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Abstract: A small spherical rigid particle in a cylindrical cavity is considered. The harmonic rotation
of the cavity wall drives the background flow characterized by the Strouhal number Str, assumed
as the first parameter of our investigation. The particle immersed in the flow (assumed Stokesian)
has a Stokes number St = 1 and a particle-to-fluid density ratio $ which is assumed as the second
parameter of this study. Building on the theoretical understanding of the recently discovered
oscillatory switching centrifugation for inertial particles in unbounded flows, we investigate the
effect of a confinement. For the first time we study how the presence of a wall affects the particle
trajectory in oscillatory switching centrifugation dynamics. The emergence of two qualitatively
different particle attractors is characterized for particles centrifuged towards the cavity wall. The
implication of two such classes of attractors is discussed focusing on the application to microfluidics.
We propose some strategies for exploiting the confined oscillatory switching centrifugation for
selective particle segregation and for the enhancement of particle interaction events.

Keywords: particle dynamics; Stokesian flow; oscillatory flow; centrifugation; mixing; particle-
boundary interaction

1. Introduction

Mixing and segregation of particles and bubbles in microfluidics are at the core
of several multiphase micron- and nano-scale applications related to lab-on-a-chip de-
vices, drug production and nanotechnology. For small-scale applications, viscosity effects
dominate over inertial ones such that the fluid dynamics is well approximated by the
creeping flow model. In such fluid flows, efficient mixing must be achieved by chaotic
advection [1]. When particle-laden flows are considered, the mixing properties of the
background flow have a significant impact on the particle trajectories, even if the orbit of
a particles differs from the pathline of a tracer. Particle-to-fluid density mismatch [2,3],
buoyancy effects [4], bulk finite-size effects correlated to high-strain regions of the flow [5],
and particle–boundary interactions [6–8] may strongly affect the trajectory of a particle
leading to segregation, accumulation or de-mixing of particles.

Recent studies focused on the transport and the creation of particle coherent structures
in correlation with the kinematic template of the background flow. These Lagrangian
coherent structures for the particulate phase tend to employ the linearly-mixing regions
of the flow (regular regions in form of Kolmogorov–Arnol’d–Moser tori or invariant
spheroids, [9]) as skeleton for the accumulation. The emergence of particle coherent
structures relies, in fact, on mechanisms that dissipate energy in phase space and transfer
the particle from the chaotic regions of the fluid flow to the regular or weakly chaotic
subdomains, where particles can get trapped and form robust accumulation patterns.
Sources of the required dissipation can be the finite size of the particle [5], inertia [10,11],
particle–boundary interaction [12–17]. Most of such particle accumulation/segregation
phenomena are governed, at leading order, by the single-particle dynamics and do not
rely on the feedback effect of the particle on the fluid flow or on collective effects due to
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particle–particle interactions. For this reason, as we are interested in leading-order effects
that can uncover novel accumulation phenomena, we will simplify the particle-laden flow
as much as possible, using a one-way coupling for the particle dynamics.

In a recent study, Xu and Nadim [18] demonstrate that the inertial centrifugation
normally observed for heavy particles in a steady Kirchhoff vortex can be turned into
centripetal motion if a pulsating Kirchhoff vortex is considered. This is what they term
oscillatory counter-centrifugation. Under the assumption of negligible ṙ/r, where r is the
radial coordinate of the particle, they carry our an order-of-magnitude analysis to show
that the so-called oscillatory counter-centrifugation occurs for a given vortex pulsation
threshold, which is function of the kinematic viscosity, the particle radius and the particle-
to-fluid density ratio. The results of Xu and Nadim [18], experimentally confirmed by [19]
(who investigated the agglomeration of fiber particles in periodic flows), have been further
generalized by Romanò [20], who showed that the Coriolis forces, responsible of reverting
the centrifugation, lead to a rather more complex phenomenon termed Oscillatory Switch-
ing Centrifugation (OSC). In fact, Ref. [20] demonstrated that, given the Stokes number and
the particle-to-fluid density ratio, the asymptotic particle repellor at the vortex core can be
turned into an asymptotic particle attractor and vice versa multiple times by increasing
the vortex Strouhal number. Romanò [20] also discussed the chaotic particle dynamics
and their connection to the non-trivial limit cycles created at the boundaries (in parameter
space) where particle centrifugation switches to centripetal motion and vice versa. Such
a physical mechanism is relevant to microfluidic systems leading to centrifugal motion
of particles, for instance confined cavities mounted on rotating disks and employed for
automating life science analysis and synthesis protocols [21]. Another domain of applica-
tion of the OSC includes centrifugation devices at microscales, potentially integrated in
lab-on-a-chip devices [22].

