An optimization software, why and for who?	Existing approaches	VDesign	
000	000000	00000000	00000

VDesign A Formal Problem Optimization Software

Emmanuel Bigeon¹ Jean Bigeon² Eric Atienza³

¹École de Technologie Supérieure, Canada emmanuel.bigeon.1@ens.etsmtl.ca

²Univ. Grenoble Alpes, CNRS, Grenoble INP, G-SCOP, F-38000 Grenoble, France jean.bigeon@grenoble-inp.fr

> ³Intel, Grenoble, France eric.atienza@intel.com

> > May 9, 2018

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

An optimization software, why and for who?	Existing approaches	VDesign	Feature Overview
000	000000	00000000	00000

2 Existing approaches

3 VDesign

4 Feature Overview

Existing approaches

VDesign 00000000 Feature Overview 00000

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Actors in the preliminary design field

Existing approaches

VDesign 000000000 Feature Overview 00000

Characteristics of the models

Model types

Motor, Turbine, Electrical devices...

The easy part

- Continuous models
- Analytical (derivatives available)
- Small decision space

The no so easy part

- Non Linear
- Internal analytical problem resolution parameterized by the decision variables
 - Derivative less trivial

An optimization software, why and for who?	Existing approaches	VDesign	
000	0000000	00000000	00000

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Real life models

Falcon 2000 (Dassault Aviation)

- 1000 equations
- Analytic Model
- $\rightarrow\,$ Gives the wing span, plane size, autonomy

Electrical Motor (Somfy)

- 600 equations
- Analytic Model
- $\rightarrow\,$ Gives the power output, weight, heating...

An optimization software, why and for who?	Existing approaches	VDesign	Feature Overview
000	• 00 0000	00000000	00000

2 Existing approaches

3 VDesign

4 Feature Overview

Existing approaches

VDesign 000000000 Feature Overview 00000

The Standalone Software

Optimization Software

- Provides a formalism for the description of the model
- Solve the optimization

Product Designer

• Fit the problem into the software formalism

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

An optimiza	ation software	, why and for who			Existing approaches	VDesign 00000000	Feature Overview 00000
	~		~	~			

The Standalone Software

Method mastery

The software, oriented for the method allow fine tuning of the parameters for optimal use of the method.

Comparing methods

- Methods are adapted to specific problems (linear, nonlinear, constrained, unconstrained, ...)
- The user is not a specialist of those considerations
- He will test out several methods

Product designer increased workload

The problem has to be described in the formalism of each software

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Existing approaches

VDesign 000000000 Feature Overview 00000

The Aggregating Software

Optimization Expert

- Designs an optimization method
- Implements the method following the Software API

Software

- Provide a unified problem description formalism
- Provide an API for optimization solver
- Drive the optimization process

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Product Designer

• Fit the problem into the software formalism

Existing approaches

VDesign 000000000 Feature Overview 00000

The Aggregating Software

Optimization Expert

- Designs an optimization method
- Implements the method following the Software API

Software

- Provide a unified problem description formalism
- Provide an API for optimization solver
- Drive the optimization process

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Product Designer

- Describe the physical model
- Describe the industrial constraints

An	optimization			
oc				

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

The Aggregating Software

Product designer reduced workload

- One language to learn for all methods
- Easy comparison of methods

Product design update

- Black box
 - Update the function and re-compile it
 - Documentation should be maintained
- Domain Specific Language
 - Easier to read, accessibility without expertise.
 - The more advanced the language capabilities, the hardest to understand.

Existing approaches

VDesign 000000000 Feature Overview 00000

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Preliminary Design Concerns

Confusion of concerns

In preliminary design, the optimization problem definition is dvided in two parts:

- O Physical model definition (little to no variation)
- Physico-economic constraints (possibly frequent and major variations)

Existing approaches

VDesign

Feature Overview

The Preliminary Design, Role-Oriented Software

Physics Expert

Describe the physical model.

Product Sizing Engineer

Imposes physico-economic constraints

Software

Provide formalism and API to the different actors

Optimization Expert

- Designs an optimization method
- Implements the method following the Software API

An optimization software, why and for who?	Existing approaches	VDesign	Feature Overview
000	000000	• 0 000000	00000

2 Existing approaches

3 VDesign

4 Feature Overview

An optimization software, why and for who?	Existing approaches	VDesign	Feature Overview
000	0000000	0000000	00000

VDesign

A suite of tools

- Analytical Editor
- Sizing Table editor
- Optimization Trace

- Computation Server
- Optimization Method API

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Capabilities

- Provide a formalism for the Physics Expert
- Provide an environment for the Product Sizing Engineer
- Exposes an API for the Optimization Expert

An optimization software, why and for who?	Existing approaches	VDesign	
000	000000	0000000	00000

Modeling

Predim - C:\Users\Eliane\Works	paces\Wkspace-predim-Bobine	-		×
🗸 🗁 Coil	√₹ AirCoil ⊠			<u>√x</u>
 ✓ Coll Models √F AirColl > Optimisations 	() ()		2	₩ * Q
	<pre>/ / '' '' '' '' ''''''''''''''''''''''</pre>			
	18 M = mvcu*Math.Pl*a*b*c; 19 /* mvcu: copper density (Kg/m^3) */ 20		~	
			1:0 E	ffacer
	Stop Details			

An optimization software, why and for who?	Existing approaches	VDesign ○○○●○○○○○	Feature Overview 00000
Modeling			

