
HAL Id: hal-03155907
https://hal.science/hal-03155907

Submitted on 2 Mar 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modeling and solving bundle adjustment problems
C Angla, Jean Bigeon, D Orban

To cite this version:
C Angla, Jean Bigeon, D Orban. Modeling and solving bundle adjustment problems. Cahiers du
Gerad, 2020. �hal-03155907�

https://hal.science/hal-03155907
https://hal.archives-ouvertes.fr

Les Cahiers du GERAD ISSN: 0711–2440

Modeling and solving bundle
adjustment problems

C. Angla,
J. Bigeon, D. Orban

G–2020–42

August 2020

La collection Les Cahiers du GERAD est constituée des travaux de
recherche menés par nos membres. La plupart de ces documents de
travail a été soumis à des revues avec comité de révision. Lorsqu’un
document est accepté et publié, le pdf original est retiré si c’est
nécessaire et un lien vers l’article publié est ajouté.

Citation suggérée : C. Angla, J. Bigeon, D. Orban (Août 2020).
Modeling and solving bundle adjustment problems, Rapport tech-
nique, Les Cahiers du GERAD G–2020–42, GERAD, HEC Montréal,
Canada.

Avant de citer ce rapport technique, veuillez visiter notre site Web
(https://www.gerad.ca/fr/papers/G-2020-42) afin de mettre à
jour vos données de référence, s’il a été publié dans une revue sci-
entifique.

The series Les Cahiers du GERAD consists of working papers
carried out by our members. Most of these pre-prints have been
submitted to peer-reviewed journals. When accepted and published,
if necessary, the original pdf is removed and a link to the published
article is added.

Suggested citation: C. Angla, J. Bigeon, D. Orban (August 2020).
Modeling and solving bundle adjustment problems, Technical report,
Les Cahiers du GERAD G–2020–42, GERAD, HEC Montréal, Canada.

Before citing this technical report, please visit our website (https:
//www.gerad.ca/en/papers/G-2020-42) to update your reference
data, if it has been published in a scientific journal.

La publication de ces rapports de recherche est rendue possible grâce
au soutien de HEC Montréal, Polytechnique Montréal, Université
McGill, Université du Québec à Montréal, ainsi que du Fonds de
recherche du Québec – Nature et technologies.

Dépôt légal – Bibliothèque et Archives nationales du Québec, 2020
– Bibliothèque et Archives Canada, 2020

The publication of these research reports is made possible thanks
to the support of HEC Montréal, Polytechnique Montréal, McGill
University, Université du Québec à Montréal, as well as the Fonds de
recherche du Québec – Nature et technologies.

Legal deposit – Bibliothèque et Archives nationales du Québec, 2020
– Library and Archives Canada, 2020

GERAD HEC Montréal
3000, chemin de la Côte-Sainte-Catherine

Montréal (Québec) Canada H3T 2A7

Tél. : 514 340-6053
Téléc. : 514 340-5665
info@gerad.ca
www.gerad.ca

https://www.gerad.ca/fr/papers/G-2020-42
https://www.gerad.ca/en/papers/G-2020-42
https://www.gerad.ca/en/papers/G-2020-42

Modeling and solving bundle adjustment problems

Célestine Angla a,b,c

Jean Bigeon a,b,c

Dominique Orban a,d

a GERAD, Montréal (Québec), Canada, H3T 2A7

b Ecole Nationale Supérieure d’Informatique et de
Mathématiques Appliquées, Université Grenoble-
Alpes, 38000 Grenoble, France

c Laboratoire G-SCOP, Université Grenoble-Alpes,
38031 Grenoble, France

d Department of Mathematics and Industrial
Engineering, Polytechnique Montréal (Québec)
Canada, H3C 3A7

jean.bigeon@grenoble-inp.fr

dominique.orban@gerad.ca

August 2020
Les Cahiers du GERAD
G–2020–42
Copyright c© 2020 GERAD, Célestine, Bigeon, Orban

Les textes publiés dans la série des rapports de recherche Les Cahiers
du GERAD n’engagent que la responsabilité de leurs auteurs. Les
auteurs conservent leur droit d’auteur et leurs droits moraux sur leurs
publications et les utilisateurs s’engagent à reconnâıtre et respecter
les exigences légales associées à ces droits. Ainsi, les utilisateurs:
• Peuvent télécharger et imprimer une copie de toute publica-

tion du portail public aux fins d’étude ou de recherche privée;

• Ne peuvent pas distribuer le matériel ou l’utiliser pour une
activité à but lucratif ou pour un gain commercial;

• Peuvent distribuer gratuitement l’URL identifiant la publica-
tion.

Si vous pensez que ce document enfreint le droit d’auteur, contactez-
nous en fournissant des détails. Nous supprimerons immédiatement
l’accès au travail et enquêterons sur votre demande.

The authors are exclusively responsible for the content of their re-
search papers published in the series Les Cahiers du GERAD. Copy-
right and moral rights for the publications are retained by the authors
and the users must commit themselves to recognize and abide the
legal requirements associated with these rights. Thus, users:
• June download and print one copy of any publication from

the public portal for the purpose of private study or research;

• June not further distribute the material or use it for any profit-
making activity or commercial gain;

• June freely distribute the URL identifying the publication.
If you believe that this document breaches copyright please contact us
providing details, and we will remove access to the work immediately
and investigate your claim.

ii G–2020–42 Les Cahiers du GERAD

Abstract: We present a modeling of bundle adjustment problems in Julia, as well as a solver for non-
linear least square problems (including bundle adjustment problems). The modeling uses NLPModels
Julia’s library and computes sparse Jacobians analytically. The solver is based on the Levenberg-
Marquardt algorithm and uses QR or LDL factorization, with AMD or Metis permutation algorithm.
The user can choose to use normalization and line search. Our experimental results contain comparison
of the several versions of the solver and comparison with Scipy’s least square function and Ceres solver
on the test problems given in [26]. We show that our solver is quite competitive with Scipy’s solver
and Ceres solver in terms of convergence, and that it is in average two times faster than Scipy’s solver
and three times slower than Ceres. However, the advantage of our solver is that it is coded is Julia
and thus allows the user to run it in several precisions in a very efficient way, in order to gain time
and energy (in small precisions) or accuracy (in big precisions).

Acknowledgments: This work constitutes the final report of C. Angla’s internship at the G–SCOP
laboratory in collaboration with GERAD. The supervisor at G–SCOP was J. Bigeon and the supervisor
at GERAD was D. Orban.

Les Cahiers du GERAD G–2020–42 1

Introduction

Given a set of images depicting a number of 3D points from different viewpoints, bundle adjustment

problem consists in refining the 3D coordinates describing the scene geometry together with the pa-

rameters of relative motion and the optical characteristics of the camera(s) [9]. These problems are

widely used in computer vision, as they are often the last step of feature-based 3D reconstruction. For

instance, bundle adjustment is used to reconstruct the scenes taken by the Google Car, and give the

rendering of Google Street View.

The goal of this internship was to model and solve bundle adjustment problems in Julia, to benefit

of Julia’s type system and have a code that can be run in a precision chosen by the user. Most languages

(apart from Fortran and C++) only have simple (Float32) and double (Float64) precision, while in

Julia other precisions, such as half and quadratic, are also available. Furthermore, the advantage of

Julia over other languages is that, if a function is well written, and if you call it with arguments in

a given precision, a version of the function for this given precision is automatically compiled. Thus,

if used on a computer with a simple precision processor, operations will automatically be performed

in simple precision (on standard computers simple precision is just a truncated double precision). So

my solver could be ran in simple precision to obtain less accurate solutions, but faster and cheaper in

terms of heat emissions by processors (which is more ecological). Or, on an architecture where several

precisions are available, one may run my solver in simple precision until the stopping criteria defined

in simple precision are satisfied, and then run again my solver, starting from the solution obtained

before, until double precision stopping criteria are met, once again time and energy will be gained.

