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Abstract

Abstract interpretation was proposed for predicting changes of reaction networks with partial
kinetic information in systems biology. This requires to compute the set of difference abstrac-
tions of a system of linear equations under nonlinear constraints. We present the first practical
algorithm that can compute the difference abstractions of linear equation systems exactly. We
also present a new heuristics based on minimal support consequences for overapproximating the
set of difference abstractions. Our algorithms rely on elementary modes, first-order definitions,
and finite domain constraint programming. We implemented our algorithms and applied them
to change prediction in systems biology. It turns out experimentally that the new heuristics is
often exact in practice, while outperforming the exact algorithm.

This journal article extends on a paper published at the 17th International Conference on
Computational Methods in Systems Biology (CMSB’2019) [1].

Keywords: abstract interpretation, constraint programming, linear programming, elementary
modes, first-order definitions, gene knockout prediction, reaction networks, systems biology,
synthetic biology, metabolic networks, boolean abstraction.

1. Introduction

Motivated by analysis questions for steady states [2, 3] of chemical reaction networks [4, 5, 6, 7]
we study the problem how to compute the set of difference abstractions of the solutions of a
given linear equations system. The difference abstractions may be subject to constraints, which
in the motivating application serve for expressing partial kinetic information on inhibitors and
accelerators of the reactions of the network [8].
Problem. We consider systems of homogeneous linear equations with variables for positive real
numbers in R+ including 0, possibly existentially quantified, such as for instance E(X,Y ) in (1):

∃U.∃V.
(
−1 0 1 −1

0 −1 1 −1

)
X
Y
U
V

 .
= 0 (1)

Given that the matrix is triangular and the variables U, V are existentially quantified, we can
read off the set of solutions of E(X,Y ) easily. A variable assignment is a solution over R+ if and
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Figure 1: The difference abstraction to ∆3.
Figure 2: The difference abstraction to ∆6.

only if it maps X and Y to the same number:

solR+(E(X,Y )) = {α : {X,Y } → R+ | α(X) = α(Y )}

An instance of the question studied in this article is, what happens to the value of Y if we
increase the value of X, while jumping from one solution of E(X,Y ) to another? Clearly, the
value of Y must be increased as well, since X and Y must have the same value in all solutions.
More generally, we want to compute all possible relationships of any two solutions of E(X,Y )
over the positive reals.

For making this problem more precise, we consider a partition of the space R2
+ of concrete

differences into the set of abstract differences ∆3 = {
a
,
`
,∼∼∼}, which is illustrated in Figure 1.

The abstract difference
a

stands for an increase, ∼∼∼ for a no-change, and
`

for a decrease. Given
a finite set of variables V , we define the difference abstraction of two variable assignments to the
positive reals α, α′ : V → R+ as the assignment β : V → ∆3 such that for all x ∈ V :

β(x) =


a

if α(x) < α′(x)
∼∼∼ if α(x) = α′(x)`

if α(x) > α′(x)

Our objective then is to compute for any given linear equation system the set of difference
abstractions of any two positive real solutions. In our example system E(X,Y ), the expected
answer is {β : {X,Y } → ∆3 | β(X) = β(Y )}. In general, the computation can be done by
a generate and test algorithm based on Lemma 1 below, which reduces the test to a linear
program. This algorithm, however, is too slow in practice, to be applicable to change prediction
tasks in systems biology. This is why the previous approach by John et al. [8, 9, 10] computed
an overapproximation only, by interpreting the equation system abstractly over the canonical
relational structure with finite domain ∆3 and signature {+, ∗, 0, 1}, and solving it by finite
domain constraint programming [11, 12]. The question we study in the present article is whether
there exists a better algorithm useful for change prediction in systems biology, that can compute
the difference abstraction exactly while avoiding any overapproximation.

Furthermore, two variants of the above problem must be supported for practical application
to systems biology. First, we need to be able to treat a refined difference abstraction with 6 values
∆6 = {↑, ↓,∼,⇑,⇓,≈} illustrated in Figure 2. Note that

a
= ↑ ] ⇑,

`
= ↓ ] ⇓ and ∼∼∼ = ∼ ] ≈,

depending on whether the change started or ended with 0 or not. Second, for capturing partial
kinetic information up to similarity, we must be able to impose additional constraints on the
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abstract solutions we are interested in. These will be given by some first-order formulas that are
to be interpreted over the abstract domain.
Contributions. First, we generalize the difference abstractions h∆3

: R2
+ → ∆3 and h∆6

: R2
+ →

∆6 algebraically to Σ-abstractions, which are homomorphisms between the Σ-structures. The
set of concrete differences R2

+ becomes a Σ-algebra with signature Σ = {+, ∗, 0; 1} equipped
with pointwise addition and multiplication. The sets of abstract differences ∆3 and ∆6 become
Σ-structures that are naturally induced by the finite partitioning of R2

+ in Figures 1 and 2.
Second, we can show for any two Σ-structure S and ∆ (such as R2

+ and ∆3 above) that John’s
overapproximation theorem [8, 10] can be lifted to general Σ-abstractions h : S → ∆. It states
that for any positive first-order Σ-formula φ, its h-abstraction can be computed by abstract
interpretation of ∆:

h ◦ solS(φ) ⊆ sol∆(φ)

This is since any h-abstraction of an S-solution of φ is also a ∆-solution of φ. If furthermore ∆
is finite, then we can compute sol∆(φ) by finite domain constraint programming. This approach
was shown to be applicable in the motivating application from systems biology [9].

The objective of this article, however, is to compute exactly the set of difference abstractions

for both cases h∆3
◦ solR

2
+(φ) and respectively h∆6

◦ solR
2
+(φ), where φ is a system of linear

equations possibly with existential quantifiers (which clearly can be seen as Σ-formulas). The
motivation is to overcome the main problematics of John’s overapproximation, which can already
be illustrated at the example of E(X,Y ). When interpreted over the Σ-structure ∆3, the system
E(X,Y ) admits the abstract solution β = [X/

a
, Y/

`
], since

a
+∆3

`
may be related to any

value in ∆3 nondeterministically. However, β is not the difference abstraction of any concrete
solution, given that E(X,Y ) implies X

.
= Y . In other words, X

.
= Y is a logical consequence of

E(X,Y ) over R+, but not over ∆3, so precisely the information that we seek in our example is
lost by abstract interpretation relying on John’s overapproximation.

In order to avoid any overapproximation, one may want to enrich the linear equation system
before solving it over the finite abstract structure, by adding all its logical consequences over
R+, which correspond to all the linear combinations of the rows of the matrix (its row space).
However this leads to an infinite number of consequences, so one would be forced to consider
them modulo equivalence up to abstract interpretation. Since the abstract domains considered
are finite, the number of equivalence classes would be finite too. However, finding a representative
for each equivalence class corresponds to solving a linear programming problem, and the number
of consequences to be added is exponential in the dimension of the matrix. Therefore, even if this
approach leads to a finite representation of the set of logical consequences of the linear equation
system, it is still unfeasible in practice for complexity reasons. A less inefficient approach but
still infeasible in practice can be obtained by the generate and test algorithm metionned earlier.
The idea is to test the satisfiability of each abstract solution candidate individually by linear
programming based on Lemma 1 below.

As a third contribution we propose a new heuristics based on minimal support consequences
to improve John’s overapproximation algorithm. Given a system of linear equations, the idea is to
add all linear consequences that have a minimal number of variables and normalized coefficients,
before computing the abstract solutions. We show how to compute this finite set of linear
consequences based on elementary modes [13, 14] and orthogonal complements.

As a fourth and most important contribution, we present algorithms for computing the dif-
ference abstractions for linear equation system exactly. They can deal with ∆3 and ∆6 and
with the addition of constraints on the abstract differences. The exact abstraction problems are
reduced to finite domain constraint problems, that can be solved in practice with existing finite
domain constraint solvers. The reductions are based on properties of first-order definitions that
permit to reason with concrete differences in a first-order logic with pairs. Furthermore, we rely
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on a recent algorithm [15] for the exact rewriting of linear equation systems with respect to the
boolean abstraction hB : R+ → B, which maps 0 to 0 and all other positive real numbers to 1.
The linear equation system φ obtained by exact rewriting for the boolean abstraction satisfies
hB ◦ solR+(φ) = solB(φ) and is again based on the computation of elementary modes.

Fifth, we implemented the minimal support heuristics and our exact abstraction algorithm
for ∆6, and applied them to the prediction of leucine overproduction, a benchmark task for
change prediction in systems biology [8, 9]. It turns out that the minimal support heuristics
indeed computes the difference abstraction to ∆6 exactly for this benchmark, while it does not
do so in general. The main advantage of this heuristic is that it outperforms the exact algorithm
dramatically in computation time: only 5 minutes are needed for the knockout prediction rather
than 5 hours with the always exact algorithm.

This article extends on a conference paper at CMSB’2019 [1]. This was an extended abstract
without any proofs, where most of the technical difficulties could not be exposed. In particular,
we could not explain how to decompose the difference abstractions for ∆3 and ∆6 into the
boolean abstraction based on functions defined in first-order logic. Also we could not describe in
any sufficient detail how the addition of kinetic constraint can be dealt with. So the additional
material mainly consists in detailed sections on how to compute difference abstractions to ∆3

and ∆6 exactly, also in the presence of kinetic constraints. The case of ∆6 is considerably
more difficult to be treated, since it requires more advanced kinds of first-order definitions.
Furthermore, the presentation of the minimal support heuristics has been extended and equipped
with a correctness argument.

The present article contains full proofs, of which some simpler inductions are delegated to
the appendix.
Outline. In Sections 2 and 3 we discuss further related work and illustrate the application to
change prediction in systems biology. After some preliminaries (Section 4), we recall in Section
5 the notion of Σ-abstractions and in Section 6 the Σ-structures of abstract differences ∆3 and
∆6. The standard first-order logic is recalled in Section 7 jointly with a less standard variant
that we call the tuple logic. Difference abstractions and John’s overapproximation theorem are
recalled in Section 8. Section 9 recalls a previous result on exact boolean abstraction.

In Section 10 we use the existing result on exact boolean abstraction to provide a new char-
acterization of difference abstraction to ∆3 and ∆6 for linear equation systems. This characteri-
zation yields an algorithm for computing difference abstractions of linear equation systems, that
we extended in Section 11 so that it can take additional difference constraints into account. An
overapproximation heuristics with minimal support is then presented in Section 12. And finally
in Section 13, an implementation and experimentation section compares these two approaches.

2. Related Work

We first discuss the generate and test algorithm for solving our problem based on existing
results for linear equations systems and linear programming.

Given an abstract difference d ∈ ∆3 and two variables y, z we define a formula saying that
the abstraction of the concrete difference denoted by (y, z) is equal to d:

absd(y, z) =

 y < z if d =
a

x
.
= y if d = ∼∼∼

z < y if d =
`

Let x = x1 . . . xm, y = y1 . . . ym and z = z1 . . . zm be sequences of distinct variables. Given
an assignment of the variable in x to abstract differences β : {x} → ∆3 we define a formula
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absβ(y, z) as follows:

absβ(y, z) =

m∧
i=1

absβ(xi)(yi, zi)

The assignment β then is the difference abstraction of some pair of solutions in solR+(E(x)) if
and only if the following formula is satisfiable over R+.

E(y) ∧ E(z) ∧ absβ(y, z)

Lemma 1. The satisfiability over R+ of systems of homogeneous linear equation and strict linear
inequations without constants can be decided in polynomial time.

Proof A strict linear inequation without constants x < y is equivalent over R+ to ∃z. x +
z

.
= y ∧ z 6 .= 0. Therefore, it is sufficient to consider the satisfiability over R+ of systems of

homogeneous linear equations E(x) and nonzero equation x′ 6 .= 0. The solution set solR+(E(x))
is a cone (while for more general linear programs it could be more general polytopes). The
elements of a cone can be multiplied by positive reals without leaving the cone. Therefore,
the nonzero equation x′ 6 .= 0 can be rewritten to x′ ≥ 1 without affecting the satisfiability of
the formula. This rewriting eliminates the strict inequations without constants at the cost of
introducing nonstrict inequations with constants. The result is a linear program. Instead of
interpretation over R+ we can add inequations x ≥ 0 ∧ x′ ≥ 0 and change to an interpretation
over R. It well known that the satisfiability of linear programs over R can be tested in polynomial
time [16]. �

So by a naive enumerate and test algorithm, we can compute in the case of ∆3 the set of
all difference abstractions for sol∆3(E(x)) in time O(3mpoly(|E(x)|)). For ∆6, the analogous
argument yields O(6mpoly(|E(x)|)).

Flux balance analysis [2, 3] can be used to predict the effect of influx changes of metabolic
networks at steady state. Such predictions can be based on reasoning with linear equation
systems that describe the rates of the reactions in a steady state of the metabolic network,
by using Gaussian elimination, elementary flux modes (EFMs) [17], or optimisation methods
[18, 19]. Most importantly, precise quantitative kinetic information is not required in contrast
to classical mathematical analysis methods for reaction networks. In fact, even when the kinetic
functions associated to chemical reactions are known, the values of the rate constants are most
often missing, since it is difficult to measure them experimentally in the precise state of the
regulation of the metabolic network at the time point of interest.

Recently, abstract interpretation [20, 21, 22] has been exploited to design novel algorithms
[8, 10] that can use partial kinetic information beneficially for predicting changes of metabolic
networks. They can in particular exploit the knowledge about the enzymes and inhibitors.
Similarly to flux balance analysis, the linear equations describing steady states are used, but in
addition to them, kinetic constraints are inferred from the partial kinetic information of inhibitors
and enzymes.

3. Application to Change Prediction in Systems Biology

Reaction networks [4, 5, 6, 7] are widely used in systems biology to model the dynamics of
biological systems, so that their behaviour can be simulated or analysed. We are interested in
change predictions for reaction networks with partial kinetic information [8, 9, 10]. The steady
state semantics of such networks yields a system of linear equations, and a set of nonlinear
constraints about the differences abstraction in ∆6 of solutions of the linear system.

5



A

BC

E D

in-A

out-Bout-C

12

3

5

4

6

Figure 3: An example of reaction network with partial
kinetic information.

Linear equation Nonlinear const-
system over R+: raints over ∆6:

vin-A
.
= v1 + v2 v1

.
= A ∗D

v1
.
= vout-B v2

.
= A ∗ E

v2
.
= vout-C v3 ∈ {⇓,∼}

v4
.
= v6 v4 ∈ {⇓,∼}

v3
.
= v5 v5

.
= D

v6
.
= E

vout-B
.
= B

vout-C
.
= C

Figure 4: Steady state semantics.

A simple example of reaction network with partial formal kinetic information is given in
Figure 3; the linear equation system and the nonlinear constraints on its difference abstraction
are given in Figure 4. The networks has five species A, B, C, D, E and nine reactions 1, . . ., 6,
in-A, out-B , out-C . As with the graphical notation for Petri nets, the species are nodes drawn as
circles and the reactions nodes drawn as boxes. The colors of the species indicate their biological
role, but do not contribute to the semantics. Metabolites are drawn in yellow and enzymes in
brown circles. Reaction in-A is an inflow of the metabolite A, while reactions out-B and out-C
are outflows of the metabolites B and C respectively. The inflows are controlled externally, while
the outflows are controlled internally in the system. Reactions 3 and 4 correspond respectively
to the gene expression of the enzymes D and E. These reactions may be knocked out, modeling a
gene knockout. The knockouts are changes that are controlled externally similarly to the change
of inflow in-A. None of the other reactions can be changed externally. Reaction 6 degrades
the enzyme E and reaction 5 degrades the enzyme D. Reaction 1 transforms its metabolic
substrate A, into its metabolic product B, while being activated and accelerated by the enzyme
D. Symmetrically, the reaction 2 transforms its metabolic substrate A, into its metabolic product
C, while being activated and accelerated by the enzyme E.