Natural mathematical language formal grammar

Description of the model through equations

 $\| y=a*cos(x)+b*sin(x);$

• No programming language artifacts (var, param, func...)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- Explicit typing (real, matrix, complex) is optional
- Definition order not imposed
- Allows interpretation of the model
 - → Computation of exact derivatives
- Code generation

An optimization software, why and for who?	Existing approaches	VDesign	
000	000000	0000000	00000

Sizing

\sqrt{x} AirCoil \sqrt{B} Optimisations	Propriétés générales								
But as an in the	Projet : Coil			Propriétés générales Projet : Coil					
AirCoil-optim	Modèle : AirCoil	Modèle : AirCoil							
						[∲ •		
	Objective	^							
	Value equality constraint		Nom	Þ	5	Valeur			
	Interval constraint ✓ Thickness: 0.005 < c < 0.1 ✓ Thickness: 0.005 < c < 0.1 ✓ Mass: 20 < M < 100 ✓ DimeterCrite 0.1 < a < 0.5 ✓ Length: 0.1 < b < 1	~	a		4	3.0E-1			
			b		4	5.0E-1			
			c	•	4	1.0E-2			
			Wmag	•	•	Undefined			
			delta		Ð	1.0E6			
			mvcu		•	8.8E3			
	Image: Marchael M		1	•	•	Undefined			
	☑ Density: 0.1E6 < delta < 10E6		Pj	•	•	Undefined			
	✓ TurnCoil: 10 < n < 5000		rhocu		۰	0			
	JoulesLoss: 70 < Pj < 90		L	•	•	1.0E-3			
	Linductance: L = 1E-3		M	•	•	Undefined			
	Mass: M minimize		n		4	1.0E3			
			1				>		
			•				-		

An optimization software, why and for who?	Existing approaches	VDesign	Feature Overview
	0000000	○○○○○●○○○	00000
<u> </u>			

Sizing

What we have

Model with named inputs and outputs.

Optimization Problem Definition Environment

- Meta-language (XML) for a standard description.
- Adapted edition tools
- Environment providing several optimization methods

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- Gradient based
- Evolutionary (PSO, DE)
- To be contributed

 An optimization software, why and for who?
 Existing approaches
 VDesign
 Feature Overview

 OOO
 0000000
 00000000
 000000

Optimization framework

≪Interface» 躍 Optimizer					
🏶 + optimize(problem	, trace,	logger): OptimizationControlle			

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = のへで

$$\begin{array}{ll} \min_{\substack{x \in \Delta \\ \text{with} \end{array}} & f(x) \\ \text{with} & c_E(x) = 0 \\ \text{and} & c_I(x) \le 0 \end{array}$$

«Interface» 🕎 OptimizationProblem
-
 + getCostFunction(): Function + getDimension(): int + getUpperBounds(): F + getLowerBounds(): F + hasGradient(): boolea + hasHessian(): boolea + getGradient(): Function + getHessian(): Function + isCSP(): boolear

Existing approache

VDesign ○○○○○○○●○ Feature Overview 00000

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Optimization framework

API

- Allows addition of methods with minimal workload
- One class (with one method) to implement: OptimizationProblem

• Requires comprehension of only 2 to 3 classes:

OptimizationProblem Accessors to the problem definition elements OptimizationController Handle for the optimization convergence result (success, point, value of objective)

AlgorithmLogger Trace of the process

An optimization software, why and for who?	Existing approaches	VDesign	Feature Overview
000	0000000	○○○○○○○○●	00000
Interoperability			

. .

Computation Server

- Originated from a request to run the optimization from an excel sheet.
- Allows a sequence of computation without stopping the environment (gain of bootstrap time)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- Socket-based, with textual communication language.
 - \rightarrow Network access
- Currently sequential version.

An optimization software, why and for who?	Existing approaches	VDesign	Feature Overview
000	000000	00000000	0000

2 Existing approaches

3 VDesign

4 Feature Overview

An optimization software, why and for who?	Existing approaches	VDesign	Feature Overview
000	0000000	000000000	0●000

Features

Modeling

- cos, sin, tan, cos⁻¹, sin⁻¹, tan⁻¹, atan², cosh, sinh, tanh, cosh⁻¹, sinh⁻¹, tanh⁻¹
- besselⁿ_i, besselⁿ_j, besselⁿ_k, besselⁿ_y
- abs, exp, log, pow, sqrt
- ceil, floor, round
- heaviside, if, min, max
- arg, mod, imag, real
- transpose, Id
- Complexes, Matrices

- integration (*integral*)
- ordinary differential equations (*ode*)
- implicit system (*implicit*)
- interpolation (interp)
- function optimization (*fmin*)
- find optimal point (findMinimum)
- indexed sum and product (sum, prod)
- black-box execution (exec)

An optimization software, why and for who?	Existing approaches	VDesign	Feature Overview
000	0000000	00000000	00000
Features			

Sizing

- All type of constraints (lower bound, upper bound, interval, equality)
- Maximization and minimization.
- Selection of decision variables
- Definition of indicative initial point

Optimization

- Automatic differentiation of the model
- Implementations of PSO, Cobyla and VF13 optimization methods
- Logging and Reporting
- Export of optimized model, constraint definition and process trace.

An optimization software, why and for who?	Existing approaches	VDesign	Feature Overview
000	0000000	00000000	00000
Features			

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Symbolic Computation

API for computation of other arithmetics (i.e. interval)

An optimization software, why and for who?	Existing approaches	VDesign	Feature Overview
000	000000	00000000	00000

Questions?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