The team of my supervisor at GERAD (Polytechnique Montréal) has created several tools for

modeling and solving continuous optimization problems in Julia [11]. Coding in Julia also allowed me

to have access and make use of these tools which are very useful to model problems, perform matrix

factorization, make benchmarks, etc.

Bundle adjustment problems can be modeled as a sum of the squares of the errors between the

projection of the 3D points on the cameras and the observed 2D points. This kind of problem is called

a non-linear least-square problem. The Levenberg-Marquardt algorithm has proven to be one of the

most efficient method to solve this kind of problem, while quite easy to implement. This algorithm

uses a damping factor, which is adjusted at each iteration. If the residuals (in our case, the vector of

errors between the projections and the actual 2D points) decrease fast, a smaller value of the damping

parameter can be used, bringing the algorithm closer to the Gauss–Newton algorithm, whereas if an

iteration gives insufficient reduction in the residuals, the damping parameter can be increased, giving

a step closer to the gradient-descent direction [16].

Because of its efficiency and ease of implementation, the Levenberg-Marquardt algorithm has been

widely used to solve bundle adjustment problems [2, 7, 27]. Bundle adjustment problems can also

be solved using the reduced camera system [4, 10, 27] which consists in rewriting the problem using

the sparse block structure of the matrix JTJ (where J is the Jacobian) into two smaller problems.

Although it has proven to be very fast, we did not use this method, as we wanted to have a general solver

for non-linear least square problems. In the Levenberg-Marquardt method, one can use a Cholesky

matrix factorization [7, 22] or a QR factorization to solve what are called the “normal equations” of

Levenberg-Marquardt [7, 22]. Those factorizations avoid to compute the inverse of big matrices, which

is very long. Computing the factorization of those matrices can also be very long, but one can exploit

their sparse structure and use sparse factorization methods such as [3] or [5].

In [27], Google researchers describe the Ceres solver [18], used in Google Street View. This is a

solver for non-linear least-square problems, including bundle adjustment problems, coded in C++. It

provides different methods (which are compared in [27]) to solve these problems. These researchers

have also published datasets for bundle adjustment problems [26]. I will use Ceres solver to compare

my solver with, as it is considered as a reference for solving bundle adjustment problems. I will also

use their datasets to test my solver.

2 G–2020–42 Les Cahiers du GERAD

My objectives for this internship were the following:

• Understand the datasets given in [26] and create an interface in Julia to read them.

• Model those problems as non-linear least-square problems using Julia’s libraries JuMP or NLP-

Models.

• Code a Julia solver for those problems, and compare it with other solvers (including Ceres-solver).

The sections of my master thesis are articulated around those objectives. In the first section, I

will provide a description of the bundle adjustment problems datasets from [26]. In Section 2, I will

explain how I modeled bundle adjustment problems, and in particular how I computed the Jacobian.

In Section 3, I will describe my solver based on the Levenberg-Marquardt algorithm, and the two

factorizations I used. Finally, in the last section, I will present the results of my solver and compare

them with those of other solvers.

My code can be found on github at: https://github.com/CelestineAngla/BundleAdjustment.jl.

1 Understanding the datasets

The website [26] contains the bundle adjustment problem library, created by the Google researchers.

The first step of my internship was to understand those datasets and then to create an interface to

read them in Julia.

This problem library provides us with five datasets: Ladybug, Trafalgar Square, Dubrovnik, Venice,

Final. And each one of those datasets contains several problems. Those datasets were obtained from

two sources of data. The first source uses images captured at a regular rate using a Ladybug camera

mounted on a moving vehicle. Image matching was done by exploiting the temporal order of the

images and the GPS information captured at the time of image capture. The second source of data

uses images downloaded from Flickr.com and matched to find common points. Those images were

taken in Trafalgar Square and in the cities of Dubrovnik, Venice, and Rome.

Each bundle adjustment problem is given as a bzip2 compressed file. Each file contains the following:

• The first line contains the number of cameras, the number of points and the number of observa-

tions.

• The second block of lines contains, for each observation, the index of the camera used for this

observation, the index of the 3D point observed, and the x and y coordinates of the 2D projection

of this point on the camera.

• The third block of lines contains, for each camera, the vector (rx, ry, rz, tx, ty, tz, f, k1, k2), where

(rx, ry, rz) is the Rodrigues vector representing the rotation of the camera, (tx, ty, tz) are the

coordinates of the translation of the camera, f is the focal length of the camera and (k1, k2) are

radial distortion parameters of the camera. These are initial values.

• The fourth block of lines contains, for each point, its 3D coordinates (x, y, z). These are initial

values.

The structure of those datasets is detailed in Appendix A.

I created a bash script that downloads all the datasets for the user, and separates them into five

folders: Dubrovnik, Final, LadyBug, Trafalgar and Venice. I also coded a Julia function to read the

files and store the data into matrices.

From the datasets, one can extract five matrices:

• O ∈ RNobs×2 the matrix of observations where each line contains the 2D coordinates of the

observed point.

• CI ∈ RNobs the vector of camera indices: for each observation k, CI[k] gives the index of the

camera used for this observation.

https://github.com/CelestineAngla/BundleAdjustment.jl

Les Cahiers du GERAD G–2020–42 3

• XI ∈ RNobs the vector of point indices: for each observation k, XI[k] gives the index of the 3D

point observed in this observation.

• C ∈ RNcam×9 the camera matrix where each line contains the parameters (rx, ry, rz, tx, ty, tz, f,

k1, k2) of the camera.

• X ∈ RNpoints×3 the point camera where each line contains the 3D coordinates of the point.

2 Modeling bundle adjustment problems

In this part is described my two attempts to model bundle adjustment problems in Julia: with JuMP

and then with NLPModels. To understand my modeling, the first two subsections provide a brief

explanation of the camera projection formula and a mathematical definition of bundle adjustment

problems.

2.1 Camera projection

A camera can be described by a vector C = (rx, ry, rz, tx, ty, tz, k1, k2, f) ∈ R9, where:

• R = (rx, ry, rz) is the Rodrigues rotation vector [17],

• T = (tx, ty, tz) is the translation vector,

• k1 and k2 are distortion coefficients,

• f is the focal length.

The rotation vector and the translation vector give us the relative position of the camera, while k1,

k2 and f are its optical parameters.

Given a 3D point X = (x, y, z) and a camera C = (R, T, k1, k2, f), the 2D projection P of point X

on camera C is given by [26] P = P3 ◦ P2 ◦ P1, with:
P1(R,X, T) = rot(R,X) + T

P2(X) = − 1
X.z

[
X.x
X.y

]
P3(X, f, k1, k2) = f × r(X, k1, k2)×X

,

where rot(R,X) is the point X rotated using the Rodrigues vector R = (rx, ry, rz) [17]:

rot(R,X) = cos(θ)X + sin(θ)k ×X + (1− cos(θ))(k.X)k,

where θ = ||R|| and k = R
θ .

And r(X, k1, k2) = 1.0 + k1||X||2 + k2||X||4 is a function that computes a scaling factor to undo

the radial distortion.

The first line of the projection formula computes the coordinates of the point in the camera frame.

The second line transforms the 3D coordinates into 2D coordinates (the coordinates on the image of

the camera). Finally, the last step of the projection undoes the radial distortion of the image, and

takes into account the focal length of the camera.

2.2 Optimization problem

A bundle adjustment problem consists in finding the optimal camera parameters and 3D point coor-

dinates that fit the observed 2D points. Thus, it can be written as a non-linear least-square problem

like this [9]:

min
(X,C)

Npoints∑
i=1

Ncam∑
j=1

vi,j ||P (Xi, Cj)− xobsi,j ||2,

4 G–2020–42 Les Cahiers du GERAD

where
X is the point matrix in which each line Xi contains the 3D coordinates of the i-th point
C is the camera matrix in which each line Cj contains the parameters of the j-th camera
vi,j = 1 if point i is observed on camera j and 0 otherwise
P is the projection of a point on a camera as descibed in the previous subsection
xobsi,j is the 2D observation of point i on camera j.