Building on the theoretical background established for the OSC for unbounded flows,
in this paper we aim at investigating the effects of a confinement on the particle dynamics.
We will focus on the dynamics of a small spherical particle in a cylindrical cavity, whose
pulsating rotation generates the time-periodic Kirchhoff vortex. The paper is structured
as follows: in Section 2 the background flow is presented and the mathematical problem
governing the particle motion is formulated; Section 3 presents the results of our study,
summarized and discussed in Section 4.

2. Problem Formulation

A small rigid spherical particle of radius a and density ρp is surrounded by a fluid of
kinematic viscosity ν and density ρf. The incompressible flow is confined within a hollow
cylinder of internal radius R and tangentially driven by the time periodic rotation of the
moving boundary. The peripheral velocity of the rotating cylinder is ΩR, and the pulsation
frequency of its sinusoidal driving is ω (see Figure 1) .

x

y

2a

Δ Ω sin(ω t)

Figure 1. Schematic of a small single particle (light blue) moving in an incompressible fluid flow
confined in a hollow cylinder and driven by the rotation of the cylinder surface.

Under the assumption of creeping flow (Re = ΩR2/ν → 0), and assuming a quasi-
steady approximation of the Stokesian flow, the background flow is described by the
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two-dimensional time-periodic Kirchhoff vortex (see also [20]). Hence, the stream function
ψ and the fluid flow velocity u yield

ψ =
Ω
2
(x2 + y2) sin(ωt), u = Ω(y,−x) sin(ωt) (1)

where x = (x, y) denotes the spatial coordinate. The time-periodic Kirchhoff flow is
rotationally-invariant with respect to the elliptic point at the center of the vortex, i.e., at
(x, y) = (0, 0). Moreover, since (1) can be reduced to a one-dimensional time-periodic
dynamics, it does not admit chaotic advection. In fact, the pathline of a perfect tracer is

constrained to move along a circular trajectory such that r = r0 =
√

x2
0 + y2

0, with x0 and
y0 being the initial location of the fluid element.

The dynamics of the small spherical particle is governed by the Maxey–Riley equa-
tion [23]

ρp
dv
dt

=ρf
Du
Dt

+
(
ρp − ρf

)
g −

9νρf

2a2

(
v− u−

a2

6
∇2u

)
−

ρf

2

[
dv
dt
−

D
Dt

(
u +

a2

10
∇2u

)]

−
9ρf

2a

√
ν

π

∫ t

0

1
√

t− τ

d
dτ

(
v− u−

a2

6
∇2u

)
dτ, (2)

where t is the time, v the particle velocity, and g the gravity acceleration. The left-hand
side of the Maxey–Riley equation represents the rate of change of the particle momentum,
while the right-hand side of (2) consists of the Basset history force, the added mass, the
Stokes drag, the buoyancy force and the force exerted on the particle by the undisturbed
flow. The Faxén correction [24] is included by the a2∇2u terms and it is identically zero
since ∇2u ≡ 0 for the flow (1). The two notations used for the Lagrangian derivative, i.e.,
dt and Dt, refer to the material derivative along the particle trajectory

dA
dt

=
∂A
∂t

+ (v · ∇)A (3)

and along the fluid trajectory

DA
Dt

=
∂A
∂t

+ (u · ∇)A, (4)

where A denotes an arbitrary vector field transported by v and u, respectively, and ∂t is the
Eulerian derivative.

Romanò [20] showed that OSC is a phenomenon robust to memory-term perturbations
hence the Basset-history force is neglected in the followings. Scaling the length, time and
velocity by R, R2/ν and ν/R, neglecting also the gravitational forces, or assuming g
directed along the cylinder axis, the dimensionless form of the Maxey–Riley equation reads

dv
dt

=
1

$ + 1/2

[
3
2

Du
Dt
−

$

St
(v− u)

]
. (5)

The particle dynamics is characterized by two non-dimensional groups, i.e., the Stokes
number St and the particle-to-fluid density ratio $, whereas the flow is governed by the
Strouhal number Str

$ =
ρp

ρf
, St =

2a2

9R2$ , Str =
ω

Ω
. (6)
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The Maxey–Riley equation is valid for small particles immersed in an unbounded
creeping flow. Particles density-mismatched to the fluid can, however, interact with the
inner surface of the cylindrical cavity in case they undergo an outward spiralling dynamics.
It is therefore necessary to complement (5) with a particle-boundary interaction model.
Hereinafter, the particle–surface interaction (PSI) model of Hofmann and Kuhlmann [25] is
used, which models the interaction as an inelastic collision in radial direction and defines a
sliding surface for the particle at distance ∆ from the driving wall (r = R).