In a steady state of the reaction network, the concentrations of all its species become stable.
For each species we have a linear equation, that states that the rate of its production is equal to
the rate of its consumption. For species A, for instance, this is the following equation over R+,
since species A is produced by inflow in-A at rate vin-A, while it is consumed by reaction 1 at
rate v1 and reaction 2 at rate v2:

vin-A
.
= v1 + v2

The network has partial kinetic information: we know the enzymes (and inhibitors) of the reac-
tions, but not necessarily their precise kinetics. For instance, the precise kinetics of reaction 1 is
unknown. But since D is an enzyme of reaction 1 it follows that the rate v1 is zero if the con-
centration of species D is zero, and that v1 increases if the concentration of species D increases.
Furthermore, since A is a substrate of reaction 1 it follows that v1 is zero if the concentration of
species A is zero, and that v1 increases if the concentration of species A increases. This means
that the following nonlinear constraint holds after difference abstraction to ∆6:

v1
.
= A ∗D

For reactions 3 and 4 which may be knocked out, we have the following constraints about their
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A
↑

B
↑

C
↑

E
∼

D
∼

in-A
↑

out-B
↑

out-C
↑

1
↑

2
↑ 3

∼

5
∼

4
∼

6
∼

(a) Increase inflow of A.

A
∼

B
↑

C
⇓

E
⇓

D
∼

in-A
∼

out-B
↑

out-C
⇓

1
↑

2
⇓ 3

∼

5
∼

4
⇓

6

⇓

(b) Knock down gene expression 4 of E.

Figure 5: Two changes leading to an increase of the outflow of B.

difference abstraction to ∆6:
v3 ∈ {⇓,∼}
v4 ∈ {⇓,∼}

So the rates of these reactions may either decrease to zero or remain unchanged but different
from zero.

A typical question for change prediction is which changes can be applied to the example
network in order to increase the outflow of B, that is vout-B

.
=↑. The set of potential changes is

to increase or decrease the inflow of A, i.e., vin-A ∈ {↑, ↓}, or to shut down reactions 3 or 4, that
is v3 =⇓ or v4 =⇓. The two single-change predictions that answer this question are:

1. increase the inflow of A, that is vin-A
.
=↑, or

2. knock down reaction 4, i.e., v4
.
=⇓ and thus of the gene expression of enzyme E.

These two predictions correspond to the two abstract solutions over ∆6 in Figure 5. The first
solution in Figure 5a motivates the prediction of an increase of in-A and the second solution in
Figure 5b the prediction of a knock down of reaction 4, the gene expression producing enzyme
E.

Both abstract solutions are difference abstractions over ∆6 of real positive solutions of the
linear equation system in Figure 4, so that these difference abstractions do also satisfy the
nonlinear constraints over ∆6 given there. We can find both predictions by applying John’s
overapproximation algorithm [8, 10], that is by computing the ∆6 solutions of linear equation
system and the nonlinear constraints. This can be done in practice by using finite domain
constraint programming.

Qualitative reasoning can also be performed manually for this simple example. For increasing
out-B be must increase the concentration of B and thus the rate of reaction 1. For this, we must
either increase the concentration of enzyme D which is impossible by the available changes, or
increase the concentration of A. The latter requires to either increase the inflow of A, leading to
the first abstract solution in Figure 5a, or else decrease the rate of reaction 2. This is possible by
decreasing the concentration of E by knocking out the reaction 4, the gene expression producing
this enzyme. This yields the second abstract solution in Figure 5b.

John’s algorithm does not lead to any overapproximation for this example. The main reason
is that the graph of the reaction network in Figure 3 is acyclic, even in the absence of partial

7



A Bin-A out-B

1

2

Figure 6: A reaction network with a simple loop.

v1
.
= vin-A + v2

v1
.
= vout-B + v2

Figure 7: Linear equation system of the reaction net-
work in Figure 6 with the simple loop.

A Bin-A out-B

1

2

Figure 8: Elementary flux modes of the simple loop network.

kinetic information. The situation changes for reaction networks with cycles. The simplest
counterexample is the simple loop in Figure 6. The linear equation system of this network is
exactly the system from the introduction, where John’s algorithm predicts unjustified changes.

This network has two species A and B and four reactions: an inflow of A, an outflow of
B, a reaction 1 transforming A to B and a inverse reaction 2. So each molecule A that flows
into the system may loop for a while, changing to B and back, before eventually outflowing as
B. In a steady state, the rate of the inflow of A is equal to the rate of the outflow of B. The
argument can be understood more easily, when considering the elementary flux modes [14, 23] of
this reaction network, which are shown graphically in Figure 8 in red and respectively in green.
An elementary flux mode is a linear combination of reactions that can become steady. The
simple loop network has two elementary flux modes, corresponding to the linear combination of
reactions 1vin-A +1v1 +1vout-B using red edges and the linear combination of reactions 1v1 +1v2

with green edges respectively.
While some molecules may loop with the green edges, transforming A’s to B’s and back, all

inflowing A’s must follow the red edges and thus eventually outflow as B. From an algebraic
perspective, the elementary flux modes of a reaction network correspond exactly to the elemen-
tary modes of its stoichiometry matrix [13]. An elementary mode of a matrix A is a positive
integer solution of Ax

.
= 0 where x a sequence of fresh variables. Furthermore, we require that

the solution has minimal support, meaning that a minimal subset of the variables is assigned
to a nonzero value, and that the solution is normalized (so it cannot be devided by any natural
number strictetly greater than 1). Note that the stoichiometry matrix of the simple loop network
was given within the linear equation system (1) at the beginning of the introduction. Here, the
vector of variables x corresponds to the order on reactions adopted by the stoichiometry matrix,
so it can be chosen as (vin-A, vout-B , v1, v2). Its elementary modes are (1, 1, 1, 0) and (0, 0, 1, 1).

The difference abstraction of any two concrete solutions of the linear equations of the simple
loop network must satisfy vin-A

.
= vout-B . The corresponding abstract solution over ∆6 satisfying

vin-A
.
=↑ and vout-B

.
=↑ is illustrated in Figure 9. However, the alternative variable assignment

to ∆6 in Figure 10 is also a solution of all linear equations when interpreted over ∆6, while not
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A
↑

B
↑

in-A
↑

out-B
↑

1
↑

2
↑

Figure 9: A justified abstract solution.

A
↑

B
↑

in-A
↓

out-B
↑

1
↑

2
↑

Figure 10: An unjustified abstract solution.

being justified by any pair of concrete solutions over R+.
The intuitive reason for this failure is that John’s overapproximation algorithm performs only

local reasoning, considering one linear equation at a time, i.e., one species of the reaction network.
In this manner, it cannot see, that X

.
= Y is a logical consequence of the linear equation system

of the network over R+, while it is not a consequence over ∆6. So what we are searching is way
to reason globally with all species of a reaction network at a time. For this we have to take into
account all linear combinations of the equations of the system.

4. Preliminaries

We present standard notion of sets, partial and total functions, relations, Σ-algebras and
Σ-structures.

4.1. Set and Functions

We start with the usual notation for sets. Let N be the set of natural numbers and R+ the
set of positive real numbers, both including 0. For any set A and n ∈ N, the set of n-tuples
of elements in A is denoted by An. The i-th projection function on n-tuples of elements in A,
where 1 ≤ i ≤ n is the function πi : An → A such that πi(a1, . . . , an) = ai for all a1, . . . , an ∈ A.
If A is finite the number of elements of A is denoted by |A|.

We continue with notion for total and partial functions. A partial function is a relation
f ⊆ A × B such that for all a ∈ A there exists at most one b ∈ B such that (a, b) ∈ f . In this
case, we write f(a) = b. The domain of the partial function is dom(f) = {a | ∃b ∈ B.f(a) = b}
and its range ran(f) = {b | ∃a ∈ A. f(a) = b}. A total function f : A→ B is a partial function
f ⊆ A × B such that dom(f) = A. Given a total function f : A → B and a partial function
g : B × C such that ran(f) ⊆ dom(g) we define the function composition as the total function
g ◦ f : A → C such that (g ◦ f)(x) = g(f(x)) for all x ∈ A. Furthermore if R ⊆ {f : A → B}
then we define:

g ◦R = {g ◦ f : A→ C | f ∈ R, ran(f) ⊆ dom(g)}

Note that g ◦ f is defined only if ran(f) ⊆ dom(g), so functions f ∈ R violating this condition
will be ignored all over in the composition g ◦R. This is since we want all the functions in g ◦R
to be total even if g is partial.

4.2. Σ-Algebras and Σ-Structures

We next recall the notions of Σ-algebras, Σ-structures, and homomorphism between Σ-
structures. These classical notions of universal algebra will be fundamental to our algebraic
generalization of difference abstractions to the notion of Σ-abstractions in Definition 8.
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Let Σ = ∪n≥0F
(n) ]C be a ranked signature. The elements of f ∈ F (n) are called the n-ary

function symbols of Σ and the elements in c ∈ C its constants.

Definition 2. A Σ-algebra S = (dom(S), .S) consists of a set dom(S) and an interpretation .S

such that cS ∈ dom(S) for all c ∈ C, and fS : dom(S)n → dom(S) for all f ∈ F (n) and n ∈ N.

We next reinterpret n-ary function symbols of Σ as n+1-ary relation symbols, so that we can
reuse the same signature Σ for defining Σ-structures.

Definition 3. A Σ-structure ∆ = (dom(∆), .∆) consists of a set dom(∆) and an interpretation
.∆ such that c∆ ∈ dom(∆) for all c ∈ C and f∆ ⊆ dom(∆)n+1 for all f ∈ F (n) and n ∈ N.

In this manner, any Σ-algebra is also a Σ-structure since any n-ary function is an n+ 1-ary
relation. Note also that symbols in F (0) are interpreted as monadic relations in Σ-structures,
i.e., as subsets of the domain, in contrast to constants in C that are interpreted as elements of
the domain.

It is sometimes useful to add the elements of the domain of a Σ-structure A to the constants.
Therefore, we define the extended signature:

Σ[dom(A)] = Σ ] dom(A)

The Σ-structure A can be lifted to a Σ[dom(A)]-structure by interpreting the new constants by
themselves, i.e., aA = a for all a ∈ dom(A), and all symbols in Σ as before.

Definition 4. A homomorphism between two Σ-structures S and ∆ is a function h : dom(S)→
dom(∆) such that for c ∈ C, n ∈ N, f ∈ F (n), and s1, . . . , sn+1 ∈ dom(S):

1. h(cS) = c∆, and

2. if (s1, . . . , sn+1) ∈ fS then (h(s1), . . . , h(sn+1)) ∈ f∆.

For Σ-algebras, the second condition is equivalent to h(fS(s1, . . . , sn)) = f∆(h(s1), . . . , h(sn)).
For any Σ-structure S we can reinterpret n+1 ary relations fS as n-ary set valued functions.

In order to do so, we define for any sequence s1, . . . , sn ∈ dom(S) a subset of values:

f∆(s1, . . . , sn) = {s ∈ dom(S) | (s1, . . . , sn, s) ∈ f∆}

With this set-valued reinterpretation, the second condition of homomophisms can be rewritten
equivalently to:

h(fS(s1, . . . , sn)) ⊆ f∆(h(s1), . . . , h(sn))

5. Σ-Abstractions

We introduce the concept of Σ-abstractions for general signatures. Before doing so, we start
with an example for a Σ-abstraction, which is the boolean abstraction of positive real numbers.

It has the signature of arithmetics Σ = F
(2)
pos-arith ] Cpos-arith with two binary function symbols

and two constants such that:
F

(2)
pos-arith = {+, ∗}
Cpos-arith = {0, 1}

For all Σ-algebras considered, the operators +S and ∗S are associative and commutative, with
neutral element 0S and 1S respectively.

10



Example 5. The set of positive real numbers R+ can be turned into a Σ-algebra with domain
R+, by interpreting + as the addition of positive real numbers +R+ , ∗ as the multiplication of
positive real numbers ∗R+ , and interpreting the constants by themselves 0R+ = 0 and 1R+ = 1.
We will deliberatly confuse the set R+ with the Σ-algebra (R+, .

R+) whose domain dom(R+) is
equal to the set of positive reals R+.

Example 6. The set of Booleans B = {0, 1} ⊆ R+ can be turned into a Σ-algebra with domain B
by interpreting +B = ∨B as disjunction, ∗B = ∧B as conjunction, and the constants by themselves
0B = 0 and 1B = 1. We will deliberatly confuse the set B with the Σ-algebra (B, .B) whose domain
dom(B) is the set of booleans B.

We can abstract positive real numbers into booleans by defining a function hB : R+ → B such
that hB(0) = 0 and hB(r) = 1 for all r ∈ R+ \ {0}.

Lemma 7. The function hB : R+ → B is a homomorphism between Σ-algebras where Σ =

F
(2)
pos-arith ] Cpos-arith.

Proof For all r, r′ ∈ R+ we have:

hB(r +R+ r′) = 1 ⇔ r +R+ r′ 6= 0 ⇔ r 6= 0 ∨ r′ 6= 0 ⇔ hB(r) = 1 ∨ hB(r′) = 1
hB(r ∗R+ r′) = 1 ⇔ r ∗R+ r′ 6= 0 ⇔ r 6= 0 ∧ r′ 6= 0 ⇔ hB(r) = 1 ∧ hB(r′) = 1

Hence hB(r +R+ r′) = hB(r) +B hB(r′) and hB(r ∗R+ r′) = hB(r) ∗B hB(r′). Finally, for both
constants c ∈ C we have that hB(cR+) = hB(c) = c = cB.

The boolean abstraction hB is the prime example of what we will call a Σ-abstraction. The
following definition applies for general signatures.

Definition 8. A Σ-abstraction is a homomorphism between Σ-structures S and ∆ such that
dom(∆) ⊆ dom(S).

We assume that dom(∆) ⊆ dom(S) since this will permit us to reason about Σ-abstractions
by talking at the same time about concrete values in dom(S) and abstract values in dom(∆) by
first-order formulas interpreted over the Σ-structure S.

6. Abstracting Concrete Differences

Concrete differences are pairs of positive in R2
+. We show how to abstract concrete differences

into abstract differences. For this, we consider R2
+ as a Σ-algebra that we then abstract into

finite Σ-structures ∆3 and ∆6.

6.1. The Tuple Σ-Algebra Sn

For any Σ-algebra S where Σ = F (2) ∪C and natural number n ∈ N we define the Σ-algebra
of n-tuples Sn = (dom(S)n, .S

n

) such that for all s1, . . . , sn, s
′
1, . . . , s

′
n ∈ dom(S) and � ∈ F (2):

(s1, . . . , sn)�Sn

(s′1, . . . , s
′
n) = (s1 �S s′1, . . . , sn �S s′n)

The constants c ∈ C are interpreted as cS
n

= (cS , . . . , cS). Note that if 0S is the neutral element
of +S , then 0S

n

is the also the neutral element of +Sn

. In analogy, if 1S is the neutral element of
∗S then 1S

n

is also the neutral element of ∗Sn

. Furthermore, the associativity and commutativity
of +Sn

and ∗Sn

inherit from +S and ∗S respectively.

11



Note that we deliberately confuse the set R2
+ with the Σ-algebra (R2

+, .
R2

+) with our notation.

Given this, it follows from the above, that the algebra R2
+ has the neutral element (0, 0) for +R2

+

and the neutral element (1, 1) for ∗R
2
+ , and that these operations are associative and commutative.

For any function h : A → B and n ∈ N we define the function hn : An → Bn such that
hn(a1, . . . , an) = (h(a1), . . . , h(an)) for all a1, . . . , an ∈ A.