Using the matrices described in the first section, we can rewrite the problem as:

min
(X,C)

Nobs∑
k=1

||p(X[XI[k]], C[CI[k]])−O[k]||2

Instead of summing over the cameras and 3D points, we sum over all observations, by getting the

camera index and 3D point index from the matrices of indices.

2.3 Modeling with JuMP

The first way I tried to model these problems in Julia is using Julia’s JuMP library [1]. I tried two

types of modeling:

• minx
1
2 ||f(x)||2 (“direct modeling”)

• minx
1
2 ||r||

2 under f(x) + r = 0 (“residual modeling”)

with f(x) = ||p(X[XI[k]], C[CI[k]])−O[k]||.

The first problem I encountered when modeling the problems with JuMP is that it is not possible

to use functions with non-scalar arguments or expressions with non-scalar variables. So it was quite

complicated to use, as these problems are very large and thus it is inconvenient to model them without

vectors and matrices. Moreover, functions like the norm function or the square root function are not

easy to manipulate in JuMP. A good way to model these problems is to model the residuals as a

1D vector of size 2 × nobs (one residual for the x coordinate and one for the y coordinate for each

observation). This way of modeling makes more sense and would have avoided the norm function

in f . Unfortunately, I did not manage to implement it this way as I would have needed to manipulate

vectors.

The first way of modeling bundle adjustment problems with JuMP did not work, as JuMP does not

allow to use square roots or norms in the objective function. The second way worked, and I managed

to run an optimization algorithm (Ipopt) on these models. The first value of the objective seemed right

(by comparing with an Python code I found that solves bundle adjustmet problems with Scipy [6]),

and the objective decreased for a few iterations but then it began to rise again (Ipopt might not be a

good algorithm to use on these problems).

Although JuMP does not seem do be adapted to handle bundle adjustment problems, it ensured

me that I had well understood the problems and the datasets.

2.4 Modeling with NLPModels

I chose to use NLPModels [12] (and to abandon JuMP) to have more freedom for modeling and simpler

models to use when building optimization algorithms. I build a new model type BALNLPModel (included

in AbstractNLPModel). The constructor BALNLPModels takes the path of a dataset (from [26]) as input

and models the bundle adjustment problems like this:{
min 0
under r(x) = 0

Les Cahiers du GERAD G–2020–42 5

where r ∈ R2nobs is the vector of residuals given by, ∀k ∈ {1, ..., nobs}: r[2k − 1 : 2k] = P (x) −
(xobsk , yobsk),

and x =
[
X1 ... Xnpnts C1 ... Cncam

]
∈ R3×npnts+9×ncam

where Xk = (x, y, z) and Ck = (rx, ry, rz, tx, ty, tz, k1, k2, f).

When running an optimization algorithm on a BALNLPModel, I transform it into an non-linear least

square problem (NLSModel [13]) using a function available in NLPModels called “FeasibilityResidual”.

2.4.1 A new function to read the datasets

In order to create BALNLPModels faster, I rewrote a function to read the datasets to avoid making

useless allocations. This function does not return a matrix for observations, a matrix for the camera

parameters and a matrix for the 3D points coordinates anymore. Instead, it directly returns a 1D vector

pt2d of size 2×nobs (in which line 2k−1 contains the x coordinate of observation k and line 2k contains

the y coordinate of observation k) and a 1D vector x0 containing the initial cameras parameters and 3D

point coordinates as described above (x =
[
X1 ... Xnpnts C1 ... Cncam

]
∈ R3×npnts+9×ncam).

It still returns the camera indices and points indices vectors.

2.4.2 Computing the Jacobian of the residuals by hand

The main methods associated to my BALNLPModel are methods to compute the vector of residuals

and the Jacobian. The function to compute the residuals is straightforward, as it is based on the

camera projection formula described at the very begining of this section. The methods to compute

the Jacobian are a bit more complex as I decided to compute the Jacobian analytically, that is to say:

by hand. I made that choice as I wanted to have a sparse Jacobian and the only Julia module I found

for sparse automatic differentiation was buggy.

In order to compute a sparse Jacobian for my new type BALNLPModel, I coded the functions

“jac structure!” (that computes the sparsity structure of the Jacobian) and “jac coord!” (that computes

the values to store in this structure). The function “jac structure!” fills two vectors “rows” and “cols”

with the indices of the non-zero values of the Jacobian. That is to say, if row[k] = i and cols[k] = j

then Ji,j 6= 0. The function “jac coord!” fills a vector “vals” which contains the values of the non-zero

elements of the Jacobian. That is to say: Jrow[k],cols[k] = vals[k].

The residuals of the bundle adjustment problem are defined by, ∀k ∈ {1, ..., nobs}:

r2k−1(x) = P (x).x− xobsk = P (Ck, Xk).x− xobsk
r2k(x) = P (x).y − yobsk = P (Ck, Xk).y − yobsk ,

where P (Ck, Xk) is the projection of the 3D point Xk on camera Ck (here k is the number of the

observation and not the actual index of the camera or point, that is to say Ck is assimilated to

Ccam index[k], and similarly for Xk).

We have P = P3 ◦ P2 ◦ P1, with:

P1(x, y, z, rx, ry, rz, tx, ty, tz) = cos(θ)

xy
z

+ sin(θ)

kyz − kzykzx− kxz
kxy − kyx


+ (1− cos(θ))(kxx+ kyy + kzz)

kxky
kz

+

txty
tz


P2(x, y, z) = − 1

z

[
x
y

]
P3(f, k1, k2, x, y) = f(1 + k1(x2 + y2) + k2(x2 + y2)2)

[
x
y

]

6 G–2020–42 Les Cahiers du GERAD

with θ =
√
r2
x + r2

y + r2
z and

kxky
kz

 = 1
θ

rxry
rz

.

The Jacobian of the residuals, Jr, is a block matrix like this:

Jr = JP =

 JX1,1 ... JX1,npnts JC1,1 ... JC1,ncam

...
...

...
...

JXnobs,1 ... JXnobs,npnts JCnobs,1 ... JCnobs,ncam

 ,
where:

• JXi,j =

[
∂Pi.x
∂xj

∂Pi.x
∂yj

∂Pi.x
∂zj

∂Pi.y
∂xj

∂Pi.y
∂yj

∂Pi.y
∂zj

]

• JCi,j =

[
∂Pi.x
∂rxj

∂Pi.x
∂ryj

∂Pi.x
∂rzj

∂Pi.x
∂txj

∂Pi.x
∂tyj

∂Pi.x
∂tzj

∂Pi.x
∂k1j

∂Pi.x
∂k2j

∂Pi.x
∂fj

∂Pi.y
∂rxj

∂Pi.y
∂ryj

∂Pi.y
∂rzj

∂Pi.y
∂txj

∂Pi.y
∂tyj

∂Pi.y
∂tzj

∂Pi.y
∂k1j

∂Pi.y
∂k2j

∂Pi.y
∂fj

]
Jr is sparse as JCi,j is non-zero if and only if j = idx cam[i] and JXi,j is non-zero if and only if

j = idx pnt[i]. For a given observation k, let J̃P [k] be the dense Jacobian of JP [k], that is to say the

line number k of JP where all the blocks of zeros have been removed:

J̃P [k] =
[
JXk,idx pnt[k] JCk,idx cam[k]

]
.