We stress that such a simplified particle–boundary interaction model has been proven
successful at capturing the leading-order dynamics of interaction phenomena between
small particles and driving boundaries (either walls or shear surfaces). This has been
confirmed by comparison with fully-resolved simulations [26,27] and experiments [28].
Moreover, recent studies show that the same non-trivial physics is predicted by employing
the PSI model and more physically-sound interaction forces such as the augmented Stokes
drag of [6], see [14,15,29].

3. Results

The particle dynamics is numerically simulated using the solver by Ref. [20]. The
initial particle position is (x0, y0) = (−0.25, 0), the Stokes number is fixed to St = 1, the
particle-to-fluid density ratio is varied in the interval $ ∈ [0.5, 1.5] and the Strouhal number
of the flow ranges in Str ∈ [0.0005, 0.1]. As shown by [26–28,30], ∆ is of the same order
of magnitude of a, hence in the followings we set ∆ = a. All the simulations are run in
dimensional form for t = 10 and Ω = 2× 103.

The graphical template used to compare the various particle dynamics consists of
two representation of the same trajectory: (a) the top panel shows the radial position of
the particle rp against the time t, and (b) the bottom panel depicts the particle orbit in
the (x, y)−plane. The light-blue line denotes the orbit over the whole integration time,
darkblue color highlights the last 10% of the pathline, the purple dot shows the initial
location of the particle and the red dashed line is at distance ∆ from the outer boundary
and identifies the sliding surface for the particle interacting with the driving boundary.

At first, particles lighter than the fluid are considered. Figure 2 depicts the trajectory
of the same particle (St = 1 and $ = 0.5) immersed in four background flows with
different Strouhal numbers, i.e., Str = 0.0005, 0.002, 0.005, and 0.0055. The change of the
Strouhal number due to an increase of the pulsation frequency of the driving turns the
centripetal motion for Str = 0.0005 to centrifugal for Str = 0.002, then back to centripetal for
Str = 0.005 and again to centrifugal for Str = 0.0055. This demonstrates the phenomenon
of the oscillatory switching centrifugation. When the particle is centrifuged against the
solid boundary, it cannot penetrate the region between the red dashed line and the solid
black line, hence it is forced to slide along the red line until the radial component of its
velocity will pull it away from the rotating boundary. Owing to the complex dynamics
inherited from the unbounded OSC, the confined particle trajectory gets attracted to a
non-trivial manifold that rotates with an oscillatory character determined by the Strouhal
number (cf. Figure 2b,d).
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(a) $ = 0.5, Str = 0.0005 (b) $ = 0.5, Str = 0.002

(c) $ = 0.5, Str = 0.005 (d) $ = 0.5, Str = 0.0055

Figure 2. Radial coordinate rp of a particle trajectory for $ = 0.5, St = 1 and Str = 0.005, 0.002, 0.005, and 0.0055. The
trajectories are integrated for t = 10 and they are denoted by the light-blue line. The darkblue solid line shows the last 10%
of the particle orbit and the purple dot its initial position. The red dashed line identifies the sliding surface of the PSI model,
which surface is at distance ∆ = a from the driving boundary.

This same behaviour is observed for St = 1, $ = 0.8, and Str = 0.062. After an initial
transient, the particle trajectory gets attracted by a complex rotating orbit (see Figure 3a,
bottom panel) that penetrates radially almost up to r = 0.5 (see Figure 3a, top panel).
Increasing further the Strouhal number, i.e., for Str = 0.0625 (see Figure 3b), the attraction
manifold sharpens , it becomes linelike and periodic, and it does not rotate inside the cylin-
drical cavity. Increasing even further the Strouhal number the oscillatory centrifugation
switches multiple times to an oscillatory centripetal motion and vice versa as demon-
strated in Figure 3b–d. Once again for Str = 0.1 (see Figure 3d) a steady, periodic orbit is
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found with a characteristic shape qualitatively different from the limit cycle identified for
Str = 0.0625.

(a) $ = 0.8, Str = 0.062 (b) $ = 0.8, Str = 0.0625

(c) $ = 0.8, Str = 0.097 (d) $ = 0.8, Str = 0.1

Figure 3. Radial coordinate rp of a particle trajectory for $ = 0.8, St = 1 and Str = 0.062, 0.0625, 0.097, and 0.1. The
trajectories are integrated for t = 10 and they are denoted by the light-blue line. The darkblue solid line shows the last 10%
of the particle orbit and the purple dot its initial position. The red dashed line identifies the sliding surface of the PSI model,
which surface is at distance ∆ = a from the driving boundary.