Lemma 9. If h is a Σ-abstraction from S to ∆ then hn is a Σ-abstraction from Sn to ∆n.

Proof Let � ∈ F (2) and t = (s1, . . . , sn), t′ = (s′1, . . . , s
′
n) ∈ dom(S)n. Then we have:

hn(t�Sn

t′) = (h(s1 �S s′1), . . . , h(sn �S s′n)) definitions of hn and Sn

= (h(s1)�∆ h(s′1), . . . , h(sn)�∆ h(s′n)) since h is homomorphism
= (h(s1), . . . , h(sn))�∆n

(h(s′1), . . . , h(s′n)) definition of ∆n

= hn(t)�∆n

hn(t′) definition of hn

Finally, for both constants c ∈ C we have:

hn(cS
n

) = hn(cS , . . . , cS) definition Sn

= (h(cS), . . . , h(cS)) definition hn

= (c∆, . . . , c∆) since h is homomorphism
= c∆

n

definition of ∆n

6.2. Abstractions of Concrete Differences

Given that R+ is a Σ-algebra with signature Σ = F
(2)
pos-arith ∪ Cpos-arith, we have that R2

+ is
also a Σ-algebra with the same signature.

We now show how to abstract the concrete differences in R2
+ to abstract difference. A generic

manner to do so is to start with some some partition h : R2
+ → ∆ into a finite set ∆. The

elements of this set will be called the abstract differences. The function h says how to abstract
concrete to abstract differences. Since it is a partition, it splits R2

+ into finitely many equivalence
classes.

For any partition h : R2
+ → ∆, there is a unique manner to define an interpretation .∆ such

that (∆, .∆) becomes Σ-structure with domain ∆ and h a Σ-abstraction. For any constant c ∈ C
we have to define c∆ = h(cR

2
+) and for any function symbol � ∈ F (2) we have to define a ternary

relation �∆, which seen as set-valued function �∆ : ∆ ×∆ → 2∆ must satisfy for all abstract
values d1, d2 ∈ ∆:

d1 �∆ d2 = {h(r1 �R+ r2, r
′
1 �R+ r′2) | h(r1, r

′
1) = d1, h(r2, r

′
2) = d2}

Lemma 10. h : R2
+ → ∆ is a Σ-abstraction where Σ = F

(2)
pos-arith ∪ Cpos-arith.

Proof For any p1 = (r1, r
′
1), p2 = (r2, r

′
2) ∈ R2

+ the second condition for homomorphisms

follows for all � ∈ F (2)
pos-arith:

h(p1 �R2
+ p2) = h(r1 �R+ r2, r

′
1 �R+ r′2) ∈ h(p1)�∆ h(p2)

Finally, for all constants c ∈ Cpos-arith we have by definition that h(cR
2
+) = c∆.

12



d d′ d +∆3 d′ d ∗∆3 d′a a
{
a
} {

a
}a `

{
a
,∼∼∼,

`
} {

a
,∼∼∼,

`
}a ∼∼∼ {

a
} {

a
,∼∼∼}

d d′ d +∆3 d′ d ∗∆3 d′

∼∼∼ ∼∼∼ {∼∼∼} {∼∼∼}` `
{
`
} {

`
}` ∼∼∼ {

`
} {

`
,∼∼∼}

c c∆3

0 ∼∼∼
1 ∼∼∼

Figure 11: Interpretation of Σ-structure ∆3.

6.3. The Σ-Structure ∆3

We continue with the signature of arithmethics Σ = F
(2)
pos-arith]Cpos-arith Our next objective is

to recall the abstraction of concrete differences from the Σ-algebra R+ into the finite Σ-structure
with domain ∆3 = {

a
,
`
,∼∼∼} that is well-known from qualitative reasoning (see e.g. [24]). For

this we start with the function h∆3(r, r′) ∈ ∆3 such that for any r, r′ ∈ R+:

h∆3
(r, r′) =


a

= (0, 1) if r < r′`
= (1, 0) if r > r′

∼∼∼ = (0, 0) if r = r′

We define the ternary relation +∆3 as the relation that is symmetric in the first two arguments
and has the set-valued reinterpretation d +∆3 d′ ⊆ ∆3 in Figure 11 for all d, d′ ∈ ∆3. The
definition of ∗∆3 is given in analogy in the same figure. The interpretation of the constants are
1∆3 = 0∆3 = ∼∼∼. By Lemma 10, h∆3

: R2
+ → ∆3 is a Σ-abstraction.

6.4. The Σ-Structure ∆6

We next recall the abstraction of concrete differences to the finite Σ-structure with domain
∆6 = {↑, ↓,∼,⇑,⇓,≈} that was introduced for gene knockout prediction in [8]. For defining this
Σ-structure, we start with the function h∆6

: R2
+ → ∆6 such that for any two numbers r, r′ ∈ R+:

h∆6(r, r′) =

 ↑= (1, 2) if 0 6= r < r′

↓= (2, 1) if r > r′ 6= 0
∼= (1, 1) if r = r′ 6= 0

h∆6(r, r′) =

 ⇑= (0, 2) if 0 = r < r′

⇓= (2, 0) if r > r′ = 0
≈= (0, 0) if r = r′ = 0

We define the ternary relation +∆6 as the relation that is symmetric in the first two arguments
and has the set-valued reinterpretation d +∆6 d′ ⊆ ∆6 in Figure 12 for all d, d′ ∈ ∆6. The
relation ∗∆6 is defined in the same style in Figure 12. The constants are interpreted as 0∆6 =≈
and 1∆6 =∼. By Lemma 10, h∆6

: R2
+ → ∆6 is a Σ-abstraction.

7. First-Order Logic

We first recall the standard first-order logic and then show how to enhance it with n-tuples
without increasing the expressiveness.

7.1. Standard First-Order Logic

We fix a set of variables V (for instance V = N). The variables in V will be ranged over by x
and y. The signature Σ = F (2) ] C is arbitrary here.

The set of first-order expressions e ∈ EΣ and first-order formulas φ ∈ FΣ are constructed
according to the abstract syntax in Figure 13 from the symbols in the signature Σ, the variables
in V, the first-order connectives, and the equality symbol

.
=. As shortcuts, we define the formula
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d d′ d +∆6 d′

↑ ↑ {↑}
↑ ↓ {↑,∼, ↓}
↑ ∼ {↑}
↑ ⇑ {↑}
↑ ⇓ {↑, ↓,∼}
↑ ≈ {↑}

d d′ d +∆6 d′

⇑ ↓ {↑,∼, ↓}
⇑ ∼ {↑}
⇑ ⇑ {⇑}
⇑ ⇓ {↑,∼, ↓}
⇑ ≈ {⇑}
⇓ ⇓ {⇓}

d d′ d +∆6 d′

∼ ∼ {∼}
∼ ≈ {∼}
∼ ↓ {↓}
∼ ⇓ {↓}
↓ ↓ {↓}
↓ ⇓ {↓}

d d′ d +∆6 d′

≈ ≈ {≈}
≈ ↓ {↓}
≈ ⇓ {⇓}

c c∆6

0 ≈
1 ∼d d′ d ∗∆6 d′

↑ ↑ {↑}
↑ ↓ {↑,∼, ↓}
↑ ∼ {↑}
↑ ⇑ {⇑}
↑ ⇓ {⇓}
↑ ≈ {≈}

d d′ d ∗∆6 d′

⇑ ↑ {⇑}
⇑ ∼ {⇑}
⇑ ⇑ {⇑}
⇑ ⇓ {≈}
⇑ ≈ {≈}
⇓ ⇓ {⇓}

d d′ d ∗∆6 d′

∼ ∼ {∼}
∼ ≈ {≈}
∼ ↓ {↓}
∼ ⇓ {⇓}
↓ ↓ {↓}
↓ ⇓ {⇓}

d d′ d ∗∆6 d′

≈ ≈ {≈}
≈ ↓ {⇓}
≈ ⇓ {⇓}

Figure 12: Interpretation of Σ-structure ∆6.

true =def 1
.
= 1 and for any sequence of formulas φ1, . . . , φn we define ∧ni=1φi as φ1 ∧ . . . ∧ φn

which is equal to true if n = 0. We define formulas e
.

6=0 by ¬e .
= 0.

The semantics of expressions in Figure 13 is defined such that the following formula becomes
true in the structure ∆3 taken with the signature extended with extra constants Σ[dom(∆3)]:

a
+

` .
=

a

∧
a

+
` .

=
`

∧
a

+
` .

= ∼∼∼

The first reason is that relations are reinterpreted as set-valued functions by the semantics of
first order logic. In paricular, we have

a
+∆3

`
= ∆3. The second reason is that the meaning of

the equality operator
.
= of the logic is nondetermistic equality, that is the nondisjointness. Also

note that the following formula is unsatisfiable:

∃x. (x
.
=

a
∧ x

.
=

`
)

This is since for any variable assignment the expression x must evaluated to a singleton, which
cannot contain both

a
and

`
. Another way to see this is that ∃x. (x

.
=

a
∧x .

=
`

) is equivalent
to

` .
=

a
which evaluates to false.

More generally, the semantics of a formula φ ∈ FΣ is a truth value, which depends on the Σ-
structures S of interpretation and on a variable assignment α : V → dom(S). Any Σ-expressions
e ∈ EΣ denotes a subset of values in dom(S), which will be singleton in case that S was a Σ-
algebra. The semantic of equations e

.
= e′ is, as expected when interpreted over Σ-algebras S: the

unique values of e and e′ in S must be equal. However, we will also need to interpret equations
e
.
= e′ over Σ-structures. This is why, any expression e denotes a subset of the Σ-structure, not

just a single element. We can then interpret equality as nondisjointness, i.e., e
.
= e′ holds in a

Σ-structure S if e and e′ are interpreted as nondisjoint subsets of dom(S).
A variable assignment into a Σ-structure S is a partial function α : V → dom(S) for some

subset V ⊆ V. Let S be a Σ-structure and α a variable assignment to S. Any Σ-expression e
with fv(e) ⊆ V can be interpreted as an element of dom(S) and any Σ-formula φ ∈ FΣ with
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First-order expressions and formulas:

e ∈ EΣ ::= x | c | e� e′ where � ∈ F (2), c ∈ C
φ ∈ FΣ ::= e

.
= e | ∃x.φ | φ ∧ φ | ¬φ where x ∈ V

Set-valued interpretation of expressions: JeKα,S ⊆ dom(S), where S is a Σ-
structures and α : V → dom(S) where V contains all free variables.

JcKα,S = {cS} JxKα,S = {α(x)} Je� e′Kα,S = ∪{s�S s′ | s ∈ JeKα,S , s′ ∈ Je′Kα,S}

Interpretation of formulas as truth values JφKα,S ∈ B:

Je .
= e′Kα,S =

{
1 if JeKα,S ∩ Je′Kα,S 6= ∅
0 else

Jφ ∧ φ′Kα,S = JφKα,S ∧B Jφ′Kα,S

J¬φKα,S = ¬B(JφKα,S) J∃x.φKα,S =


1 if exists s ∈ dom(S).

JφKα[x/s],S = 1
0 else

Figure 13: Syntax and semantics of expressions and formulas of first-order logic.

o ∈ OnΣ ::=
.
πi(x) | c | o� o where 1 ≤ i ≤ n, c ∈ C and � ∈ F (2).

ψ ∈ Fn
Σ ::= o

.
= o′ | ∃x.ψ | ψ ∧ ψ | ¬ψ where x ∈ V

Figure 14: Expressions and formulas of the first-order logic with n-tuples.

fv(φ) ⊆ V as a Boolean value. The set of solutions of a formula φ ∈ FΣ over a Σ-structure S
with respect to some set of variables V ⊇ fv(φ) is defined by:

solSV (φ)={α : V → dom(S) | JφKα,S = 1}

If V = fv(φ) then we omit the index V , i.e., solS(φ) = solSV (φ).

7.2. First-Order Tuple Logic

We next extend the first-order logic to n-tuples where the parameter n is fixed. In applica-
tions, we will use the case n = 2, that is the first-order logic with pairs. Back and forth compilers
from first-order logic with and without tuples will be convenient later on.

The syntax of first-order logic with n-tuples is given in Figure 14. The expressions o ∈ OnΣ
are like the expression e ∈ EΣ except that variables x are now replaced by projection expressions
.
πi(x) where 1 ≤ i ≤ n. The reason is that any variable does now denote an n-tuple of values,
rather than a single value (while the interpretation of constants and function symbols remain
unchanged). The only change in the semantics is that variables assignment β do now map to
n-tuples of values of the domain, and that J

.
πi(x)KS,β = {πi(β(x))}. The set of solutions of a

formula ψ ∈ Fn
Σ over a Σ-structure S is defined as follows:

n-solS(ψ)={β : fv(ψ)→ dom(S)n | JψKβ,S = 1}

We next show how to express any first-order formulas in FΣ, interpreted over a tuple algebra
Sn, by some formulas in Fn

Σ, interpreted over S. In a first step, we convert first-order expression
in e ∈ EΣ – that we will interpret over the Σ-algebra Sn – to n projected expressions Πi(e) ∈ OnΣ
where 1 ≤ i ≤ n. For all operators � ∈ F (2) and constants c ∈ C we define:

Πi(e� e′) =def Πi(e)�Πi(e
′) Πi(x) =def

.
πi(x) Πi(c) =def c
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In the second step, we convert any formula φ ∈ FΣ without tuples – that will be interpreted
in the tuple algebra Sn – to some formula 〈φ〉n ∈ Fn

Σ with tuples.

〈e .
= e′〉n =def ∧ni=1Πi(e)

.
= Πi(e

′) 〈φ ∧ φ′〉n =def 〈φ〉n ∧ 〈φ′〉n
〈¬φ〉n =def ¬〈φ〉n 〈∃x.φ〉n =def ∃x.〈φ〉n

Lemma 11. For any e ∈ EΣ, Σ-algebra S, n ≥ 1, and β : V → dom(S)n with V(φ) ⊆ V ⊆ V:

JeKβ,S
n

= J(Π1(e), . . . ,Πn(e))Kβ,S

Proof sketch. By induction on the structure of expressions in EΣ.

Proposition 12. For any φ ∈ FΣ, Σ-algebra S, and n ≥ 1: solS
n

(φ) = n-solS(〈φ〉n).

Proof sketch. By induction on the structure of formulas in FΣ. We only show the base case of
Σ-equations. So let φ is a Σ-equation of the form e

.
= e′ where e, e′ ∈ EΣ and β a variable

assignment β : V → dom(S)n such that V(φ) ⊆ V ⊆ V. Then:

solS
n

(e
.
= e′) = {β | Je .

= e′Kβ,S
n

= 1}
Lemma 11 = {β | J

∧n
i=1 Πi(e)

.
= Πi(e

′)Kβ,S = 1}
= {β | J〈e .

= e′〉nKβ,S = 1}
= n-solS(〈e .

= e′〉n)

The inductive cases for the other formulas are straightforward.

7.3. Polynomial Equations

In the case of the arithmetic signature Σ = F
(2)
pos-arith ] Cpos-arith, the arithmetic equations

e
.
= e′ ∈ FΣ provided by the formulas of standard FO-logic subsume the usual polynomial

equations with natural coefficients. We will use the following notation for writing polynomials.
For any natural n and expression e, e1, . . . , en ∈ EΣ, we define the expression

∏n
i=1 ei = e1∗. . .∗en,

which is equal to 1 if n = 0 and
∑n
i=1 ei = e1 + . . .+en which is equal to 0 if n = 0. Furthermore,

let en =
∏n
i=1 e and ne =def

∑n
i=1 e. The analogous definitions no and on can be made for object

expression in o ∈ OnΣ of the FO-tuple logic instead of expression in e ∈ EΣ of the standard
first-order logic.