As P = P3 ◦ P2 ◦ P1, we have J̃P [k] = (J̃P3 ◦ P2 ◦ P1) × (J̃P2 ◦ P1) × J̃P1 , where J̃P [k] ∈ R2×12,

J̃P1
∈ R6×12, J̃P2

∈ R5×6, J̃P3
∈ R2×5, and:

• J̃P1
=



∂P1.x
∂x

∂P1.x
∂y

∂P1.x
∂z

∂P1.x
∂rx

∂P1.x
∂ry

∂P1.x
∂rz

∂P1.y
∂x

∂P1.y
∂y

∂P1.y
∂z

∂P1.y
∂rx

∂P1.y
∂ry

∂P1.y
∂rz

I3 O3

∂P1.z
∂x

∂P1.z
∂y

∂P1.z
∂z

∂P1.z
∂rx

∂P1.z
∂ry

∂P1.z
∂rz

0 0 0 0 0 0
0 0 0 0 0 0 O3 I3
0 0 0 0 0 0


,

• J̃P2 =


∂P2.x
∂x

∂P2.x
∂y

∂P2.x
∂z 0 0 0

∂P2.y
∂x

∂P2.y
∂y

∂P2.y
∂z 0 0 0

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

,

• J̃P3 =

[
∂P3.x
∂x

∂P3.x
∂y

∂P3.x
∂k1

∂P3.x
∂k2

∂P3.x
∂f

∂P3.y
∂x

∂P3.y
∂y

∂P3.y
∂k1

∂P3.y
∂k2

∂P3.y
∂f

]
.

The detailed computations of the elements of these matrices are in Appendix B.

So to compute the sparse Jacobian of the residuals Jr, one simply needs to compute, for each

observation k, the small dense Jacobian J̃P [k] and to store the JX and JC blocks at the right place.

To check my computations for the Jacobian, I used the function “Jacobian check” from the NLP-

Models package. This function computes the Jacobian of the constraints of a NLPModel using finite

differences, and returns a dictionary containing the errors of the Jacobian that are greater than a

chosen threshold. I also compared my Jacobian with the one computed with the CUTEst library [15].

2.4.3 Use of multiple threads

I used multi-threading to improve the performance of my model, and thus of the optimization algo-

rithms I use or write for them. Indeed, most of optimization algorithms will need to compute the

Les Cahiers du GERAD G–2020–42 7

Jacobian (only the values, as the structure does not change) and the residuals of my model at each

iteration. Thus, the faster these functions are, the faster the optimization will get.

The functions cons! (that computes the residuals), jac structure! and jac coord! all iterate on the

observations using a for loop. The content of this for loop is independent (as the observations are

independent from one another), so it is quite straightforward to split the loop between the threads.

3 Solving bundle adjustment problems

I created a solver based on Levenberg-Marquardt algorithm that takes as input an AbstractNLSModels

(this a type included in NLPModels that models a non-linear least square problem). Thus, my solver

can solve bundle adjustment problems, by creating a BALNLPModel (the type I have created for bundle

adjustment problems) and using the function FeasibilityResidual which wrapsd it into an NLSModel.

The first subsection explains the standard Levenberg-Marquardt algorithm. My implementation is

described in the next subsections.

3.1 The Levenberg-Marquardt algorithm

Let us consider a least square optimization problem:

min
x∈Rn

m∑
i=1

ri(x)2 = min
x∈Rn

||r(x)||2,

where r : Rn → Rm is the residual function.

The Jacobian of r is J = (∂ri∂xj
) ∈ Rm×n. Let δ ∈ Rn. We have r(x+ δ) ' r(x) + J(x)δ, so:

||r(x+ δ)||2 ' ||r(x) + J(x)δ||2

' (r(x) + J(x)δ)T (r(x) + J(x)δ)

' r(x)T r(x) + 2r(x)TJ(x)δ + δTJ(x)TJδ.

To find the search direction δ, let us take the derivative of ||r(x+ δ)||2 with respect to δ:

∂||r(x+ δ)||2

∂δ
= 2JT r + 2JTJδ.

Thus, to first order, the minimum of ||r(x+ δ)||2 is reached for δ verifying:

JTJδ = −JT r.

This is the Gauss-Newton method. When J is rank deficient (not of full rank), this algorithm can

diverge. The idea of Levenberg was to add a damping parameter to avoid this. So in the Levenberg-

Marquardt algorithm, the previous equation is replaced by a “damped” version:

(JTJ + λD2)δ = −JT r,

where λ > 0 and D2 is a diagonal matrix such that JTJ + λD2 is non singular. Often D2 = I or

D2 = Diag(JTJ).

When the damping parameter λ is close to 0, the algorithm is close to the Gauss-Newton method,

whereas when λ→∞, δ
λ → −J

T r, so the algorithm is close to a gradient descent.

8 G–2020–42 Les Cahiers du GERAD

3.2 Update of the damping parameter λ

The idea of Marquardt was to refine the damping parameter λ at each iteration. Indeed, the step δ

found at each iteration may not always result in a decrease of the cost function 1
2 ||r||

2. So the step δ

is accepted if and only if the actual reduction is larger than ε times the predicted reduction:

||rk||2 − ||rk+1||2 ≥ ε (||rk||2 − ||Jkδ + rk||2), ε > 0.

If δ is not accepted, we update it as: λk+1 = max(λk,
1
||δ||) × νm, where νm > 1. This way to

update λ is a bit more sophisticated than the classic way (λk+1 = λk× νm). It is inspired from Moré’s

formulation of Levenberg-Marquardt algorithm, which is based on trust-region methods [22]:

min
1

2
||Jδ + r||2, under ||δ|| ≤ ∆.

In our formulation, λ is similar to 1
∆ . So the larger λ is, the more ||δ|| is constrained, and the

lower λ is, the more ||δ|| is free. So if a step δ is rejected, the radius ∆ is decreased. But if the new

∆ is still larger than ||δ||, it is a waste of time, since the same δ will be computed. To avoid that, we

need to make sure that the new ∆ is smaller than ||δ||. In our formulation, it means that we have to

increase λ at least by a factor 1
||δ|| . That is why we update λ this way: λk+1 = max(λk,

1
||δ||)× νm.

If δ is accepted, the classic way to update λ is λk+1 = λk

νd
, where νd > 1. That is what I do. But, in

addition, if the actual reduction is bigger than 0.9 time the predicted reduction (which means that δ

is a very successful step), I update λ this way: λk+1 = λk

ν2
d

. And to avoid very low values of λ, I make

sure that λ is higher than a lower bound (1.0e−8).

It is also important to find a good initial value for λ. One can choose an initial value that works

well for several problems, or one can choose a formula or a heuristic that adapts the initial value of λ

to the problem. Once again, I got inspiration from trust region methods, where they initialize ∆ like

this ∆0 = min(10, ||∇f(x0)||
10). So I decided to initialize λ like this:

λ0 = max(λ′0,
l

||JT r(x0)||
),

where λ′0 > 0 and l > 0 are constants left to the choice of the user, and for which I found good default

values.

Another way to initialize λ is presented in [23]. The authors claim it is reasonable to relate the

initial value of λ to the size of the eigenvalues of the symmetric positive definite matrix JTJ . The

maximum of the diagonal elements of this matrix has the same order of magnitude than the biggest

eigenvalue, so one can initialize λ this way:

λ0 = τ ×max JTJ(x0)i,i,

where τ > 0 is chosen small if x0 is close to x∗.

But computing JTJ for large problems such as bundle adjustment problems is quite expensive, so

we did not use this method.

3.3 Stopping criteria

The algorithm has several stopping criteria:

• First order criterion (that is to say that the norm of the gradient of the cost function is smaller

than a given bound): ||JT r|| < atol + rtol||JT r||0 (“first order”).

• Small objective change criterion: 1
2 ||rk−1||2− 1

2 ||rk||
2 < oatol+ ortol× 1

2 ||rk−1||2 (“acceptable”).

• Small step criterion: ||δ|| < satol + srtol||x|| (“small step”).

• Small residuals criterion: ||r|| < restol (“small residuals”).

• Tired criterion: k > ite max (“max iter”).

Les Cahiers du GERAD G–2020–42 9

3.4 Factorization and permutation

In my solver I use two kinds of factorization (QR and LDL) of matrices that are computed from the

Jacobian (they contain blocks that are either multiple of I, J or JT). These matrices are sparse,

thus one needs to be careful as the factorization of a sparse matrix can be dense. That is why, the

standard factorization algorithms use permutations to transform the original matrix in such a way

that its factorization will be as sparse as possible.