The occurrence of multiple non-co-existing attracting orbits is a robust feature of the
particle dynamics. Indeed, qualitatively similar steady attracting orbits are observed for
all the $ and Str located across the boundary in phase space where the centrifugal motion
switches to centripetal and vice versa. This feature is inherited by the analogous limit
cycles identified by Ref. [20] for unbounded OSC, but a further stabilization of the periodic
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orbits is due to the presence of the solid boundary that confines the particle centrifugation.
Hence, the unbounded limit cycle produced by the equilibrium between inertial effects due
to particle-to-fluid density mismatch and the Coriolis force gets further squeezed against
the driving wall and keeps being stabilized even beyond the centripetal-to-centrifugal
switching boundary. As a result, the interplay between boundary confinement and cen-
trifugal forces leads to the sharpening of the stabilized linelike attractor, as demonstrated
in Figure 4 for $ = 0.9.

(a) $ = 0.9, Str = 0.0935 (b) $ = 0.9, Str = 0.094

(c) $ = 0.9, Str = 0.0945 (d) $ = 0.9, Str = 0.1

Figure 4. Radial coordinate rp of a particle trajectory for $ = 0.9, St = 1 and Str = 0.0935, 0.094, 0.0945, and 0.1. The
trajectories are integrated for t = 10 and they are denoted by the light-blue line. The darkblue solid line shows the last 10%
of the particle orbit and the purple dot its initial position. The red dashed line identifies the sliding surface of the PSI model,
which surface is at distance ∆ = a from the driving boundary.
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The features characterizing the confined OSC are demonstrated also for particles
heavier than the fluid. Figure 5 shows that a particle with $ = 1.1 and St = 1, which
is normally subject to centrifugation for Str = 0, can be forced into a centripetal motion
for Str = 0.0115, then back to centrifugal for Str = 0.012 and then it switches again to
centriperal motion for Str = 0.0125. This particle dynamics has already been extensively
discussed and we will now focus on the emerging of the traveling attractor reported for
$ = 1.1 in Figure 6.

(a) $ = 1.1, Str = 0.0115 (b) $ = 1.1, Str = 0.012

(c) $ = 1.1, Str = 0.0125 (d) $ = 1.1, Str = 0.032

Figure 5. Radial coordinate rp of a particle trajectory for $ = 1.1, St = 1 and Str = 0.0115, 0.012, 0.0125, and 0.032. The
trajectories are integrated for t = 10 and they are denoted by the light-blue line. The darkblue solid line shows the
last 10% of the particle orbit and the purple dot its initial position. The red dashed line identifies the sliding surface of
the particle–surface interaction (PSI) model, which surface is at distance ∆ = a from the driving boundary. The orange
background denotes the particle attraction phase to a quasi-steady unstable attractor, the yellow background highlights the
transition phase and the green background shows the orbit attraction to the stable traveling attractor.
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(a) $ = 1.1, Str = 0.0745 (b) $ = 1.1, Str = 0.0765

(c) $ = 1.1, Str = 0.077 (d) $ = 1.1, Str = 0.0875

Figure 6. Radial coordinate rp of a particle trajectory for $ = 1.1, St = 1 and Str = 0.0745, 0.0765, 0.077, and 0.0875. The
trajectories are integrated for t = 10 and they are denoted by the light-blue line. The darkblue solid line shows the last 10%
of the particle orbit and the purple dot its initial position. The red dashed line identifies the sliding surface of the PSI model,
which surface is at distance ∆ = a from the driving boundary. The orange background denotes the particle attraction phase
to a quasi-steady unstable attractor, the yellow background highlights the transition phase and the green background shows
the orbit attraction to the stable traveling attractor.

In particular, we focus on the instability of the steady periodic limit cycle that turns
into a traveling pattern if the Strouhal number exceeds a critical threshold. For Str = 0.0745,
the spherical particle is attracted to a linelike orbit that is sharply squeezed against the
rotating wall. The linelike attractor slightly widens when increasing the Strouhal number
to Str = 0.0765. This qualitative trend is mirror symmetric with respect to the sharpening
of the linelike pattern observed for light particles (see $ = 0.9, Figure 4). Further increasing
the pulsation frequency, hence increasing the Strouhal number, the time symmetry of
the steady limit cycle gets broken and the traveling attractor emerges for Str = 0.077
(see Figure 6c) and invades the domain radially inward upon an increase of the Strouhal
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number (Str = 0.0875, see Figure 6d). The envelope of the time signals for particles
attracted to a traveling manifold shows the distinct feature of a quick transition from
the quasi-steady (unstable) attractor and the stable traveling attracting orbit. This quick
transition is clearly observed in the time signal of rp and it is always followed by an
overshoot of the radial particle position. (see orange, yellow and green areas in the top
panels of Figures 5b,d and 6c,d).