Example 13. Let φ ∈ FΣ be the polynomial equation 3x + 4y5 .
= 0 of the standard FO-logic.

Proposition 12 shows that φ has the same solutions over R2
+ than the formula 〈φ〉2 ∈ F2

Σ of the
tuple FO-logic over R+. The latter is the system of polynomial equations 3

.
π1(x) + 4

.
π1(y)5 .

=
0 ∧ 3

.
π2(x) + 4

.
π2(y)5 .

= 0.

Concrete differences can be described by systems of polynomial equations of the standard FO-
logic but interpreted over R2

+. As shown by Proposition 12, such systems can thus be mapped
to systems of polynomial equations in the FO-pair logic, but now interpreted over R+. This is
done by copying each equation over R2

+ into two equations of R+, as illustrated by the above
example.

Our next objective is to introduce fresh variables for projections in order to rewrite equation
systems from the FO-pair logic into equation systems from the standard FO-logic. For instance,
when given two fresh variable generators ν1 and ν2, the system of polynomial equations 3

.
π1(x)+

4
.
π1(y)5 .

= 0 ∧ 3
.
π2(x) + 4

.
π2(y)5 .

= 0 in the FO-pair logic can be mapped to the systems of
polynomial equations 3ν1(x) + 4ν1(y)5 .

= 0∧ 3ν2(x) + 4ν2(y)5 .
= 0 in the standard FO-logic. The

4 fresh variables such as νi(x) and νi(y) correspond to the projections
.
πi(x) and

.
πi(y) respectively.

With respect to the standard FO-logic, we can thus rewrite any system of polynomial equation
over R+

2 to a system of polynomial equation over R+, so that the solutions correspond. The
unique role of the FO-pair logic is to serve us as an intermediate language for this purpose.
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7.4. From first-order tuple logic to Standard First-order Logic

More generally, we wish to rewrite any FO-tuple formula ψ ∈ FnΣ into a standard FO formula
ν̃(ψ) ∈ FΣ by introducing fresh variables for projections. For this, we fix n generators of fresh
variables ν1, . . ., νn : V → V. We then map any expression o ∈ OnΣ with projections to some
expressions ν̃(o) ∈ EΣ without new variables:

ν̃(
.
πi(x)) =def νi(x), ν̃(c) =def c, ν̃(o� o′) =def ν̃(o)� ν̃(o′).

And finally, we map any formula ψ ∈ FnΣ with projections to some formula ν̃(ψ) ∈ FΣ with fresh
variables:

ν̃(o = o′) =def ν̃(o) = ν̃(o′) ν̃(¬ψ) =def ¬ν̃(ψ)
ν̃(ψ ∧ ψ′) =def ν̃(ψ) ∧ ν̃(ψ′) ν̃(∃x.ψ) =def ∃ν1(x) . . . ∃νn(x). ν̃(ψ)

Given an variable assignment β : V → dom(S)n with V ⊆ V, we define ν(β) : ]ni=1νi(V ) →
dom(S) such that for all x ∈ V :

ν(β)(νi(x)) = πi(β(x)))

Function ν is a bijection with range {α | α : ]ni=1νi(V )→ dom(S)}. The inverse of this function
satisfies ν-1(α)(x) = (α(ν1(x)), . . . , α(νn(x)) for all α in the range and all x ∈ V .

Lemma 14. For any expression o ∈ OnΣ and variable assignment β : V → dom(S)n with
V(o) ⊆ V ⊆ V we have Jν̃(o)KS,ν(β) = JoKβ,S.

Proof sketch. By induction on the structure of Σ-expressions o ∈ OnΣ.

Proposition 15. For any ψ ∈ FnΣ, Σ-structure S, and n ≥ 1: n-solS(ψ) = ν-1(solS(ν̃(ψ))).

Proof We first prove the following claim is by induction on the structure of Σ-formulas in FnΣ,
where the base case follows from Lemma 14.

Claim 16. For any variable assignment β : V → dom(S)n with V ⊆ V and formula ψ ∈ FnΣ we
have Jν̃(ψ)KS,ν(β) = JψKβ,S.

The proof of the claim is straightforward by induction on the structure of Σ-formulas in FnΣ.
Finally, the claim implies the proposition as follows:

β ∈ n-solS(ψ) ⇔ ν(β) ∈ n-solS(ν̃(ψ)) previous claim
⇔ ν-1(ν(β)) ∈ ν-1(n-solS(ν̃(ψ)))
⇔ β ∈ ν-1(n-solS(ν̃(ψ)))

7.5. Commutation Property

As above, we consider n fresh variable generators ν1, . . . , νn and the operator ν-1 that maps
object assignments of freshly generates variables to n-tuple assignments. We next show a com-
mutation property of the operator ν-1 with Σ-abstractions.

Lemma 17. For any Σ-abstraction h : S → ∆ and assignment of fresh variables α : ]ni=1νi(V )→
dom(S):

ν-1(h ◦ α) = hn ◦ ν-1(α)
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Proof For any variable x ∈ V we have:

ν-1(h ◦ α)(x) = (h(α(ν1(x))), . . . , h(α(νn(x))))
= hn((α(ν1(x))), . . . , α(νn(x)))
= hn(ν-1(α)(x))
= (hn ◦ ν-1(α))(x)

Proposition 18. For any finite set V ⊆ V, subset R of variable assignments of type ]ni=1νi(V )→
dom(S), and Σ-abstraction h : S → ∆:

ν-1(h ◦R) = hn ◦ ν-1(R)

Proof By Lemma 17: ν-1(h ◦R) = {ν-1(h(α)) | α ∈ R} = {hn(ν-1(α)) | α ∈ R} = hn ◦ ν-1(R).

8. Difference Abstraction

We next recast the notions of difference abstractions from [8, 10, 9] by applying our notion

of Σ-abstractions to concrete difference in the Σ-algebra R2
+, where Σ = F

(2)
pos-arith ] Cpos-arith.

More generally, let S be a Σ-algebra, such as the algebra R2
+ of concrete differences, and

V ⊆ V a subset of variables. For any two variable assignments α, α′ : V → dom(S), we define
an assignment of variables to pairs of elements in the domain of the structure

diff(α, α′) : V → dom(S)2

that we call the differences of α and α′, such that for all variables x ∈ V , diff(α, α′)(x) =
(α(x), α′(x)). For any subset R of variable assignments of type V → dom(S) we define the set
of differences of assignments in R by:

diff(R) = {diff(α, α′) | α, α′ ∈ R}

Definition 19. For any Σ-abstraction h : S2 → ∆ and formula φ ∈ FΣ we define the difference
abstraction of the S-solution set of φ by: solS(φ)∆ = h ◦ diff(solS(φ))).

The original definition of sol(φ)∆6 in [8] was similar, but did not make the respective roles
of diff and h∆6 : R2

+ → ∆6 explicit. By having done so, we can now state that the difference
abstraction of the R+-solution sets of a formula is the R2

+-solution set of the same formula.

Lemma 20. For any formula φ ∈ FΣ and Σ-algebra S: diff(solS(φ)) = solS
2

(φ).

Proof For all α : V → dom(S), α′ : V → dom(S), α, α′ ∈ solS(φ) we can construct the
variable assignment α′′ : V → dom(S)2 with diff(α, α′) = (α(x), α′(x)) = α′′(x). So we have

diff(solS(φ)) ⊆ solS2

(φ).

Conversely, for all variable assigment α′′ : V → dom(S)2, α′′ ∈ solS
2

(φ) we can gener-
ate two variable assignments α : V → dom(S), α′ : V → dom(S) ∈ solS(φ) with ∀x ∈
V, α(x) = π1(α′′(x)) ∧ α′(x) = π2(α′′(x)). So we have solS

2

(φ) ⊆ diff(solS(φ)), and thus fi-

nally diff(solS(φ)) = solS
2

(φ).

As an immediate consequence, we have for any Σ-abstraction h : S2 → ∆ that sol(φ)∆ =

h ◦ solS2

(φ). Our next objective is to show that we can overapproximate the set sol(φ)∆ by
sol∆(φ) (Corollary 24).
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Lemma 21. Let h : S′ → ∆ be a Σ-abstraction and α : V → dom(S′) and a variable assignment.
For any expression e ∈ EΣ with V (e) ⊆ V : h(JeKS

′,α) ⊆ JeK∆,h◦α.

Proof sketch. Straightforward by induction on the structure of expressions e ∈ EΣ.

Proposition 22. Let h : S′ → ∆ be a Σ-abstraction and α : V → dom(S′) and a variable
assignment. For any positive formula φ ∈ FΣ with V (φ) ⊆ V : JφKS

′,α ≤ JφK∆,h◦α.

Proof The proof is by induction on the structure positive Σ-formulas φ. If φ is some equation
e
.
= e′ then it holds by Lemma 21 that: h(JeKS

′,α) ⊆ JeK∆,h◦α and h(Je′KS
′,α) ⊆ Je′K∆,h◦α. Hence:

Je .
= e′KS

′,α = 1 ⇔ JeKS
′,α ∩ Je′KS

′,α 6= ∅
⇔ h(JeKS

′,α) ∩ h(Je′KS
′,α) 6= ∅

⇒ JeK∆,h◦α ∩ Je′K∆,h◦α 6= ∅ Lemma 21
⇔ Je .

= e′K∆,h◦α = 1

This shows that Je .
= e′KS

′,α ≤ Je .
= e′K∆,h◦α as required. We next consider the case where φ is

a conjunction of the form φ′ ∧ φ′′.

Jφ′ ∧ φ′′KS′,α = Jφ′KS
′,α ∧B Jφ′′KS

′,α

≤ Jφ′K∆,h◦α ∧B Jφ′′K∆,h◦α induction hypothesis
= Jφ′ ∧ φ′′K∆,h◦α

The last case is where φ is an existentially quantified formula of the form ∃x.φ′.

J∃x.φ′KS′,α = 1 ⇔ (exists s ∈ dom(S′). Jφ′Kα[x/s],S′
) = 1

⇒ (exists s ∈ dom(S′). Jφ′Kh◦α[x/s],∆) = 1 induction hypothesis
⇔ J∃x.φ′K∆,h◦α = 1

This shows that J∃x.φ′KS′,α ≤ J∃x.φ′K∆,h◦α as required.

Theorem 23. Let h : S′ → ∆ be a Σ-abstraction and α : V → dom(S′) and a variable
assignment. For any positive formula φ ∈ FΣ with V(φ) ⊆ V :

h ◦ solS
′
(φ) ⊆ sol∆(φ)

Proof Let h be Σ-abstraction from S′ to ∆ and φ ∈ FΣ a positive formula. For any variable

assignment α to dom(S′), we know that JφKS
′,α ≤ JφK∆,h◦α by Proposition 22 since φ is positive.

This is equivalent to {h ◦ α | α ∈ solS
′
(φ)} ⊆ sol∆(φ) and thus h ◦ solS′

(φ) ⊆ sol∆(φ) as
required.

Corollary 24 (John’s Theorem [8, 10]). For any Σ-abstraction h : S2 → ∆ and positive
first-order formula φ ∈ FΣ:

solS(φ)∆ ⊆ sol∆(φ)

Proof With the Σ-stucture S′ = S2, this follows from Lemma 20 and Theorem 23.

solS(φ)∆ = h ◦ diff(solS(φ)) = h ◦ solS
2

(φ) ⊆ sol∆(φ)

If ∆ is finite then the set sol∆(φ) is finite, while solR+(φ) is usually infinite. If furthermore
φ is a conjunctive formula, we can compute the set sol∆(φ) by a finite domain constraint solver
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from φ and the tables of ∆ (such as e.g. Minizinc [12]). In contrast, it remains unclear how to
compute the finite set h ◦ diff(solS(φ)) for infinite structures S. The problem is open, even if φ
is a system of homogeneous linear equations and S = R+, so that the infinite set solS(φ) can be
finitely represented by a triangular matrix.

This is the core of the problem that we will solve in the present paper. Our approach will be
to rewrite formulas φ to R+-equivalent formulas that are h-exact in the following sense:

Definition 25. Let h : S → ∆ be a Σ-abstraction. We call a Σ-formula φ h-exact if:

h(solS(φ)) = sol∆(φ).

For h-exact formulas φ, h(solSV (φ)) can be computed exactly by computing sol∆V (φ) as de-
scribed above.

9. Exact Boolean Abstraction

We recall a recent result from [15] that permits to characterize the boolean abstraction of
the R+-solution set of a mixed linear and nonlinear systems by some hB-exact and B-equivalent
formula, so that the boolean abstraction can be computed exactly by finite domain constraint
programming.

The development of this result was motivated by the needs of the present paper, but was
presented independently for two reasons. First, these results require considerable effort with
complementary techniques based on elementary modes, and second, they are of interest elsewhere,
in particular for computing the sign abstraction as needed for the abstract interpretation of
programming languages.

A linear equation with natural coefficients and no constant term is a formula of FΣ with the

arithmetic signature Σ = F
(2)
pos-arith ] Cpos-arith of the form:

n1x1 + . . . nmxm
.
= nm+1xm+1 + . . .+ npxp

where m, p, n1, . . . , np ∈ N and x1, . . . , xp ∈ V. An equation e
.
= e′ is positive if the right-hand

side e′ is equal to 0. It is called quasi-positive if it is positive or the right-hand side has the form
nx for some natural n and some variable x. A system of equations is a conjunction of equations.

Proposition 26 (Elementary Modes Theorem 15 of [15]). For any system of linear equa-
tions L of size n with m variables we can compute in time O(2mpoly(n)) an R+-equivalent
formula of the form ∃x. L′ of size O(n + m2m) such that L′ is a system of quasi-positive lin-
ear equations, in which all variables on the left hand-side belong to x and all variables on the
right-hand side occur exactly once.

Proof sketch. An R+-EFM of φ is a variable assignment in α ∈ solR+(φ) with a minimal support,
i.e. with a minimal number of variables x such that α(x) 6= 0. It is also well-know that the set
of all R+-EFM of φ can be computed in O(2mpoly(n)) from φ by using for example the reverse
search method for the enumeration of polytope vertices and extreme rays [25]. Furthermore,
any solution in solR+(φ) is equal to a positive linear combination of R+-EFM of φ. This can be
expressed by an R+-equivalent formula ∃x.φ′ such that φ′ is a system of quasi-positive equations,
in which all variables on some left-hand side belong to x and all variables on some right-hand
side occur exactly once.

Definition 27. Consider the signature of arithmetics Σ = F
(2)
pos-arith ] Cpos-arith. A product-

zero-equation in FΣ is a positive polynomial equation of the form z ∗ z′ .= 0 where z, z′ ∈ V. A
(simple) hB-mixed system is a conjunctive formula in FΣ of the form ∃z. L ∧ P where L is a
system of linear equations and P a system of product-zero-equations.
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Note that hB-mixed systems may contain non-positive equations in the linear part L and non-
linear equations in the positive part P . We could also consider more general hB-mixed systems
in which P may be any system of polynomial equations without constant terms, but this will
not be needed in the present paper.

Theorem 28 (Theorem 39 of [15]). For any hB-mixed system φ of size n with m variables
we can compute in O(2mpoly(n)) time an hB-exact formula φ′ of size O(n + m2m) that is R+-
equivalent to φ.

Proof sketch. Consider a hB-mixed system φ = ∃z.(L ∧ P ). We can then replace L by the R+-
equivalent formula ∃x.L′ from Proposition 26. Since L′ is quasi-positive, the variables on the
right hand-side of some equation in L′ occur exactly once, and the variables on the left-hand
sides belong to x, and P is restricted, it can be shown with considerable effort, that the formula
∃z.((∃x.L′) ∧ P ) is indeed hB-exact. So we can chose φ′ equal to this formula.