As the structure of the Jacobian of a bundle adjustment problem does not change between iterations,

one does not need to compute the permutation each time the factorization is computed. That is

why, when the algorithm that computes the factorization allows it, I compute the permutation at

the beginning and pass it as an argument to the factorization algorithm. Even if the factorization

algorithm does not allow to pass the permutation vector as argument, it is possible to choose the

permutation method the algorithm uses. Thus I added an option to my solver for the user to choose

the permutation he would like to use.

To compute the permutations I used two types of algorithms: AMD and Metis. The Approximate

Minimum Degree ordering algorithm (AMD) [25] pre-orders a symmetric sparse matrix prior to numer-

ical factorization. It uses techniques based on the quotient graph for matrix factorization that allows

to obtain computationally cheap bounds for the minimum degree. These bounds are often equal to the

actual degree. The Julia interface for AMD, takes as input a matrix A and computes a fill-reducing

permutation based on the sparsity pattern of A + AT , so the input matrix can be anything (even

non-symmetric or rectangular matrices). The Metis algorithm [21] finds good partitioning of highly

unstructured graphs. It has several applications, including computing fill-reducing permutations for

sparse matrices. The main drawback of the Julia’s Metis interface is that it only takes symmetric

square matrices as input so one needs to compute A+AT if A is not symmetric and square.

3.5 The QR version

One way to implement the Levenberg-Marquardt algorithm is to notice that the equations (JTJ +

λI)δ = −JT r are just the normal equations for the following linear least-squares problem [24]:

min
δ
||
[
J√
λI

]
δ +

[
r
0

]
||2.

Thus, one only need to solve a linear least-square problem at each iteration. The QR version of

my implementation of Levenberg-Marquardt is based on this.

In order to do that efficiently, one can use a QR factorization of the matrix A =

[
J√
λI

]
. That is

to say find Q orthogonal and R upper triangular such that A = QR.

Let us rewrite the QR factorization of A: A =
[
Q1 Q2

] [R
0

]
. Thus:

||Aδ +

[
r
0

]
|| = ||

[
Q1 Q2

]
(

[
R
0

]
δ +

[
Q1 Q2

]T [r
0

]
)||

= ||
[
R
0

]
δ +

[
Q1 Q2

]T [r
0

]
||

= ||

Rδ +QT1

[
r
0

]
QT2

[
r
0

]
 ||.

10 G–2020–42 Les Cahiers du GERAD

As the QT2

[
r
0

]
part does not depend on δ, the best we can do, if R is invertible, is to take

δ∗ = −R−1QT1

[
r
0

]
. So finally, ||Aδ∗ +

[
r
0

]
|| = ||QT2

[
r
0

]
||.

In addition, as A is a sparse matrix (since J is sparse), one can use a sparse QR factorization which

is even faster. In my implementation, I used the “SuiteSparseQR” library [5] (with a Julia wrapper),

which is a C library that computes the QR factorization of sparse matrices.

The QR version of my solver looks like this:

Algorithm 1 QR version

1: Compute residuals r, obj = 1
2
||r||2 and create b =

[
−r
0

]
2: Compute Jacobian J
3: Compute ||JT r||
4: λ = max(λ, 1e10

||JT r||)

5: Create A =

[
J√
λI

]
6: while none of the stopping criteria is verified do
7: Compute QR factorization of A
8: Find δ = argmin(||Aδ + b||2)
9: δr2 = 1

2
||Jδ + r||2

10: ρ = obj−obj suiv
obj−δr2

11: if ρ ≥ 1e−4 then
12: λ = max(λ, 1

||δ||)× νm
13: Update the

√
λI part of A

14: else
15: λ = λ

νd
16: if ρ ≥ 0.9 then
17: λ = λ

νd
18: end if
19: λ = max(1e−8, λ)
20: Update r, J , A, b
21: end if
22: end while

3.6 Givens rotations

This section briefly explains what Givens rotations are, in order to help the reader understand the

next section.

Givens rotations are used to create zeros in matrices. They are stored in matrix G(i, j, c, s), similar

to the identity matrix, except that two rows and two columns are changed:

• there is a c in positions (i, i) and (j, j);

• there is a s in position (i, j) (i < j),

• there is a −s in position (j, i).

Thus, if we have a matrix A in which we want to remove the element A[j, i] = x, by taking

r =
√
x2 + y2 (where x = A[i, i]), c = x

r and s = y
r , we can apply the Givens rotation G(i, j, c, s) on A.

For instance:

G(i = 1, j = 2, c, s)A =

 0.7682 0.6492 0
−0.6492 0.7682 0

0 0 1

6 5 0
5 1 4
0 4 3

 =

7.8102 4.4813 2.5607
0 −2.4327 3.0729
0 4 3

 ,
as r =

√
62 + 52 = 7.8102, c = 6

7.8102 and s = 5
7.8102 .

A zero has been created at position (2, 1). A Givens rotation modifies the whole rows i and j. We

notice that a non-zero element has been created at position (1, 3).

Les Cahiers du GERAD G–2020–42 11

3.7 Improvements to the QR version

One can avoid to compute the full QR factorization of A at each iteration. Indeed one may compute the

QR factorization of J only when the Jacobian changes (that is to say when the iteration is accepted) and

compute at each iteration the QR factorization of A from the one of J using Givens rotations [22, 24].

Indeed, if J = Q

[
R
0

]
, then

 R
0√
λI

 =

[
QT 0
0 I

] [
J√
λI

]
.

The matrix

 R
0√
λI

 is almost triangular. One can eliminate the elements of
√
λI by performing

at most n(n+1)
2 Givens rotations. Indeed, one can eliminate the element in position (n, n) in

√
λI by

rotating row n of
√
λI with row n of R. Then, one can eliminate the element in position (n− 1, n− 1)

in
√
λI by rotating row n − 1 of

√
λI with row n − 1 of R. If the element in position (n − 1, n) of R

is a non-zero it will create a non-zero element at position (n − 1, n) in
√
λI, one can eliminate it by

rotating row n− 1 of
√
λI with row n of R, and so on.

If we store the Givens rotations in a matrix Q̃Tλ ,then Q̃Tλ

 R
0√
λI

 =

Rλ0
0

.

Let Qλ =

[
Q 0
0 I

]
Q̃λ, then

[
J√
λI

]
= Qλ

Rλ0
0

.

Actually, as explained in Section 3.5, permutations of rows and columns are performed during the

factorization process in order to get sparse matrices. Thus, J is not equal to Q

[
R
0

]
. Most of the time,

one actually has:

P1JP2 = Q

[
R
0

]
,

where P1 and P2 are permutation matrices.

It follows that:

||
[
J√
λI

]
δ +

[
r
0

]
|| = ||

[
JP2√
λP2

]
(PT2 δ) +

[
r
0

]
||

= ||
[
PT1

I

]
(

[
P1JP2√
λP2

]
(PT2 δ) +

[
P1r
0

]
)||

= ||
[
P1JP2√
λP2

]
(PT2 δ) +

[
P1r
0

]
|| as

[
PT1

I

]
is orthogonal

= ||
[
QTP1JP2√

λP2

]
(PT2 δ) +

[
QTP1r

0

]
|| as

[
Q

I

]
is orthogonal

= ||

 [R0
]

√
λP2

 (PT2 δ) +

[
QTP1r

0

]
|| as QTP1JP2 =

[
R
0

]

= ||
[
I

P2

]
Q̃λ

[Rλ0
]

0

 (PT2 δ) +

[
QTP1r

0

]
|| as Q̃Tλ

[
I

PT2

] [R0
]

√
λP2

 =

[Rλ0
]

0


= ||

Rλ0
0

 (PT2 δ) + Q̃Tλ

[
I

PT2

] [
QTP1r

0

]
|| as

[
I

P2

]
Q̃λ is orthogonal

= ||

Rλ0
0

 (PT2 δ) + Q̃Tλ

[
QTP1r

0

]
||.