Figures 7 and 8 show that the traveling particle attractor is a robust feature of confined
OSC for the range of particle-to-fluid density ratios considered in this study and they
demonstrate that the penetration depth of the traveling attracting orbit can be controlled
by varying the Strouhal number of the driving.

(a) $ = 1.2, Str = 0.0395 (b) $ = 1.2, Str = 0.054

(c) $ = 1.2, Str = 0.0765 (d) $ = 1.2, Str = 0.085

Figure 7. Radial coordinate rp of a particle trajectory for $ = 1.2, St = 1 and Str = 0.0395, 0.054, 0.0765, and 0.085. The
trajectories are integrated for t = 10 and they are denoted by the light-blue line. The darkblue solid line shows the last 10%
of the particle orbit and the purple dot its initial position. The red dashed line identifies the sliding surface of the PSI model,
which surface is at distance ∆ = a from the driving boundary.
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(a) $ = 1.5, Str = 0.035 (b) $ = 1.5, Str = 0.0355

(c) $ = 1.5, Str = 0.034 (d) $ = 1.5, Str = 0.0345

Figure 8. Radial coordinate rp of a particle trajectory for $ = 1.5, St = 1 and Str = 0.035, 0.0355, 0.034, and 0.0345. The
trajectories are integrated for t = 10 and they are denoted by the light-blue line. The darkblue solid line shows the last 10%
of the particle orbit and the purple dot its initial position. The red dashed line identifies the sliding surface of the PSI model,
which surface is at distance ∆ = a from the driving boundary.

4. Discussion and Conclusions

The dynamics of a small rigid particle in a time-periodically rotating cylindrical cavity
has been studied assuming that the background flow is given by a pulsating Kirchhoff
vortex and the particle dynamics can be modeled by a simplified Maxey–Riley equation.
Owing to the time-periodic driving, the particle trajectory is strongly affected by Coriolis
forces that may induce OSC, as explained by Romanò [20].

In this study we included the presence of solid walls, realizing, de facto, a set-up where
confined OSC can be investigated experimentally. Despite the narrow particle-to-boundary
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interaction length ∆, we find that the effect of the confinement on the particle dynamics is
remarkable and leads to two distinct classes of attractors observed regardless of the sign
of 1− $ for all the Strouhal numbers leading to centrifugation. The first kind of attractor
identified consists of a linelike limit cycle that sits steady in the domain while the walls of
the cylindrical cavity rotate time-periodically. This attracting orbit is stable within a given
range of Strouhal numbers that depends on the $ (and we expect it depends on St, too). For
$ > 1, upon an increase of Str, the linelike attractor looses stability and starts widening up
to a break of the time symmetry that leads to the attractor rotation.

We stress that despite the simple set-up of our study, the confined OSC can provide an
effective mechanism for separating particles with different densities. This can be achieved
by two different ways: (a) exploiting the mechanism of unbounded OSC, hence adjusting
the Strouhal number such that some particles will be centrifuged and some others will be
attracted to the vortex core, and (b) exploiting the steady linelike attractors described in
this paper, hence selecting a Strouhal number that centrifuges all the particles of different $
and leads to their stationary accumulation along different limit cycles. Whenever a wide
spectrum of $ is considered, a combination of such two particle segregation strategies is
expected to be advantageous.

Finally, we remark the importance of the second class of attractors, i.e., the travelling
attracting orbits. They may efficiently be used for creating colloids in lab-on-a-chip devices
or in beads beating protocols commonly used in biological studies for promoting the
lysis in microcentrifuges. In fact, as pointed out by [18], the counter-centrifugation of
inertial particles can be observed for oscillatory frequencies and rotation rates compatible
with standard beads beating protocols. The Strouhal number could be used to control
the penetration depth of the traveling attractors and, leading to very different patterns
for different $, it could be used as effective control parameter to promote the collision of
density-dispersed particles. We further remark that employing the OSC for separating
stem cells of different density may be complementary to the use of other density-based
separation techniques, such as the density gradient centrifugation [31,32] or the density
gradient centrifugation–negative selection [33].
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