In order to compute the hB-abstraction of a hB-mixed system φ exactly, we first compute φ′

along the lines of the sketch of the proof ideas of Theorem 28 and Proposition 26. We can then
compute solB(φ′) by finite domain constraint programming.

10. Characterizing Difference Abstractions

We next show how to characterize the difference abstractions to ∆3 and ∆6 of the solution
set of a linear equation system by the solution set of some first-order formulas interpreted over
the finite structure B. We do not know how to find exact equivalent formulas as provided by
in Theorem 28 in the case of boolean abstraction. Instead, we will use this theorem to find a
finitary characterisation of also in the case of difference abstractions. Hereby, we will strongly
rely on properties of definition in the first-order tuple logic, so we introduce the first.

10.1. First-Order Definitions

Our strategy for computing difference abstractions to ∆3 and ∆6 will be to decompose those
into the B-abstraction and first-order definable functions. Therefore, we define next what it
means for function or relation to be defined by a formula of first-order tuple logic.

Definition 29. A FnΣ-definition of arity m is a function F : Vm → FnΣ for which there exists
a formula ψ ∈ FnΣ and a sequence of distinct variables x ∈ Vm such that V(ψ) = {x} and
F (y) = ψ[x/y] for all y ∈ Vm. For any Σ-structure S, F defines the following m-ary relation
FS

n

on dom(S)n:

FS
n

= {(α(π1(x)), . . . , α(πm(x))) | α ∈ n-solS(ψ)}

The formula F (y) states that the values of y are in the relation defined by the fomula ψ.
Which precise sequence y of distinct variables is chosen, does not matter since F (y) = F (x)[x/y],
since the solutions of F (y) and F (x) over structure S correspond to each other modulo renaming
of variable

Lemma 30. For any first-order definition F : Vm → Fn
Σ and sequence y = y1 . . . ym of distinct

variables:
n-solS(F (y)) = {[y1/s1, . . . , ym/sm] | (s1, . . . , sm) ∈ FS

n

}.

Proof This is straightforward.
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Figure 15: Two examples for the minimal support projection: y1 = mspR2
+ (x1) and y2 = mspR2

+ (x2).

10.2. Defining Function Application

We will frequently have to apply functions to relations defined in first-order tuple logic. Let S
be the structure of interest. In the simplest case, we are given a FO-definition F : V2 → Fn

Σ that
defines a total function FS

n

: dom(Sn) → dom(Sn), and a first-order definition G : Vm → Fn
Σ

that defines an m-ary relation GS on dom(S)n. We can then define the application of FS to all
m components GS by the first-order definition Fm(G) such that for all y = y1 . . . ym:

Fm(G)(y) =def ∃z. G(z) ∧
m∧
i=1

F (zi, yi)

where z = z1 . . . zm are fresh variables. A more general definition where FS : dom(Sn)k →
dom(Sn)l will be needed later on. It will be given in Section 10.1 together with formal properties
of such first-order definitions.

10.3. Exact ∆3-Abstraction of Linear Systems

We start with the abstraction of ∆3. We first decompose the abstraction h∆3
into the

boolean abstraction hB and the minimal support projection in R2
+ defined by the following hB-

mixed system in F2
Σ, containing a non-positive linear equation and a product-zero equation, that

is non-linear but positive. For any two variables x, y ∈ V we define:

msp(x, y) =def
.
π1(x) +

.
π2(y)

.
=

.
π2(x) +

.
π1(y) ∧ .

π1(y) ∗ .
π2(y)

.
= 0

The function mspR2
+ serves for minimal support projection, as illustrated geometrically in

Figure 15. The value of mspR2
+(z) is the intersection point of the parallel of the diagonal through z

with either the x-axis or else the y-axis. For any solution α ∈ solR
2
+(msp(x, y)), some component

of α(y) must be equal to zero since π1(α(y))∗π2(α(y)) = 0. The other component must be equal
to |π1(α(x))− π2(α(x))| since π1(α(x))− π2(α(x)) = π1(α(y))− π2(α(y)). Hence:

mspR2
+ = {((r, r′), (0, r′ − r)) | r ≤ r′}
∪ {((r, r′), (r − r′, 0)) | r ≥ r′}

Lemma 31. mspR2
+ is a total function of type R2

+ → R2
+ satisfying h∆3

= h2
B ◦mspR2

+ .

Proof By definition mspR2
+ is a binary relation on R2

+. This binary relation is a total function
satisfying the equation from the lemma due to the equation before the lemma.
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For any first-order definition G : Vm → F2
Σ we defined in Section 10.1 a first-order definition

mspm(G) : Vm → F2
Σ that describes the application of function defined by msp to the m

components of the relation defined by G.

Lemma 32. For any first-order definition G : Vm → F2
Σ and sequence y ∈ Vm:

mspR2
+ ◦ 2-solR+(G(y)) = 2-solR+(mspm(G)(y)))

Proof This lemma is a consequence of the fact that mspR2
+ defines a total function by Lemma

31 and a general property of first-order definitions that will be state in Proposition 47 of Section
14. We could have given it directly after the section on the first-order tuple logic, but prefered
to do it only at the end, when the full generality of such result needed in this paper has become
clear. As parameters for the application of Proposition 47 we choose F = msp : V2 → F2

Σ, ` = 1,
k = 1, n = 2.

We fix two fresh variable generators ν1, ν2 : V → V and define ν(x) and ν-1(x) as before.

Theorem 33. For any any linear formula L(y) ∈ FΣ with m free variables {y} and size n
we can compute in time in time O(22mpoly(n)) a positive conjunctive formula with existential
quantifiers φ(ν(y)) ∈ FΣ with free variables {ν(y)} and of size O(n+m22m) such that:

h∆3 ◦ diff(solR+(L(y))) = ν-1(solB(φ(ν(y))))

Proof Let L : Vm → FΣ be the first-order definition which when applied to y returns the linear
formula L(y).

h∆3 ◦ diff(solR+(L(y)))

Proposition 20 = h∆3
◦ solR

2
+(L(y))

Pair FO Proposition 12 = h∆3
◦ 2-solR+(L2(y)) with L2(y) = 〈L(y)〉2

Decomposition Lemma 31 = h2
B ◦mspR2

+ ◦ 2-solR+(L2(y)))
FO-Definition Lemma 32 = h2

B ◦ 2-solR+(mspm(L2)(y))
Proposition 15 = h2

B ◦ ν-1(solR+(ν̃(mspm(L2)(y))))
Proposition 18 = ν-1(hB ◦ solR+(ν̃(mspm(L2)(y))))

Definition of mspm(L2(y)) = ν-1(hB ◦ solR+(ν̃(∃z. L2(z) ∧
∧m
i=1 msp(zi, yi))))

where z = z1 . . . zm fresh
hB-Mixted systems Theorem 28 = ν-1(solB(φ(ν(y)))) where φ(ν(y)) is a conjunctive

formula that is hB-exact and R+-equivalent to
the hB-mixed system ν̃(∃z. L2(z) ∧

∧m
i=1 msp(zi, yi))

By the hB-mixed systems Theorem 28, the size of φ(ν(y)) is in O(n+m22m) and the time of its
computation in O(22mpoly(n)).

This theorem induces a new algorithm for the exact computation of h∆3
◦ diff(solR+(L(y)))

in time O(poly(n)28m) where n is the size of L(y) and m the number of variables in y. Note
that this upper bound is simply exponential in the worst case, such as the alternative algorithm
sketched in Section 2.

The new algorithm applies Theorem 37 in order to create the formula φ(ν(y)) in time
O(22mpoly(n)). This formula has size O(n+m22m) and 2m variables ν(y). The set of solutions
solB(φ(ν(µ(y)))) can then be computed by a naive generate and test algorithm in time O(22m(n+
m22m)): Given that this set is of cardinality at most 22m, we can compute h∆6 ◦ diff(solR+(L(y)))
from solB(φ(ν(y))) in time 22m by using the equality of the theorem. The overall time for comput-
ing h∆3

◦ diff(solR+(L(y))) is in O(poly(n)22m +m24m) and thus in O(poly(n)24m). In practice,
we can improve this algorithm by computing the set boolean solutions of φ(ν(y)) by finite domain
constraint programming, rather than by a naive generate and test algorithm.
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10.4. Exact ∆6-Abstraction of Linear Systems

The case of ∆6 following the same approach that for ∆3, but is considerably more evolved in
the usage of first-order definitions.

We consider the abstraction h∆6 as an element of the Σ-algebra of total functions of type

R2
+ → R2

+, where Σ = F
(2)
pos-arith]Cpos-arith. For any two functions f, f ′ : R2

+ → R2
+, the addition

is defined by f +R2
+→R2

+ f ′(p) = f(p)+R2
+ f ′(p) for every p ∈ R2

+, and similarly the multiplication

is by f ∗R
2
+→R2

+ f ′(p) = f(p) ∗R
2
+ f ′(p). The following lemma shows that h∆6 is the sum of h∆3

and h2
B in this Σ-algebra.

Lemma 34. h∆6
= h2

B +h∆3
where + = +R2

+→R2
+

Proof Let p = (r, r′) ∈ R2
+. We distinguish the cases for all possible values for h∆6

(p) ∈ ∆6.

Case h∆6(p) =↑. Then 0 < r < r′ so that h2
B(p) = (1, 1) and h∆3(p) =

a
= (0, 1). It follows

that (h2
B +h∆3

)(p) = (1, 2) =↑= h∆6
(p).

Case h∆6
(p) =⇑. Then 0 = r < r′ so that h2

B(p) = (0, 1) and h∆3
(p) =

a
= (0, 1). It follows

that (h2
B +h∆3

)(p) = (0, 2) =⇑= h∆6
(p).

Case h∆6
(p) =↓. Then 0 < r′ < r so that h2

B(p) = (1, 1) and h∆3
(p) =

`
= (1, 0). It follows

that (h2
B +h∆3

)(p) = (2, 1) =↓= h∆6
(p).

Case h∆6(p) =⇓. Then 0 = r′ < r so that h2
B(p) = (1, 0) and h∆3(p) =

`
= (1, 0). It follows

that (h2
B +h∆3)(p) = (2, 0) =⇓= h∆6(p).

Case h∆6(p) =∼. Then 0 < r = r′ so that h2
B(p) = (1, 1) and h∆3(p) = ∼∼∼ = (0, 0). It follows

that (h2
B +h∆3

)(p) = (1, 1) =∼= h∆6
(p).

Case h∆6
(p) =≈. Then 0 = r = r′ so that h2

B(p) = (0, 0) and h∆3
(p) = ∼∼∼ = (0, 0). It follows

that (h2
B +h∆3

)(p) = (0, 0) =≈= h∆6
(p).

Let id-mspR2
+ : R2

+ → (R2
+)2 such that for any p ∈ R2

+ id-mspR2
+(p) = (p,mspR2

+(p)). Fur-
thermore, we define for any two functions g : A → B × C and f : B × C → D the pseudo
composition f • g : A → D such that for all a ∈ A: (f • g)(a) = f(π1(g(a)), π2(g(a))). The
Σ-abstraction h2

B : R2
+ → B2 allows us to define (h2

B)2 : (R2
+)2 → (B2)2

Lemma 35 Decomposition. h∆6
= +R2

+ • (h2
B)2 ◦ id-mspR2

+ .

Proof For any p ∈ R2
+, we have:

h∆6
(p) = h2

B(p) +R2
+ h2

B(mspR2
+(p))

= +R2
+(h2

B(p), h2
B(mspR2

+(p)))

= +R2
+((h2

B)2(p,mspR2
+(p)))

= +R2
+((h2

B)2(id(p),mspR2
+(p)))

= +R2
+ • (h2

B)2 ◦ id-mspR2
+(p)

We can define the ternary relation id-mspR2
+ : R2

+ → R2
+ ×R2

+ in the first-order pair logic by
id-msp : V × V2 → F2

Σ such that for all x, y1, y2 ∈ V:

id-msp(x, y1, y2) =def 〈x = y1〉2 ∧msp(x, y2)
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We next define applications of function defined by id-msp in the first-order logic. In order to deal
with the two output arguments, we use two generators of fresh variables µ1, µ2 : V → V. For any
first-order definition G : Vm → F2

Σ we define a first-order definition id-mspµ
m(G) : V2m → F2

Σ,
such that for any sequence of variables y ∈ Vm and with µ(y) = µ1(y)µ2(y):

id-mspµ
m(G)(µ(y))) =def ∃y. G(y) ∧

m∧
i=1

id-msp(yi, µ1(yi), µ2(yi))

Lemma 36. id-mspR2
+ ◦ 2-solR+(G(y)) =

{
[y/(α(µ1(y)), α(µ2(y))] |

α ∈ 2-solR+(id-mspµ
m(G)(µ(y))))

}
.

Proof This lemma is consequence of the property of first-order definition in the FO-tuple logic
that we will state in Proposition 49 of Section 14. Here we choose as parameters the first-order
definition F = id-mspµ : V × V 2 → F2

Σ, and ` = 1, k = 2, n = 2.

We continue with µ1, µ2, ν1, ν2 four generators of fresh variables from which we define µ and
ν as before.

Theorem 37. For any linear formula L(y) with m free distinct variable y and size n we
can compute in time O(24mpoly(n)) a positive conjunctive formula with existential quantifiers
φ(ν(µ(y))) ∈ FΣ with free variables in ν(µ(y)) and of size O(n+m24m) such that:

h∆6 ◦ diff(solR+(L(y))) = {[y/(β2(ν(µ1(y))) +R2
+ β2(ν(µ2(y))) | y ∈ {y}] | β ∈ solB(φ(ν(µ(y))))}

Proof Let L : Vm → FΣ be the first-order definition which when applied to y returns the linear
formula L(y).

h∆6 ◦ diff(solR+(L(y)))

Proposition 20 = h∆6
◦ solR

2
+(L(y))

Proposition 12 = h∆6
◦ 2-solR+(L2(y)) with L2(y) = 〈L(y)〉2

Dec. Lemma 35 = +R2
+ • (h2

B)2 ◦ id-mspR2
+ ◦ 2-solR+(L2(y))

FO Lemma 36 = +R2
+ • (h2

B)2 ◦ {[y/(α(µ1(y)), α(µ2(y))] | α ∈ 2-solR+(id-mspµ
m(L2)(µ(y)))}

= +
hR2

+ • {[y/(β(µ1(y)), β(µ2(y))] | β ∈ h2
B ◦ 2-solR+(id-mspµ

m(L2)(µ(y)))}
= {[y/(β(µ1(y)) +R2

+ β(µ2(y))] | β ∈ h2
B ◦ 2-solR+(id-mspµ

m(L2)(µ(y)))}

We can compute the h2
B abstraction of the above solution set similarly to the case of ∆3.

h2
B ◦ 2-solR+(id-mspµ

m(L2)(µ(y)))
Proposition 15 = h2

B ◦ ν-1(solR+(ν̃(id-mspµ
m(L2)(µ(y)))))

Proposition 18 = ν-1(hB ◦ solR+(ν̃(id-mspµ
m(L2)(µ(y)))))

Def. of id-mspµ
m = ν-1(hB ◦ solR+(ν̃(∃y. L2(y) ∧

∧m
i=1 id-msp(yi, µ1(yi), µ2(yi))))

Theorem 28 = ν-1(solB(φ(ν(µ(y)))))
on hB-mixed systems where φ(ν(µ(y))) is a conjunctive formula equivalent to the

hB-mixed system ν̃(∃y. L2(y) ∧
∧m
i=1 id-msp(yi, µ1(yi), µ2(yi))

The combination of the above two calculations and the moving of ν-1 to the left yields the
equation stated in the theorem. By the hB-mixed systems Theorem 28, the size of φ(ν(µ(y))) is
in O(n+m24m) and the time of its computation in O(24mpoly(n)).