12 G–2020–42 Les Cahiers du GERAD

Thus, if Rλ is invertible, the solution of the linear problem is δ∗ = −P2R
−1
λ Q̃Tλ

[
QTP1r

0

]
.

My algorithm takes as input a copy of R and performs the Givens rotations in place, without

forming the big matrix

 R
0√
λI

. And to avoid memory allocations, it does not compute explicitly

the matrix Qλ. It keeps in memory a list of the Givens rotations (for one rotation, it only stores

four elements: the indices of the two rows to rotate, the cosinus and sinus of the rotation) that were

performed on R. I created a function that computes Q̃Tλ

[
QT 0
0 I

]
x given the list of the of the Givens

rotations, the matrix Q (from the QR factorization of J) and a vector x. The algorithms that computed

the Givens rotations, together with some explanations about them, can be found in Annexe C.

3.8 The LDL version

One can notice that the equations (JTJ + λD2)δ = −JT r are equivalent to:[
I J
J t −λI

] [
δr
δ

]
=

[
−r
0

]
.

So in this version of the algorithm, one considers the sparse symmetric indefinite matrix

A =

[
I J
J t −λI

]
(as it is symmetric one only needs to store the upper triangular part).

As A is symmetric, one can perform a LDL factorization (which is a variant of the Cholesky

decomposition for matrices that are not necessarily positive definite) of it and then solve Ax = b with

x =

[
δr
δ

]
and b =

[
−r
0

]
. If A = LDLT , with L upper triangular and D diagonal, solving Ax = b

amounts to solving Ly = b (triangular problem), then Dz = y (diagonal problem), then LTx = z

(triangular problem).

I used the Julia package “LDLFactorizations” [8] that performs LDL factorization of sparse matrices

and solves linear systems Ax = b given the LDL factorization of A.

3.9 Improvements to the LDL version

To improve the LDL version, I split the LDL Factorisation into two parts: the symbolic analysis and

the numeric factorisation. The symbolic analysis only depends on the structure of the matrix, so I

only need to perform it once in the whole algorithm, while the numerical factorization is performed at

each iteration.

Les Cahiers du GERAD G–2020–42 13

The LDL version of my solver looks like this:

Algorithm 2 LDL version

1: Compute residuals r, obj = 1
2
||r||2 and create b =

[
−r
0

]
2: Compute Jacobian J
3: Compute ||JT r||
4: λ = max(λ, 1e10

||JT r||)

5: Create A =

[
I J
JT −λI

]
6: Compute permutation and perfom LDL analysis
7: while none of the stopping criteria is verified do
8: Perform LDL factorization of A
9: Find δ such that Ax = b

10: δr2 = 1
2
||Jδ + r||2

11: ρ = obj−obj suiv
obj−δr2

12: if ρ ≥ 1e−4 then
13: λ = max(λ, 1

||δ||)× νm
14: Update the

√
λI part of A

15: else
16: λ = λ

νd
17: if ρ ≥ 0.9 then
18: λ = λ

νd
19: end if
20: λ = max(1e−8, λ)
21: Update r, J , A, b
22: end if
23: end while

3.10 Normalization

Sometimes, in the QR version, due to computation errors, the decomposition of the matrix A =

[
J√
λI

]
(which is normally of full rank because of the

√
λI part), gives zeros on the diagonal of R and thus the

resolution of the linear problem fails. To avoid that, the whole matrix A or only J can be normalized

before the factorization. I added a parameter for the user to choose whether he wants to normalize A, J

or if he does not want to use normalization.

In the QR version we have:

||
[
J√
λI

]
δ +

[
r
0

]
|| = ||

[
JD√
λD

]
(D−1δ) +

[
r
0

]
||

Where D is the diagonal matrix such that Di,i = 1
||J[:,i]|| if we decide to normalize only J. Or, if we

decide to factorize the whole matrix A =

[
J√
λI

]
, Di,i = 1

||A[:,i]|| .

In the LDL version I did not obtain errors without normalization, but it is a good thing to nor-

malize J to have a better conditioned problems. The LDL version with normalization of J is given by

the following equations:[
I J
JT −λI

] [
δr
δ

]
=

[
−r
0

]
⇐⇒

[
I 0
0 D−1

] [
I JD

(JD)T −λD2

] [
δr

D−1δ

]
=

[
−r
0

]
⇐⇒

[
I JD

(JD)T −λD2

] [
δr

D−1δ

]
=

[
I 0
0 D

] [
−r
0

]
⇐⇒

[
I JD

(JD)T −λD2

] [
δr

D−1δ

]
=

[
−r
0

]

14 G–2020–42 Les Cahiers du GERAD

Where D is the diagonal matrix such that Di,i = 1
||J[:,i]|| .

To have an even better conditioning of the matrix A in the LDL version, we can write the following

equivalent system [28]: [√
λI J

JT −
√
λI

] [
δr√
λδ

]
=

[
−
√
λr

0

]
The LDL version with a normalization of A consists actually of normalizing J and then use the

preceding equations to get the same coefficient
√
λ in the diagonal blocks .

3.11 The line search strategy

In order to avoid computing too many factorizations, one can use the fact that the step δ computed

at a given iteration is a descent direction. Thus, even if δ is rejected, one can try and divide it by a

constant δd > 1 until the step is accepted. This strategy is an Armijo line search.

In my implementation, δd can be chosen by the user and its default value is 2. If after dividing δ by δd
four times, the step is still not accepted, the step is definitely rejected. The way we update λ changes a

bit with the line search strategy. Let ntimes be the number of times the step δ has been divided by δd,

we have 0 ≤ ntimes ≤ 4. If the step is rejected, we update λ like this: λ = max(λ, 1
||δ||)× ν

ntimes+1
m .

Thereby, if no line search is performed, we have ntimes = 0 and λ = max(λ, 1
||δ||)×νm, just like before.

Moreover, it allows to increase λ proportionally to the number of times the step has been rejected.

Now, if the step is accepted and ntimes > 0 (ie: line search has been performed), we update λ this

way: λ = λ

ν
(
dntimes−1)

(the power ntimes−1 has been chosen empirically). If ntimes = 0, λ is updated

like before: λ = λ
νd

.

3.12 Global convergence of the Levenberg-Marquardt algorithm

There are many ways to implement the Levenberg-Marquardt algorithm, and many ways to prove the

global convergence of this method. The proof presented in this section is inspired from [29] and is

based on the line search version of the algorithm. Let us suppose that r ∈ C1.

From the algorithm, one easily deduces that ||r(xk)|| is monotonically decreasing and bounded

below by 0. Thus, ||r(xk)|| → γ ≥ 0, when k tends towards infinity.

From the Armijo line search, one has [29]: ||r(xk+1)||2 ≤ ||r(xk)||2 − β (rTk Jkδk)2

||δk||2 , with β > 0.

Thus,
(rTk Jkδk)2

||δk||2 ≤ 1
β (||r(xk)||2 − ||r(xk+1)||2), and the sum:

∞∑
k=1

(rTk Jkδk)2

||δk||2
≤ 1

β

∞∑
k=1

(||r(xk)||2 − ||r(xk+1)||2) =
1

β
(||r1||2 − γ2) <∞.

By definition, (JTk Jk + λkI)δk = −JTk rk. Thus, rTk Jk = (JTk rk)T = δTk (JTk Jk + λkI). So:

(rTk Jkδk)2 = (δTk (JTk Jk + λkI)δk)2 ≥ (δTk λkIδk)2 ≥ α2||δk||4,

as λk ≥ α = 1e−8. Thus
(rTk Jkδk)2

||δk||2 ≥ α2||δk||2.

