
We use 10 x 40 x 10 cells in the radial, azimuthal, and
axial directions, respectively. The widths of the cells in

(@) t,=0

(tv=0)

(b) 1, = 0.05
|

(ty =3.4)

()t =0.1
1

(ty =6.8)

1

y0

Fig. 6 Time evolution of the distribution of 4000 non-interacting
particles for I' = 1, Re = 1500 and A = 0.037 shown in axial
projection. Red dot: particle has undergone at least one PSI, blue dot:
particle has not undergone any PSI. The dot indicates the particle
centroid, not the particle size. Time is indicated in the subcaptions

the azimuthal and axial directions are A¢ = 27/40 and
Az = (1 — 2A)/10, respectively. Following Muldoon and
Kuhlmann (2013), in order to satisfy the requirement of
equal cell volumes, the radial cell length is r;41 — r; =
[(1/T = A2/10+ 2] —ri =1, ., 10,

The accumulation measure K (¢) for the evolution of
the particle ensemble shown in Fig. 6 is presented in Fig.
7 (solid blue line). The dashed red line in Fig. 7 shows
the fraction Nyq/N of particles which, by time ¢, have
undergone at least one collision with the free surface. The
initial random distribution with K (0) = e~ ~ 0.37 rapidly
increases within 7, < 0.05 indicating clustering. This is
due to the fact that many particles from the region near
the axis of the liquid bridge are directly transported to the
free surface where they are removed from their streamline
by the first collision. Most particles become colored red in
this early phase of evolution. As a result of this process
the central region of the liquid bridge becomes rapidly
depleted of particles (Figs. 6b and 7). The further gradual
evolution of K(f) to K(t — o00) ~ 0.91 is caused by
the slower attraction of most of the particles to a periodic
orbit by multiple PSIs. For the interaction length A =
0.037 the periodic orbit practically coincides with the closed
streamline L, of the flow (compare Figs. 6d with fig. 4b).

Some particles (= 7% of all particles) never approach the
free surface sufficiently close to undergo a PSI, since they
have been initialized in those KAM tori which are always
located further from the free surface than A = 0.037.
These KAM tori may also house isolated regions of chaotic
streamlines.

Figure 8 shows examples of PAS for ' = 1 and
Re = 1500 in axial and azimuthal projections for selected
interaction parameters A at time #, = 5. This does not mean
that 7, = 5 is required for PAS to form. In fact, particle
accumulation occurs on a shorter time scale for many cases.

— K(t) |
- red(tK)/N N

0 . I I . \ . I
0 0.1 0.2 0.3 0.4 0.5
I

Fig. 7 Time evolution of the accumulation measure K () (solid blue
line) and of the fraction of particles Ny.q/N which have undergone a
PSI at least once (dashed red line). The parameters are the same as in
Fig. 6
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Fig. 8 Examples of PAS in a thermocapillary liquid bridge for I' = 1
and Re = 1500 at time 7, = 5 (t, = 340). Shown are axial (left) and
azimuthal (right) projections of the particle configuration for different
values of the interaction parameter A. Red dot: particle has undergone
at least one PSI, blue dot: particle has never contacted the free surface.
The dot indicates the particle centroid, not the particle size

This can be seen in Fig. 6, where by 7, = 0.5 most of the
particles (= 93%) cluster around L,. By comparing PAS
for some interaction parameters, e.g. for A = 0.027 (b)
and A = 0.041 (c), with the closed streamlines shown in
Figs. 4a and 5, respectively, it becomes evident that PAS
preferentially forms near the closed streamlines (and, more
generally, on KAM tori) that enter the narrow boundary
layer of the thickness A on the free surface. However, PAS
can be formed also in the chaotic region, where the particle
trajectories are closed by PSI on the free surface, even
though the chaotic streamlines are open (Kuhlmann and
Muldoon 2013). Such a structure arises for A = 0.0082 and
it is shown in Fig. 8a. In this case ~ 30% of all particles are

still colored blue at t, = 5, i.e. they have never interacted
with the free surface and, therefore, have remained in the
chaotic toroidal core of the flow. The larger the interaction
parameter A (larger particles), the more particles undergo
interactions with the free surface and the more particles are
depleted from the central region of the liquid bridge. In
case of PAS these particles end up on the periodic attractors
(compare Figs. 8a and 8c).

The finite particle size is crucial for the accumulation of
particles with o = 1. In a limiting case A = 0 (assuming an
infinitesimally small particle size and thereby disregarding
PSI) small density-matched particles are simply advected
by the flow and keep moving along the streamlines even
in the immediate vicinity of the boundaries. The same
applies to the Maxey—Riley equation (Babiano et al. 2000)
which reduces to the advection equation if the density-
matched particles are also initially velocity matched to the
flow. Therefore, there is no mechanism which can transfer
particles from one streamline to another and the particles
will remain randomly distributed.

Conclusions

Accumulation of small spherical particles density matched
to the flow has been demonstrated in Pr = 68 liquid
bridges. The present modeling approach uses one-way
coupling of non-interacting particles, whose motion has
been accurately computed in a highly-resolved periodic
traveling hydrothermal wave, which is steady in the rotating
frame of reference. The flow topology has been analyzed in
order to identify its regular streamlines. Some of the closed
streamlines which approach the free surface sufficiently
close have been found to act as organizing centers for
density-matched particles of particular sizes.

The KAM structure for ' = 1 and Re = 1500 is
found to be much more intricate than the one for Pr = 4
(Mukin and Kuhlmann 2013) and Pr = 28 (Romano and
Kuhlmann 2018). It allows for particles of many different
sizes to cluster in a rich variety of PAS of different shapes,
which can be well understood based on the underlying
KAM template.

Although the PSI model has proven successful in
capturing the key effect of the finite particle size near
the flow boundaries and in predicting PAS, the global
parameter A remains undetermined in this approach. It
would be desirable to determine A by additional fully-
resolving numerical simulation (Romano and Kuhlmann
2017), depending on the particle size and, in general, also
on the particle density. Another possibility is a softening
of the inelastic collision underlying the PSI model by, e.g.,
incorporating known asymptotic solutions such as the ones
of Brenner (1961) for a particle in Stokes flow moving near



a boundary. A similar approach has recently been used by
Romano et al. (2019), who modeled the particle-boundary
interaction by the leading-order lubrication approximation
for a particle in Stokes flow. Furthermore, the particles will
interact with each other during the final stage of PAS when
many particles accumulate on a periodic orbit. Efficient
models are currently being developed to take this interaction
into account.
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