Note that upper complexity bound of Theorem 37 is slightly different to that of Theorem
33, since we have to create 4m variables for ∆6, in contrast to 2m variables for ∆3. Theorem
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37 induces a new algorithm for the exact computation of h∆6 ◦ diff(solR+(L(y))). It requires
time in O(poly(n)28m) where n is the size of L(y). Hence it is simply exponential in the worst
case, such as the existing algorithm sketched in Section 2. But now we can use finite domain
constraint programming to avoid the naive generate and test approach. This will prove benefical
in practice.

11. Exact Computation of Difference Abstraction with Constraints

We now formalize the general problem of difference abstraction with constraints, and show
how to solve it for h∆3 and h∆6 .

11.1. General Problem

Let Σ = F
(2)
pos-arith ]Cpos-arith. The parameter of the problem is a Σ-abstraction h : R2

+ → ∆
into some finite Σ-structure ∆. We recall that Σ[dom(∆)] is the extension of signature Σ with
additional constants from dom(∆).

Definition 38. The algorithmic problem of difference abstraction with constraints is parame-
terized by a Σ-abstraction h : R2

+ → ∆ and has the following three inputs:

System of linear equations L ∈ FΣ: this system is to be interpreted over R+.

Constraint C ∈ FΣ[dom(∆)]: a first-order formula which is to be interpreted over ∆.

Set of observable variables V ⊆ V(L) ∪ V(C): a finite subset of the free variables of the lin-
ear equation system and the constraint.

The output is the h-abstraction of differences of R+-solutions of L, constrained to the ∆-solutions
of C, and projected to the observable variables in V . With V ′ = V(L) ∪ V(C) this is:

{β|V | β ∈ h ◦ sol
R2

+

V ′ (L) ∩ sol∆V ′(C)}

In the example of the introductory reaction network in Figure 3, the system of linear equations
L ∈ FΣ is given in Figure 4. As non nonlinear constraint C ∈ FΣ[dom(∆)] we can choose the

kinetic constraints in Figure 4 in conjunction with the overproduction target vout-B
.
==↑. As set

observable variables, we may choose whose values represent changes that are controlled externally,
which is the inflow of A and the reactions subject to knockout 3 and 4.

V = {vin-A, v3, v4}

In contrast to the system of linear equation system L, the constraint C may contain arbitrary
arithmetic formulas including non-linear polynomial equations and universal quantifiers. This
is needed to deal with nonlinear kinetic information. This does not make increase the difficulty
of the problem to much, since the constraints are to be interpreted over the finite structure
∆, so that the universal quantifiers in C can be replaced by conjunctions, and the existential
quantifieres by disjunctions.

The general problem could be simplified, if we could compute an h-exact formula φ that is
R2

+-equivalent to L. In this case, it would be sufficient to compute:

sol∆(∃V. φ ∧ C)

which can be done by finite domain constraint programming. However, the characterizations of
the difference abstractions to ∆3 and ∆6 in Theorems 33 and 37 do not provide such h-exact
formulas, so further efforts are needed to solve the above problem. This is what we will do next
for h∆3 and h∆6 .
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11.2. Mixed Structures

For adding a treatment of kinetic constraints over ∆n where n ∈ {3, 6}, we consider the union
B ∪∆n as a relational structure, unifying the functionalities of both structures B and ∆n. For
this, we defined the mixed signature by:

Σmixed
n = {+B, ∗B,+∆n , ∗∆n} ∪ B ∪∆n

Here we reuse the binary functions of B and ∆n as the binary function symbols of Σmixed
n and

the values of B ∪∆n as the constants of Σmixed
n .

Definition 39. For any n ∈ {3, 6}, the mixed structure B∪∆n is the Σmixed
n -structure with the

mixed domain B ∪∆n in which all symbols of Σmixed
n are by themselves, but now with respect to

the mixed domain.

11.3. Difference Abstraction with Constraints for ∆3

Any pair of booleans in B2 \ (1, 1) is an element in ∆3, and vice versa. For solving the
general problem for ∆3 we need to capture this relationship in the mixed first-order logic over
B ∪∆3. For this we consider the partial function pair∆3

⊆ (B ∪∆3)2 × (B ∪∆3) such that for
all v1, v2 ∈ B ∪∆3:

pair∆3
(v1, v2) =

{
(v1, v2) if v1 ∗B v2 = 0 so that (v1, v2) ∈ ∆3

undefined else

The domain of this partial function is dom(pair∆3
) = B2 \ {(1, 1)} = ∆3. Any pair from the

domain is mapped to itself. We can define the ternary relation pair∆3
in the first-order logic of

the mixed structure B ∪∆3 by the function Pair∆3 : V2×V → F
Σmixed

3
such that for all variables

y1, y2, y ∈ V:
Pair∆3(y1, y2, y) =def (y1 = 0 ∧ y2 = 0 ∧ y = ∼∼∼)

∨ (y1 = 0 ∧ y2 = 1 ∧ y =
a

)
∨ (y1 = 1 ∧ y2 = 0 ∧ y =

`
)

According to definition 29, the first-order definition Pair∆3
indeed defines the relation pair∆3

in the mixed structure, that is pair∆3
= PairB∪∆3

∆3
. In order to deal with the two inputs of

pair∆3
, we reconsider two new variable generators ν1, ν2 : V → V. Recall that for any subset

V ⊆ V, structure S, and variable assignment α : ν1(V ) ∪ ν2(V ) → dom(S) we defined ν-1(α) :
V → dom(S)2 such that ν-1(α)(y) = (α(ν1(y)), α(ν2(y))) for all y ∈ V . Next we define for any
first-order definition G : V2m → F

Σmixed
3

a first-order definition Pairm∆3
(G) : Vm → F

Σmixed
3

such

that Pairm∆3
(G)(y) describes an application of Pair∆3

to the all component of solutions of G(y)
for all sequence of variables y = y1 . . . ym:

Pairm∆3
(G)(y) = ∃ν(y). G(ν(y)) ∧

m∧
i=1

Pair∆3
(ν1(yi), ν2(yi), yi)

Lemma 40. Let m ∈ N, G : V2m → F
Σmixed

3
be a first-order definition, y be a sequence of

variables and ν(y) = ν1(y)ν2(y).

ν-1(solB(G(ν(y))) ∩ {α : {y} → ∆3} = solB∪∆3(Pairm∆3
(G)(y))
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Proof The function pair∆3
maps all pairs of booleans in ∆3 to themselves, while being undefined

for all elements of (∆3 ∪ B)2 \∆3. Hence:

ν-1(solB(G(ν(y))) ∩ {α : {y} → ∆3} = pair∆3
◦ ν-1(solB∪∆3(G(ν(y))))

The composition with the partial function pair∆3
on the right is defined in Section 4.1.

As stated there, the composition pair∆3
◦ α is defined only for total functions α such that

ran(α) ⊆ dom(pair∆3
) = ∆3. So a total function pair∆3

◦ α may belong to the composition on
the right only if α satisfies this condition.

Proposition 48 on first-order definitions with F = Pair∆3
: V2 × V → F

Σmixed
3

shows that:

PairB∪∆3

∆3
◦ ν-1(solB∪∆3(G(ν(y)))) = solB∪∆3(Pairm∆3

(G)(y))

Here, the parameters are ` = 2, k = 1 and n = 1. In combination with pair∆3
= PairB∪∆3

∆3
, these

two equations yield the lemma.

Since we will work on the structure B∪∆3, we need to introduce for any φ ∈ FΣ the formulas
φB and φ∆3 that impose the use of ∗B and +B, and respectively ∗∆3 and +∆3 when interpreting
φ. It follows that solB∪∆3(φB) = solB(φ).

Theorem 41 (Solving Difference Abstraction with Constraints for h∆3). For any linear
formula L(y) ∈ FΣ with free variable set {y}, and constraint C(y′) ∈ FΣ[dom(∆3)] with free

variable set {y′}, and V ⊆ {y} ∪ {y′} = V ′ we can compute at most exponential time a formula
over the mixed signature M ∈ F

Σmixed
3

such that:

solB∪∆3(M) = {β|V | β ∈ h∆3
◦ solR

2
+

V ′ (L(y)) ∩ sol∆3

V ′ (C(y′))}

Proof Without loss of generality we can assume that y = y′. If not this can be obtained adding
by for all z ∈ V ′ a redundant equation ν(z)

.
= ν(z) conjunctively to both L(y) and C(y′). Once

this is done we have V ′ = {y} = {y′}.
By Theorem 33 we can compute in at most exponential time a formula φ(ν(y)) ∈ FΣ such

that:
h∆3 ◦ diff(solR+(L)) = ν-1(solB(φ(ν(y))))

The formula M ∈ F
Σmixed

3
can then be defined as follows:

M =def ∃V ′ \ V. Pairm∆3
(φ(ν(y))B) ∧ C(y′)∆3

Note that M can be computed in linear time from φ(ν(y)) and C(y′). We need to show that
formula M satisfies the equation from the theorem. First note that:

solB(φ(y)) = solB∪∆3(φ(y)B)

Lemma 40 on the first-order definition of pair∆3
shows that:

ν-1(solB∪∆3(φ(y)B)) ∩ {α : {y} → ∆3} = solB∪∆3(Pairm∆3
(φ(y)B)

Hence:

ν-1(solB∪∆3(φ(y)B)) ∩ solB∪∆3(C(y)∆3) = solB∪∆3(Pairm∆3
(φ(y)B) ∩ solB∪∆3(C(y)∆3)
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With the equations we can now conclude as follows:

{β|V | β ∈ ν-1(solB(φ(y))) ∩ sol∆3(C(y))}
= {β|V | β ∈ ν-1(solB∪∆3(φ(y)B) ∩ solB∪∆3(C(y)∆3)}
= {β|V | β ∈ solB∪∆3(Pairm∆3

(φ(y)B) ∩ solB∪∆3(C(y)∆3)}
= {β′ | β′ ∈ solB∪∆3(∃V ′ \ V. Pairm∆3

(φ(y)B) ∧ C(y)∆3)}
= solB∪∆3(M)

The set solB∪∆3(M) can be computed by a finite domain constraint programming, since
B ∪ ∆3 is a finite structure. Therefore Theorem 41 yields an algorithm for solving the general
problem of difference abstraction with constraints in the case of ∆3.

11.4. Difference Abstraction with Constraints for ∆6

We next consider the partial function pair -sum∆6
⊆ (B ∪∆6)4 × (B ∪∆6) that maps 2 pairs

of booleans to abstract difference in ∆6 in the sense that for all b1,b2 ∈ B2:

pair -sum∆6
(b1,b2) =

{
b1 +R2

+ b2 if b1,b2 ∈ B2 and b1 +R2
+ b2 ∈ ∆6

undefined else

By using this partial function and Theorem 37 we can rewrite h∆6
◦ diff(solR+(L(y))) for any

system of linear equation L(y) as follows where µ, ν, φ can be chosen as stated by the theorem:

{[y/pair -sum∆6
(β2(ν(µ1(y))), β2(ν(µ2(y)))) | y ∈ {y}] | β ∈ solB(φ(ν(µ(y))))}

We next define the relations on pairs pair -sum∆6
in the mixed pair FO-logic B ∪ ∆6 by the

function Pair -Sum∆6
: V4 × V ∈ F

Σmixed
6

such that for all variables y1, y2, y3, y4, y ∈ V:

Pair -Sum∆6
(y1, y2, y3, y4, y) =def ( y1

.
= 0 ∧ y2

.
= 0 ∧ y3

.
= 0 ∧ y4

.
= 0 ∧ y .

=≈)
∨(y1

.
= 1 ∧ y2

.
= 1 ∧ y3

.
= 0 ∧ y4

.
= 0 ∧ y .

=∼)
∨(y1

.
= 1 ∧ y2

.
= 0 ∧ y3

.
= 0 ∧ y4

.
= 1 ∧ y .

=⇑)
∨(y1

.
= 1 ∧ y2

.
= 1 ∧ y3

.
= 0 ∧ y4

.
= 1 ∧ y .

=↑)
∨(y1

.
= 0 ∧ y2

.
= 1 ∧ y3

.
= 1 ∧ y4

.
= 0 ∧ y .

=⇓)
∨(y1

.
= 1 ∧ y2

.
= 1 ∧ y3

.
= 1 ∧ y4

.
= 0 ∧ y .

=↓)

According to Definition 29, the first-order definition Pair -Sum∆6
indeed defines the partial func-

tion pair -sum∆6
in the mixed structure, that is

pair -sum∆6
= Pair -SumB∪∆6

∆6

We continue with four generators of new variables µ1, µ2, ν1, ν2 : V → V. For any first-order
definition G : V4m → F

Σmixed
6

we next define a first-order definition Pair -Summ
∆6

(G) : Vm →
F

Σmixed
6

. For all sequence of variables y = y1 . . . ym, the formula Pair -Summ
∆6

(G)(y) describes

the application of the partial function defined by Pair -Sum∆6 to the pairs of pairs defined by
G(ν(µ(y))), i.e.:

Pair -Summ
∆6

(G)(y) = ∃ν(µ(y)). G(ν(µ(y))) ∧
m∧
i=1

Pair -Sum∆6
(ν(µ1(yi)), ν(µ2(yi)), yi)

Lemma 42.

solB∪∆6(Pair-Summ
∆6

(G)(y)) =

{
[y/pair-sum∆6

(β2(ν(µ1(y))), β2(ν(µ2(y))) | y ∈ {y}]
| β ∈ solB∪∆6(G(ν(µ(y))))

}
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Proof We use the fact that pair -sum∆6
= Pair -SumB∪∆6

∆6
and the general property of first-order

definition from Proposition 48 with F = Pair -Sum∆6
, ` = 4, k = 1 and n = 1. As four new

variable generators there we use {νi ◦ µj | i, j ∈ {1, 2}}.

solB∪∆6(Pair -Summ
∆6

(G)(y)) = pair -sum∆6
◦
{
α : {y} → B ∪∆6 | ∃β ∈ solB∪∆6(G(ν(µ(y)))).
∀y ∈ {y}. α(y) = β2(ν(µ1(y))), β2(ν(µ2(y)))

}
Proposition 43. For any formula φ(ν(µ(y))) ∈ FΣ and constraint C(y) ∈ FΣ[dom(∆6)] with

the same free variables {y}, and any subset V ⊆ {y} we can compute in linear time a formula
M ∈ F

Σmixed
6

with fv(M) = V such that:

solB∪∆6(M) =

{
α|V |

α = [y/pair-sum∆6
(β2(ν(µ1(y))), β2(ν(µ2(y)))) | y ∈ {y}],

β ∈ solB(φ(ν(µ(y))))}

}
∩{α|V | α ∈ sol∆6(C(y))}

.