As
(rTk Jkδk)2

||δk||2 → 0 when k tends towards infinity (as the term of a convergent serie) and
(rTk Jkδk)2

||δk||2 ≥
α2||δk||2, one has:

lim
k→∞

||δk|| = 0

This limit, (JTk Jk + λkI)δk = −JTk rk and the continuity of J(x) imply that at any accumulation

point x∗ of {xk}, we have that J(x∗)T r(x∗) = 0 which says that x∗ is a stationary point of 1
2 ||r(x)||2.

This proves the global convergence of the Levenberg-Marquardt algorithm.

Les Cahiers du GERAD G–2020–42 15

3.13 Use of several precisions

I modified my solver so that it preserves the type of the variables. It is only possible for the LDL

version, as the LDL decomposition is coded in Julia and preserves the types, but not the QR version

as SuiteSparseQR is coded in C. This preservation of types allows the user to choose the precision

he wants to use by choosing the precision of x0. He can also choose to read the datasets in a lower

precision than Float64 if we wants to. Using simple (Float32) or half (Float16) precision will allow to

have faster and less precise optimization, whereas using quadratic precision (Float128) will produce

slower and more precise optimization.

In addition to the gain of time, doing computations in lower precisions can save energy. Indeed,

the heat emitted by a processor is more or less proportional the processor surface, and the length of

the processor is proportional to the number of significant digits, thus to the precision. As a result,

dividing the precision by a factor k will decrease the heat emitted by the processor by a factor k2.

Most algorithms for non-linear least square problems only compute the first order derivatives of the

residuals, based on the hypothesis that the residuals are almost null or linear at a solution. But this

hypothesis is not always verified. In order to improve the convergence of the solver, an improvement

would be to test this hypothesis at each iteration, and to compute the second order derivatives of the

residuals, when the hypothesis is not verified and the number of iteration is big enough (so that we

are close to convergence).In addition, in order to improve the convergence without a big waste of time,

the second derivatives could be computed in simple precision. This improvement has not been coded

in this internship, as computing the second order derivatives analytically, as I did for the first order

derivatives, would be very long and tedious, and the module for automatic differentiation in Julia [14]

is still buggy.

4 Experimental results

4.1 Improving the execution time with multi-threading

As explained in Section 2.4.3, I used multiple threads to run the residuals and Jacobian (both

jac structure and jac coord) methods. I tested my methods on the computer I was given access

to at Polytechnique Montréal, which possesses 48 cores: 8 sockets with 6 cores on each. I tried with

various number of threads. The following table presents the execution time (in ms) of the three meth-

ods (residuals!, jac structure! and jac coord!) on problem LadyBug-49 on the left hand side and on
problem LadyBug-138 on the right hand side:

nthreads res! jac struct! jac coord! res! jac struct! jac coord!

1 100 91 312 291 265 860
2 45 43 196 159 132 541
3 33 31 188 147 93 521
4 26 24 206 92 72 598
5 23 18 230 75 58 706
12 12 9 303 41 29 828
16 10 7 327 40 22 872
24 11 6 345 33 18 967
36 11 6 409 51 19 1116
48 16 10 423 39 25 1190

As expected, the execution time of residuals! and jac structure! decreases with the number of

threads for both problems. It decreases a bit in the end, but one can assume that it is due to the fact

that the communication time will at some point be higher than the time gained using multithreading.

However, the execution time of jac coord is optimal with only three threads for both problems. It can

be explained by the fact that this method needs more memory access than the others so adding too

many threads does not improve the execution time. Nonetheless, as it is not the main topic of this

internship, I did not spend more time on this matter and I only limited the number of threads used in

jac coord to 3, so that the user can choose how many threads he wants to use to improve the execution

time of the two other methods without altering the execution time of jac coord.

16 G–2020–42 Les Cahiers du GERAD

4.2 Results of the Givens strategy

I first tested the results of the Givens strategy on small matrices. It was very vast and efficient. But

when I tested it on a first bundle adjustment problem (LadyBug-49), it appeared to be very slow.

Although it gave the correct results, it took much more time to perform the Givens strategy than to

compute the QR factorization of the whole matrix

[
J√
λI

]
. It can be explained by the fact that it is

a very expensive algorithm as it has a complexity in O(n
2(n+1)

2) (at most n(n+1)
2 Givens rotations are

performed and each rotations is between two rows so at most 2 × n elements need to be computed).

Although, I improved my first try by taking into account the sparsity pattern of the matrix R (I

decreased the execution time by 10), it was coded in Julia, whereas the SuiteSparseQR library is

coded in C, so it will still be faster. The execution time of my Givens strategy was 129.82s on the

LadyBug-49 problem, while the execution time of the QR factorization of the whole matrix

[
J√
λI

]
was 2.96s.

However, coding a sparse QR factorization in Julia was not the purpose of this internship so we

decided to abandon this strategy. Nonetheless, I learnt a lot trying to implement this Givens strategy,

and it helped me better understand QR factorizations.

Other methods could have been explored, such as the one proposed in [20]. In this paper the

authors claim that Givens rotations become slow as the number of columns increases (which is the

case for bundle adjustment problems). Instead, they propose to permute the rows of the matrix

[
R√
λ

]
so as to insert the

√
λ into the R part to obtained what they call a “block banded matrix”, as shown

on the left hand side of the figure below.

Figure 1:

[
R√
λ

]
on the left and P

[
R√
λ

]
on the right (Image taken from [20])

The “block banded” structure is a good one, as they present an efficient way to perform the QR

factorization on those matrices. They compute operations on small dense blocks sequentially and use

the compressed WY representation [19] of Householder QR.

4.3 Comparison of QR and LDL version with AMD and Metis permutations

4.3.1 Sparsity structure of the factors in QR and LDL factorizations

Using the command “spy” in Julia allows to display the sparsity pattern of a sparse matrix. I used it

to check if the matrices R (from the QR factorization of

[
J√
λI

]
) and L (from the LDL factorization

of

[
I J
JT −λI

]
) are sparse and to compare their sparsity structure with the two kinds of permutations

I used: AMD and Metis.

Les Cahiers du GERAD G–2020–42 17

In the following figure are shown the sparsity pattern of the Jacobian J and of the matrix R

(computed for the QR factorization of

[
J√
λI

]
) with AMD and then Metis permutation, for the problem

LadbyBug-49.

Figure 2: Sparsity structure of the Jacobian (left) and of the matrix R with AMD permutation (center) and with Metis
permutation (right) for problem LadyBug-49

In the next figure are shown the sparsity pattern of the Jacobian J and of the matrix L (computed

for the LDL factorization of

[
I J
JT −λI

]
) with AMD and then Metis permutation, for the problem

LadbyBug-49.

Figure 3: Sparsity structure of the Jacobian (left) and of the matrix L with AMD permutation (center) and with Metis
permutation (right) for problem LadyBug-49

The next two figures present the same results but with the problem LadyBug-73.

Those figures confirm that the factorization methods (both QR and LDL) are sparse methods as

the factors computed are indeed sparse. The sparse QR factorization produces similar sparsity pattern

of R with AMD and Metis: the non-zero elements are gathered around the diagonal and in the last

column. For the LDL factorization, the structure of the matrix L seem to differ between AMD and

Metis. For both problems, while AMD gathers the non-zero elements of L around the diagonal and in

the last rows, Metis tends to produce rows of non-zero elements randomly distributed in the matrix.

18 G–2020–42 Les Cahiers du GERAD

Figure 4: Sparsity structure of the Jacobian (left) and of the matrix R with AMD permutation (center) and with Metis
permuatation (right) for problem LadyBug-73

Figure 5: Sparsity structure of the Jacobian (left) and of the matrix L with AMD permutation (center) and with Metis
permuatation (right) for problem LadyBug-73

The following table compares the number of non-zero elements in R (in the QR factorization) with

AMD and Metis:

Problem LB-49 LB-138 LB-318 LB-646

AMD 1000153 2958750 7716888 1637406
Metis 998640 3002580 7835553 1656254

For the QR version, the two permutations seem to be almost equivalent, although AMD seems to

be a bit better.