Proof We can chose M = ∃{y} \ V. Pair -Summ
∆6

(L(y)) ∧ C(y)∆6 .{
α|V |

α = [y/pair -sum∆6
(β2(ν(µ1(y))), β2(ν(µ2(y)))) | y ∈ {y}],

β ∈ solB(φ(ν(µ(y))))}

}
∩ {α|V | α ∈ sol∆6(C(y))}

= solB∪∆6(Pair -Summ
∆6

(φ(y))} ∩ {α|V | α ∈ solB∪∆6(C(y)∆6) By Lemma 42
= solB∪∆6(M)

Theorem 44 (Solving Difference Abstraction with Constraints for h∆6
). For any linear

formula L(y) ∈ FΣ with free variable set {y}, and constraint C(y′) ∈ FΣ[dom(∆6)] with free

variable set {y′}, and V ⊆ {y} ∪ {y′} = V ′ we can compute in at most exponential time a
formula over the mixed signature M ∈ F

Σmixed
6

such that:

solB∪∆6(M) = {β|V | β ∈ h∆6 ◦ sol
R2

+

V ′ (L(y)) ∩ sol∆6

V ′ (C(y′))}

Proof As for the difference abstraction with constraints for ∆3, without loss of generality we
can assume that y = y′. Once this is done we have V ′ = {y} = {y′}. By Theorem 37, we can
compute it at most exponential time a formula φ(ν(µ(y))) ∈ FΣ such that:

h∆6
◦ diff(solR+(L(y))) = {[y/(β2(ν(µ1(y))) +R2

+ β2(ν(µ2(y))) | y ∈ {y}] | β ∈ solB(φ(ν(µ(y))))}

With the definition of pair -sum∆6
we obtain:

h∆6
◦ diff(solR+(L(y))) =

{
α|V |

α = [y/pair -sum∆6
(β2(ν(µ1(y))), β2(ν(µ2(y)))) | y ∈ {y}],

β ∈ solB(φ(ν(µ(y))))}

}
Finally from Proposition 43, we can compute in linear time a formula M ∈ F

Σmixed
6

such that

solB∪∆6(M) =

{
α|V |

α = [y/pair -sum∆6
(β2(ν(µ1(y))), β2(ν(µ2(y)))) | y ∈ {y}],

β ∈ solB(φ(ν(µ(y))))}

}
∩{α|V | α ∈ sol∆6(C(y))}

The set solB∪∆6(M) can be computed by a finite domain constraint programming, since B∪∆6

is a finite structure. By combining Theorem 37 and Proposition 43 we obtain an algorithm for
solving the general problem of Section 11 in the case of ∆6.
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12. Overapproximation Heuristics with Minimal Support Consequences

We propose a new heuristics for approximating the problem of difference abstractions with
constraints. Later on, we will see experimentally that this heuristics is close to exact in our main
application while requiring considerably less computation time.

Let h : R2
+ → ∆ be some Σ-abstraction into a finite Σ-structure ∆. The general idea of the

existing heuristics (see e.g. [8]) for approximating the problem of difference abstractions with
constraints from Definition 38 is as follows. Given a linear equation system L ∈ FΣ, a constraint
C ∈ FΣ[dom(∆)] and subsets of variable V ⊆ V ′ = V(L) ∪ V(C), we first compute some linear

equation system L′ ∈ FΣ that is a logical consequence of L over R+ with V(L′) ⊆ V ′, and in a
second step the set of abstract solutions:

sol∆(∃V. (L ∧ L′ ∧ C))

by finite domain constraint programming. By John’s theorem in Corollary 24, this set is an

overapproximation of the target of the problem {β|V | β ∈ sol
R+

V ′ (L)∆ ∩ sol∆V ′(C)}.
The choice of which R+-consequence L′ of L to add to L is critical. Generally, L′ is a finite

conjunction of linear equations that are R+-consequences of L. These are all the linear combi-
nations of equations in L. Unfortunately, there are infinitely many such linear combinations, of
which L′ has to choose some finite subset.

We call an equation E ∈ FΣ linear if E has the form n1x1 + . . . nkxk
.
= m1y1 + . . .mlyl for

some pairwise distinct variables xi and yj , natural numbers k, l ≥ 0 and nonzero natural numbers
ni,mj > 0. We call E nontrivial if not k = 0 and l = 0. The support of E is the set of its free
variables V(E). We call E normalized if there not exists a natural number p, n′1, . . . n

′
l,m

′
1, . . .m

′
n

such that ni = p ∗N n′i and mj = p ∗N m′j for all i, j.

Definition 45 (Minimal support linear R+-consequences). A linear equation E ∈ FΣ is
a minimal support linear R+-consequence of a system of linear equations L ∈ FΣ if it satisfies
the following three conditions:

• E is a nontrivial R+-consequence of L,

• not other nontrivial R+-consequence of L has a smaller support than E, and

• E is normalized.

It is not difficult to see that no two different minimal support linear R+-consequences of L
may have the same support. Therefore, the set of minimal support linear R+-consequences of L
is finite and of cardinality at most 2|V(E)|. Given a system of linear equations L ∈ FΣ we denote
the conjunction of all its minimal support linear R+-consequences by:

Lmsc ∈ FΣ

We next show how to compute Lmsc from L. First, we transform L into an integer matrix A
in linear time, such L is equivalent to Ax

.
= 0, where V(L) = {x}. The R+-consequences of L

are thus the linear combination of the rows of A. Since we want to combine the rows of A and
not its columns, we consider the transposed matrix AT . Given a sequence z of with as many
fresh variables as A has rows, the linear combinations of the rows of A (the row space) can be
identified with the following set of integer solutions:

solZ(∃y.ATy
.
= z)
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Since the row space is the orthogonal complement of A’s nullspace solZ(Ax
.
= 0), we have that

each vector corresponding to a R+-consequence of L must be orthogonal to every vector in the
nullspace, and in particular to any of its bases. Let A⊥ be some basis of the nullspace of A,
which can be easily computed by using Gauß algorithm. Then the row space is given by:

solZ(A⊥z
.
= 0)

Since we are interested only in the subset of solutions of the above system which are nonzero,
normalized and with a minimal support, the problem of finding them is simply a particular case
of the computation of the elementary modes of the orthogonal complement of the nullspace of A,
with basis A⊥, but such that nonpositive solutions are considered too. The usual software pack-
ages for computing elementary modes can then be applied to A⊥ to compute such “reversible”
elementary modes [26], or equivalently the problem can be reduced to computing the extreme
rays of a cone and solved with any library for the analysis of polytopes, such as [27, 25].

13. Implementation and Experimentation

We have implemented the algorithm solving the differences abstraction problem with con-
straints in the case of difference abstraction h∆6 and applied them to change prediction in systems
biology

13.1. Implementation

First, we implemented the exact rewriting of linear equation systems for the boolean abstrac-
tion hB. We implemented the rewriting in Python while using the libcdd library for computing
elementary modes [27, 28].

Second, we implemented a solver for first-order constraint in the mixed structure B ∪∆6 by
finite domain constraint programming with the Minizinc tool [12].

Third, we implemented the exact computation of difference abstractions for h∆6
. This was

done in Python based on implementation obtained in the first and second step.
Fourth, we use BioComputing’s Reaction-Network tool to represent reaction networks with

partial kinetic information in XML-format and to infer the linear equation systems and the
nonlinear kinetic constraints. The tools does also support John’s overapproximation algorithm.
We then integrated our exact algorithm for computing difference abstraction with h∆6 into the
tool, so that it can be applied the systems of linear equation and nonlinear constraints obtained
from a reaction network.

Fifth, we implemented the minimal support heuristics again in Python. For this we had to
compute “reversible” elementary modes. We again used the libccd library for this, by reducing the
computation of reversible elementary modes to the computation of irreversible elementary modes.
We used standard Python libraries to applying Gauß algorithm to compute the orthogonal matrix
A⊥.

Sixth, we integrated the minimal support heuristics into BioComputing’s Reaction-Network
tool [29]. We also added a support to compare the solutions sets obtained by John’s overapprox-
imation, the minimal support heuristics, and the exact algorithm.

The graphical output of reaction networks is done with BioCompting’s Network-Graph tool.
It also allows to annotate abstract solution or the elementary flux modes to the network graph,
and is integrated into the Reaction-Network tool. BioComputing’s Network-Graph tool is pub-
licly available, while the other components of BioComputing Reaction-Network tool are not yet
made publicly available.
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Network Count type John’s over- min. support exact
approx. consequences

Simple loop
(Figure 6)

abstract solutions 19 6 6

Leucine overproduction
(Figure 20)

knockouts
abstract solutions

16
292

14
228

14
228

Counter example
(Figure 17a)

abstract solutions ≥ 10000 4454 4374

Figure 16: Predictions for the networks analysed in this paper, obtained respectively by pure abstract interpre-
tation, the heuristics based on minimal support consequences and the exact algorithm.

13.2. Application to Change Prediction of Reaction Networks

The main application of the change prediction algorithm for reaction networks with partial
kinetic information [8, 10] concerns overproduction of the branched chain amino acid Leucine by
the reaction network in Figure 20. Leucine is a predecessor of of the surfactin, a nonribosomal
peptide, that can be used as a surfactant and produced industrially by the bacteria B. Subtilis.
Some of the change predictions obtained for this application where verified successfully in the
bioreactor.

We compare the results of John’s overapproximation, the minimal support heuristics and the
exact algorithm in Figure 16. Beside of the leucine network we also consider the simple loop
network and the counter example in Figure 17a.

For the simple loop network, the exact algorithm shows that there are 6 abstract solutions,
one for each value of ∆6. The minimal support heuristics finds the same 6 abstract solutions,
while by John’s overapproximation returns 19 abstract solutions, of which 13 are not justified.

For the leucine network from Figure 20 the minimal support heuristics finds the same 228
solutions as the exact algorithm. John’s overapproximation algorithm produces 292 solutions
instead, including the 228 justified solutions.

On the other hand, the minimal support heuristics is remarkably faster than the exact algo-
rithm – in the benchmark on leucine overproduction, we have 5 minutes versus 5 hours.

13.3. Counter Example for the Minimal Support Heuristics

We found and implemented the minimal support heuristics some years before finding the
exact algorithm. At that time it was impossible to us to see whether the minimal support
heuristics was exact or not. After having developed and implemented the exact algorithm, we
could eventually evaluate this question. Our experiments showed that the heuristics is indeed
exact for all applications to change prediction of reaction networks in systems biology that we
tested. We then tried to prove in the case of ∆3 that the minimal support heuristics was always
exact, but failed to do so.

Next, we tried to find a counter example in the case of ∆6. For this we developed a random
generator of reaction networks and compared the minimal support heuristics with the exact
algorithm that we implemented for ∆6 only. This made us indeed find a counter example for ∆6

that is given in Figure 17a.
Why the minimal support heuristics admits abstract solutions that are not justified is not

easy to understand.
We can see for instance that v4

.
= v5 + vin-B is a minimal support linear consequence, by

looking at the elementary flux modes of the counter example network in Figure 17b. The list
of all other minimal support linear consequences are given in Figure 18. We can also recognize,
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A B

C

D

E

in-A in-B

in-C

in-D

in-E 64 5

A B

C

D

E

in-A in-B

in-C

in-D

in-E 64 5

(a) Graphical representation.

A B

C

D

E

in-A in-B

in-C

in-D

in-E 64 5

(b) Elementary flux modes.

Figure 17: Counter example for exactness of the minimal support heuristics for ∆6.

2 vin-E
.
= vin-B + vin-C + v6

2 v4
.
= vin-B + vin-C + v6

2 vin-E
.
= vin-B + vin-C + vin-D

vin-C + v6
.
= vin-B + 2 v5

vin-C + vin-D
.
= vin-B + 2 v5

2 v4
.
= vin-B + vin-C + vin-D

vin-E + v5
.
= vin-C + v6

v4 + v5
.
= vin-C + v6

vin-E + v5
.
= vin-C + vin-D

v4 + v5
.
= vin-C + vin-D

vin-E
.
= vin-A + vin-D

v4
.
= vin-A + vin-D

vin-E
.
= vin-A + v6

v4
.
= vin-A + v6

vin-B + v5
.
= vin-A + v6

vin-B + v5
.
= vin-A + vin-D

vin-B + vin-C
.
= 2 vin-A + v6

vin-B + vin-C
.
= vin-A + vin-E

vin-B + vin-C
.
= 2 vin-A + vin-D

vin-B + vin-C
.
= vin-A + v4

v6
.
= vin-D

vin-C
.
= vin-A + v5

v4
.
= vin-E

v4
.
= vin-B + v5

vin-E
.
= vin-B + v5

Figure 18: Minimal support consequences

which of the abstract solutions are unjustified. An example is given in Figure 19. But we could
not explain why this solution is unjustified, or find some nonminimal support consequence that
it violates.
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A
↓

B
∼

C
↑

D
⇑

E
∼

in-A
⇓

in-B
↓

in-C
↑

in-D
⇑

in-E
∼

6
⇑

4
∼

5
↑

Figure 19: An unjustified solution found with the minimal support heuristics.

14. First-Order Function Application

Our next objective is to generalize the definition of function appliction in first-order logic to
functions with higher arities, as used already in special cases, and to prove formal properties of
such defintions.

We will use vector notation all over. We fix `, k, n ∈ N and consider first-order definitions
F : V`×Vk → FnΣ that define a partial function FS

n ⊆ dom(Sn)`×dom(Sn)k for the Σ-structure
S under consideration. For any m, we can lift the first-order definition F to a first-order definition
Fm : Vm` × Vmk → FnΣ where F is applied m-times, such that for all sequences x1, . . . ,x`,
y1, . . . ,yk ∈ Vm:

Fm(x1 . . .x`y1 . . .yk) =def

m∧
i=1

F (x1
i . . .x

`
iy

1
i . . .y

k
i )

For any first-order definition G : Vm` → FnΣ, we introduce a first-order definition Fm(G) :
Vmk → FnΣ such that for all y ∈ Vmk:

Fm(G)(y) =def ∃x. G(x) ∧ Fm(x,y)

where x = (x1 . . .x`) ∈ Vm` is some sequence of fresh variables. Note that fv(Fm(G)(y)) = {y}
so that the precise choice of x is irrelevant.

Lemma 46. Let F : V`+k → FnΣ and G : Vm` → FnΣ be first-order definitions and S a Σ-structure
S. If the relation FS

n ⊆ dom(Sn)`+k is a partial function of type dom(Sn)` × dom(Sn)k then
the relation (Fm)S

n

is a partial function of type dom(Sn)m` × dom(Sn)mk such that:

(Fm)S
n

(GS
n

) = Fm(G)S
n

Proof Let x = x1 . . .x` ∈ Vm` and y = y1 . . .yk ∈ Vmk be sequences of variables such that no
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variables occurs twice in xy. Then:

(Fm)S
n

(GS
n

) = {(Fm)S
n

(α(x)) | α ∈ n-solS(G(x))}
= {α′(y) | α′ ∈ n-solS(Fm(xy)), α′|{x} ∈ n-solS(G(x))}
= {α′(y) | α′ ∈ n-solS(G(x) ∧ Fm(xy))}
= {α′′(y) | α′′ ∈ n-solS(∃x. G(x) ∧ Fm(xy))}
= Fm(G)S

n

For the previous last step note that for any α′ ∈ n-solS(G(x) ∧ Fm(xy)) we can chose α′′ as
the restriction α′|V\{x}. Conversely, for any α′′ ∈ n-solS(∃x. G(x) ∧ Fm(xy)) there must exist a

solution α′ ∈ n-solS(G(x) ∧ Fm(xy)) such that α′′ is the restriction α′|V\{x}.

For the case k = 1 and ` = 1 Lemma 46 yields the following consequence.

Proposition 47 (` = 1 and k = 1). For any FO definition G : Vm → FnΣ and F : V ×V → FnΣ,
sequence of variables y ∈ Vm and Σ-structure S for which the relation FS

n

is a partial function
of type dom(Sn)× dom(Sn):

FS
n

◦ n-solS(G(y)) = n-solS(Fm(G)(y))

Proof From Lemmata 30 and 46:

FS
n ◦ n-solS(G(y))

Lemma 30 = FS
n ◦ {[y/s] | s ∈ GSn}

= {[y/s] | s ∈ (Fm)S
n

(GS
n

)}
Lemma 46 = {[y/s] | s ∈ Fm(G)S

n}
Lemma 30 = n-solS(Fm(G)(y))

For the case of general ` and k = 1, Proposition 47 can be generalized as follows:

Proposition 48 (` ≥ 1 and k = 1). Let G : Vm` → FnΣ and F : V` × V → FnΣ be a
first-order definition, and S a Σ-structure such that the relation FS

n

is a partial function of type
dom(Sn)`×dom(Sn). Then for any y ∈ Vm and fresh variable generators ν1, . . . , ν` the sequence
of variables ν(y) = ν1(y) . . . ν`(y) satisfies:

FS
n

◦ ν-1(n-solS(G(ν(y)))) = n-solS(Fm(G)(y))

where ν-1(α)(y) = (α(ν1(y)), . . . , α(ν`(y))) for all y ∈ V(y) and α : ∪`i=1V(νi(y))→ dom(Sn).

Proof Again from Lemmata 30 and 46, by generalizing and adpatation of the proof of Propo-
sition 47:

FS
n ◦ ν-1(n-solS(G(ν(y))))

Lemma 30 = FS
n ◦ {ν-1[ν(y)/s] | s ∈ GSn}

= {[y/s] | s ∈ (Fm)S
n

(GS
n

)}
Lemma 46 = {[y/s] | s ∈ Fm(G)S

n}
Lemma 30 = n-solS(Fm(G)(y))

For general k ≥ 1 and l = 1, Lemma 46 yields the following generalization of Proposition 47:

Proposition 49 (` = 1 and k ≥ 1). For any first-order definition G : Vm → FnΣ and F :
V × Vk → FnΣ and any structure S such that the relation FS

n

is a partial function of type
dom(Sn)× dom(Sn)k, and any sequences of fresh variables y,y1, . . . ,yk ∈ Vm:

(Fm)S
n

◦ n-solS(G(y)) = {[y/(α(y1), . . . , α(yk)] | α ∈ n-solS(Fm(G)(y1, . . . ,yk))}
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Proof This is another generalization of the proof of Proposition 47:

FS
n ◦ n-solS(G(y))

Lemma 30 = FS
n ◦ {[y/s] | s ∈ GSn}

= {[y/(s1, . . . , sk)] | (s1, . . . , sk) ∈ (Fm)S
n

(GS
n

)}
Lemma 46 = {[y/(s1, . . . , sk)] | (s1, . . . , sk) ∈ Fm(G)S

n

)}
Lemma 30 = {[y/(α(y1), . . . , α(yk)] | α ∈ n-solS(Fm(G)(y1, . . . ,yk))}

15. Conclusion

We presented a new algorithm for computing the difference abstraction over ∆3 and ∆6 of the
solution set of a system of linear equation systems with nonlinear constraints on the difference
abstractions. The algorithm relies on an exact rewriting of linear equation systems with respect
to the boolean abstraction, which can be based on elementary modes. Our reduction uses
decompositions of the difference abstractions h∆3 and h∆6 into the boolean abstractions and
functions on pair algebra R2

+ that can be defined in first-order logic with pairs. Eventually,
we can compute the difference abstractions for systems of linear equation with constraints by
finite domain constraint programming. We implemented our algorithm and applied it to change
prediction of reaction networks with partial kinetic information in systems biology.

We also presented the minimal support heuristics, for approximating the difference abstrac-
tion over ∆3 and ∆6 of the solution set of a system of linear equation systems with nonlinear
constraints. It turns out that the minimal support heuristics is exact for the prime application of
change prediction while requiring much less computation time. It was difficult to find a counter-
example shown that the minimal support heuristics is not always exact. We finally succeeded in
for the case of ∆6 by randomly generating and testing reaction networks. In the case of ∆3 the
question remains open though.

We believe that the presented algorithms are fundamental to develop better change prediction
methods in the future. For this, it is important to not only deal with cycles in the metabolic
parts of reaction networks but also deal with cycles through the regulatory part. An important
challeange in practice is to provide multiple changes prediction. The current approaches, however,
are not sufficiently precise to do so. This is due to the lack of kinetic information. Furthermore,
the current approach can only abstract the differences of steady states, but not account for their
relationship to initial states.

In the longer run, it would be of interest to obtain more quantitative predictions and not only
qualitative predictions. But this would require more precise kinetic information in the reaction
networks and to use more refined difference abstractions for the abstract interpretation.

Acknowledgements. We thank the anonymous reviewers of this journal version and also the
reviewers of the CMSB’2019 version for their helpful and constructive feedback.
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[22] Vincent Danos, Jérôme Feret, Walter Fontana, Russell Harmer, and Jean Krivine. Abstract-
ing the differential semantics of rule-based models: Exact and automated model reduction.
In LICS, pages 362–381. IEEE Computer Society, 2010. ISBN 978-0-7695-4114-3.

[23] Stefan Schuster, Thomas Dandekar, and David A Fell. Detection of elementary flux modes
in biochemical networks: a promising tool for pathway analysis and metabolic engineering.
Trends in biotechnology, 17(2):53–60, 1999.

[24] Kenneth D. Forbus. Qualitative reasoning. In Allen B. Tucker, editor, The Computer
Science and Engineering Handbook, pages 715–733. CRC Press, 1997. ISBN 0-8493-2909-4.

[25] David Avis. A revised implementation of the reverse search vertex enumeration algorithm.
In Polytopes—combinatorics and computation, pages 177–198. Springer, 2000.

[26] Marco Terzer and Jörg Stelling. Large-scale computation of elementary flux modes with bit
pattern trees. Bioinformatics, 24(19):2229–2235, 2008.

[27] Komei Fukuda and Alain Prodon. Double description method revisited. In Franco-Japanese
and Franco-Chinese Conference on Combinatorics and Computer Science, pages 91–111.
Springer, 1995.

[28] M Troffaes. pycddlib-a python wrapper for komei fukudals cddlib, 2018.

39

https://hal.archives-ouvertes.fr/hal-02279942
https://doi.org/10.1007/BF02579150
https://doi.org/10.1007/BF02579150
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119188902.ch3
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119188902.ch3


[29] BioComputing. Biocomputing’s network-graph tool. http://researchers.lille.inria.

fr/~niehren/BioComputing/Network-Graph/doc.html. 2018-07-10.

40

http://researchers.lille.inria.fr/~niehren/BioComputing/Network-Graph/doc.html
http://researchers.lille.inria.fr/~niehren/BioComputing/Network-Graph/doc.html


Ile

Ile

Ile

Leu

Leu

Val

Val

Val

Akb

Glu OxoGlu

Gtp

Keta

Acyl−Coa

Ketb

Ketc

Pyr

Thr

Bcd

BkL

BkdR

CcpA

CodYIlvA

IlvBH

IlvC

IlvD

LeuA

LeuBCD

TnrA

YbgE

YwaA

PIlv−Leu

BSCodY

BSTrnA

BSCcpa

OPBkL−Bcd

YwaA+YbgE

Tbox

in-Thr

in-Glu out-OxoGlu

in-Gtp

out-Ile out-Val out-Leu

in-Pyr

out-Acyl− Coa

1

2

3

4

5

6

7

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

2777

28

29

30

31

32

33

34

35

36

3738

39

40

41

45

46

47

Ile

Ile

Ile

Leu

Leu

Val

Val

Val

Akb

Glu OxoGlu

Gtp

Keta

Acyl−Coa

Ketb

Ketc

Pyr

Thr

Bcd

BkL

BkdR

CcpA

CodYIlvA

IlvBH

IlvC

IlvD

LeuA

LeuBCD

TnrA

YbgE

YwaA

PIlv−Leu

BSCodY

BSTrnA

BSCcpa

OPBkL−Bcd

YwaA+YbgE

Tbox

in-Thr

in-Glu out-OxoGlu

in-Gtp

out-Ile out-Val out-Leu

in-Pyr

out-Acyl− Coa

1

2

3

4

5

6

7

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

2777

28

29

30

31

32

33

34

35

36

3738

39

40

41

45

46

47

Figure 20: Graphical representation of the model that represents a part of the metabolism of the bacteria B.
Subtilis, the branched chain amino-acid: Isoleucine, Leucine and Valine.
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Appendix A. Proofs for Section 7 (First-Order Logic)

Lemma 11. For any e ∈ EΣ, Σ-algebra S, n ≥ 1, and β : V → dom(S)n with V(φ) ⊆ V ⊆ V:

JeKβ,S
n

= J(Π1(e), . . . ,Πn(e))Kβ,S

Proof. By induction on the structure of expressions in EΣ.
Cas of constants c ∈ C.

JcKβ,S
n

= cS
n

= (cS , . . . , cS) = J(Π1(c), . . . ,Πn(c))Kβ,S

Cas of variables x ∈ V.

JxKβ,S
n

= β(x) = β((π1(x), . . . , πn(x))) = J(Π1(x), . . . ,Πn(x))Kβ,S

Cas of expressions e1 � e2 where e1, e2 ∈ EΣ and � ∈ F (2).

Je1 � e2Kβ,S
n

= ∪{(s1 �S
n

s2) | sj ∈ JejKβ,S
n}

ind.hyp. = ∪{(s1 �S
n

s2) | sj ∈ J(Π1(ej), . . . ,Πn(ej))Kβ,S}
= J(Π1(e1)�S Π1(e2), . . . ,Πn(e1)�S Πn(e2)Kβ,S

Proposition 12. For any φ ∈ FΣ, Σ-algebra S, and n ≥ 1: solS
n

(φ) = n-solS(〈φ〉n).

Proof. By induction on the structure of formulas in FΣ. The base case of Σ-equations follows
essentially from Lemma 11. Let β be an assignment variables β : V → dom(S)n with V ⊆ V.
Cas e

.
= e′ where e, e′ ∈ EΣ.

solS
n

(e
.
= e′) = {β | Je .

= e′Kβ,S
n

= 1}
by prev. claim = {β | J

∧n
i=1 Πi(e)

.
= Πi(e

′)Kβ,S = 1}
= {β | J〈e .

= e′〉nKβ,S = 1}
= n-solS(〈e .

= e′〉n)

Cas φ ∧ φ′ where φ, φ′ ∈ FΣ.

solS
n

(φ ∧ φ′) = {β | Jφ ∧ φ′Kβ,Sn

= 1}
= {β | JφKβ,S

n ∧ Jφ′Kβ,S
n

= 1}
ind.hyp. = {β | J〈φ〉nKβ,S ∧ J〈φ′〉nKβ,S = 1}

= {β | J〈φ ∧ φ′〉nKβ,S = 1}
= n-solS(〈φ ∧ φ′〉n)

Cas ¬φ were φ ∈ FΣ.

solS
n

(¬φ) = {β | J¬φKβ,S
n

= 1}
= {β | ¬JφKβ,S

n

= 1}
ind.hyp. = {β | ¬J〈φ〉nKβ,S = 1}

= {β | J¬〈φ〉nKβ,S = 1}
= {β | J〈¬φ〉nKβ,S = 1}
= n-solS(〈¬φ〉n)

42



Cas ∃x.φ were φ ∈ FΣ.

solS
n

(∃x. φ) = {β | J∃x. φKβ,S
n

= 1}
= {β | exists s ∈ dom(S)n. JφKβ[x/s],Sn

= 1}
ind.hyp. = {β | exists s ∈ dom(S)n. J〈φ〉nKβ[x/s],S = 1}

= {β | J∃x. 〈φ〉nKβ,S = 1}
= {β | J〈∃x. φ〉nKβ,S = 1}
= n-solS(〈∃x. φ〉n)

Lemma 14. For any expression o ∈ OnΣ and variable assignment β : V → dom(S)n with
V(o) ⊆ V ⊆ V we have Jν̃(o)KS,ν(β) = JoKβ,S.

Proof. By induction on the structure of Σ-expressions o ∈ OnΣ.
Cas of constants c ∈ C.

Jν̃(c)KS,ν(β) = JcKβ,S

Cas
.
πi(x) where x ∈ V and 1 ≤ i ≤ n.

Jν̃(
.
πi(x))KS,ν(β) = {ν(β)(νi(x))}

= {πi(β(x))}
= JoKβ,S

Cas o1 � o2 where o1, o2 ∈ OnΣ and � ∈ F (2).

Jν̃(o1 � o2)KS,ν(β) = Jν̃(o1)� ν̃(o2)KS,ν(β)

= ∪{(s1 �S s2 | si ∈ Jν̃(oi)KS,ν(β)}
ind.hyp. = ∪{(s1 �S s2 | si ∈ JoiKβ,S}

= Jo1 � o2Kβ,S

Cas
.
πi(o1, . . . , on) where o1, . . . , on ∈ OnΣ.

Jν̃(
.
πi(o1, . . . on))KS,ν(β) = Jν̃(oi)KS,ν(β)

ind.hyp. = JoiKβ,S
= J

.
πi(o1, . . . on)Kβ,S

Claim 16. For any variable assignment β : V → dom(S)n with V ⊆ V and formula ψ ∈ FnΣ we
have Jν̃(ψ)KS,ν(β) = JψKβ,S.

Proof. The proof of the claim is by induction on the structure of Σ-formulas in FnΣ.
Cas o

.
= o′ where o, o′ ∈ OnΣ.

Jo .
= o′Kβ,S = 1 ⇔ JoKβ,S ∩ JoKβ,S 6= ∅

Lemma 14 ⇔ Jν̃(o)KS,ν(β) ∩ Jν̃(o)KS,ν(β) 6= ∅
⇔ Jν̃(o)

.
= ν̃(o′)KS,ν(β) = 1

⇔ Jν̃(o
.
= o′)KS,ν(β) = 1

Cas ψ ∧ ψ′ where ψ,ψ′ ∈ FnΣ.

Jψ ∧ ψ′Kβ,S = 1 ⇔ JψKβ,S ∧ Jψ′Kβ,S = 1
ind.hyp ⇔ Jν̃(ψ)KS,ν(β) ∧ Jν̃(ψ)′KS,ν(β) = 1

⇔ Jν̃(ψ) ∧ ν̃(ψ)′KS,ν(β) = 1
⇔ Jν̃(ψ ∧ ψ′)KS,ν(β) = 1
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Cas ¬ψ where ψ ∈ FnΣ.
J¬ψKβ,S = 1 ⇔ ¬JψKβ,S = 1
ind.hyp. ⇔ ¬Jν̃(ψ)KS,ν(β) = 1

⇔ J¬ν̃(ψ)KS,ν(β) = 1
⇔ Jν̃(¬ψ)KS,ν(β) = 1

Cas ∃x.ψ where ψ ∈ FnΣ.

J∃x.ψKβ,S = 1 ⇔ exist s ∈ dom(S)n.JψKS,β[x/s] = 1
ind.hyp. ⇔ exist s ∈ dom(S)n.Jν̃(ψ)KS,ν(β[x/s]) = 1

⇔ exist s1 ∈ dom(S) . . . sn ∈ dom(S).JψKS,ν(β[νi(x)/si]) = 1
⇔ J∃ν1(x) . . . ∃νn(x).ν̃(ψ)KS,ν(β) = 1
⇔ J∃x.ν̃(ψ)KS,ν(β) = 1

Appendix B. Proofs for Section 8 (Difference Abstraction)

Lemma 21. Let h : S′ → ∆ be a Σ-abstraction and α : V → dom(S′) and a variable assignment.
For any expression e ∈ EΣ with V (e) ⊆ V : h(JeKS

′,α) ⊆ JeK∆,h◦α.

Proof. The proof is by induction on the structure of expressions e ∈ EΣ. Let α be a variable
assignment into dom(S′). For any expressions e = e1 � e2 where � ∈ F (2) we have:

h′(Je1 � e2KS
′,α) = h′(Je1KS

′,α �S′
Je2KS

′,α)

⊆ h′(Je1KS
′,α)�∆ h′(Je2KS

′,α) homomorph.
⊆ Je1K∆,h◦α �∆ Je2K∆,h◦α ind. hyp.
= Je1 � e2K∆,h◦α

For any expression e = x ∈ V we have:

h′(JxKS
′,α) = h′({α(x)}) = JxK∆,h◦α

For constant expressions e = c ∈ C we have:

h′(JcKS
′,α) = h(cS

′
) = c∆ = JcK∆,h◦α homomorphism
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