The following table compares the number of non-zero elements in L (in the LDL factorization) with

AMD and Metis:

Problem LB-49 LB-138 LB-318 LB-646 LB-1031 LB-1723 D-202 D-356 V-427

AMD 1732781 4864731 11692048 24411696 37948213 69672478 41357606 69589108 93778918
Metis 1738679 5087030 13663002 29217289 45856499 71737270 40193169 69460530 94540821

As seen in the graphs of the sparsity structure above, AMD seems to be better than Metis for

the LDL factorization. The difference between the two permutation algorithms gets smaller as the

problems gets bigger.

Les Cahiers du GERAD G–2020–42 19

4.3.2 Results of the solver with LDL and QR factorizations and with AMD and Metis permuta-
tions

In this section are presented the results of the simplest version of my solver, without normalization

nor line search. This will allow us to compare the permutation algorithms AMD and Metis in the LDL

and QR versions. The QR version does not work on very big problems, as the sparse QR factorization

fails when nvar × ncon becomes higher than 6e11. That is why my results are split into two: results

on relatively small problems (to compare QR and LDL factorizations), results on bigger problems (to

compare LDL with AMD and Metis on bigger problems).

The following tables present the results of the simplest version of my solver, on “small problems”.

The first two tables contain the results of the QR version (with AMD and then Metis permutation

algorithm). The columns contain: the name of the problem, the number of variables, the number

of constraints (ie: the length of the residual vector), the final objective value, the elapsed time, the

number of iterations, the status in which the solver finished, and the final dual feasibility value (ie:

the final value of the gradient of the objective ||J tr||).

Table 1: Results of the solver QR-AMD

name nvar nequ objective elapsed time iter status dual feas

LadyBug-49-7776-feasres 23769 63686 1.3364e+04 2.2e+02 57 acceptable 2.1e+02
LadyBug-73-11032-feasres 33753 92244 1.7101e+04 1.3e+02 17 first order 7.1e+01
LadyBug-138-19878-feasres 60876 170434 6.0246e+04 2.5e+03 95 acceptable 3.5e+02
LadyBug-318-41628-feasres 127746 359838 8.6309e+04 2.3e+03 14 acceptable 4.5e+03
LadyBug-460-56811-feasres 174573 483754 1.2878e+05 7.3e+03 26 acceptable 2.0e+05
LadyBug-646-73584-feasres 226566 654594 ∞ ∞ 0 exception ∞
LadyBug-810-88814-feasres 273732 787550 ∞ ∞ 0 exception ∞
LadyBug-1031-110968-feasres 342183 1000530 ∞ ∞ 0 exception ∞
LadyBug-1235-129634-feasres 400017 1152572 ∞ ∞ 0 exception ∞
Dubrovnik-202-132796-feasres 400206 1503304 ∞ ∞ 0 exception ∞

Table 2: Results of the solver QR-Metis

name nvar nequ objective elapsed time iter status dual feas

LadyBug-49-7776-feasres 23769 63686 1.3364e+04 2.2e+02 57 acceptable 2.1e+02
LadyBug-73-11032-feasres 33753 92244 1.7101e+04 1.3e+02 17 first order 7.1e+01
LadyBug-138-19878-feasres 60876 170434 6.0246e+04 2.6e+03 95 acceptable 3.5e+02
LadyBug-318-41628-feasres 127746 359838 8.6309e+04 2.4e+03 14 acceptable 4.5e+03
LadyBug-460-56811-feasres 174573 483754 1.2878e+05 7.1e+03 26 acceptable 2.0e+05
LadyBug-646-73584-feasres 226566 654594 ∞ ∞ 0 exception ∞
LadyBug-810-88814-feasres 273732 787550 ∞ ∞ 0 exception ∞
LadyBug-1031-110968-feasres 342183 1000530 ∞ ∞ 0 exception ∞
LadyBug-1235-129634-feasres 400017 1152572 ∞ ∞ 0 exception ∞
Dubrovnik-202-132796-feasres 400206 1503304 ∞ ∞ 0 exception ∞

The next two tables contain the results of the LDL version (with AMD and then Metis permutation

algorithm):

Table 3: Results of the solver LDL-AMD

name nvar nequ objective elapsed time iter status dual feas

LadyBug-49-7776-feasres 23769 63686 1.3364e+04 4.3e+01 57 acceptable 1.6e+02
LadyBug-73-11032-feasres 33753 92244 1.7101e+04 1.8e+01 17 first order 7.1e+01
LadyBug-138-19878-feasres 60876 170434 6.0246e+04 2.6e+02 95 acceptable 3.6e+02
LadyBug-318-41628-feasres 127746 359838 8.6309e+04 1.5e+02 14 acceptable 4.5e+03
LadyBug-460-56811-feasres 174573 483754 1.2878e+05 4.9e+02 26 acceptable 2.0e+05
LadyBug-646-73584-feasres 226566 654594 3.0126e+05 5.8e+01 1 first order 6.8e+08
LadyBug-810-88814-feasres 273732 787550 2.0347e+05 5.9e+02 13 acceptable 4.8e+08
LadyBug-1031-110968-feasres 342183 1000530 2.7524e+05 1.4e+03 26 first order 1.1e+05
LadyBug-1235-129634-feasres 400017 1152572 3.2273e+05 1.3e+03 17 first order 1.4e+07
Dubrovnik-202-132796-feasres 400206 1503304 3.3014e+05 4.0e+02 10 first order 2.2e+03

20 G–2020–42 Les Cahiers du GERAD

Table 4: Results of the solver LDL-Metis

name nvar nequ objective elapsed time iter status dual feas

LadyBug-49-7776-feasres 23769 63686 1.3364e+04 5.1e+01 57 acceptable 2.1e+02
LadyBug-73-11032-feasres 33753 92244 1.7101e+04 2.7e+01 17 first order 7.1e+01
LadyBug-138-19878-feasres 60876 170434 6.0246e+04 3.3e+02 95 acceptable 3.5e+02
LadyBug-318-41628-feasres 127746 359838 8.6309e+04 2.6e+02 14 acceptable 4.5e+03
LadyBug-460-56811-feasres 174573 483754 1.2878e+05 9.1e+02 26 acceptable 2.0e+05
LadyBug-646-73584-feasres 226566 654594 1.8672e+05 6.4e+02 12 first order 1.0e+09
LadyBug-810-88814-feasres 273732 787550 2.0347e+05 1.4e+03 13 acceptable 4.8e+08
LadyBug-1031-110968-feasres 342183 1000530 2.7532e+05 3.1e+03 37 acceptable 1.6e+08
LadyBug-1235-129634-feasres 400017 1152572 3.2184e+05 2.1e+03 18 first order 1.6e+07
Dubrovnik-202-132796-feasres 400206 1503304 3.3014e+05 3.4e+02 10 first order 2.2e+03

From those tables of results we can draw several conclusions. First, the QR version (with AMD

and Metis) does not terminate half of the time. As explained in Section 3.10, this is due to rank

deficiency of the matrix

[
J√
λI

]
because of computations errors. That is why I added a normalization

option to the solver. Second, the results of the various versions on the first five datasets are very alike.

Indeed, apart from the elapsed time, all versions converge to the same objective in the same number

of iterations, status, and nearly the same dual feasibility value. This is normal, as all versions solve

the same linear problem at each iteration ((JTJ + λI)δ = −JT r). However, the results of the two

LDL versions differ on the last problems. This is also normal, because the various versions solve the

same linear problem but in different ways, and the accumulation of numerical approximations (which

bigger when the matrices and vectors are bigger, that is to say when the problem is bigger) can lead

to such differences in the results.

The QR-AMD and QR-Metis versions give very similar results, there are a few differences on the

elapsed time, but none on them seems to be really faster than the other. QR-AMD has a lower dual

feasibility in the first problem, but it would be a bit arbitrary to choose based on only one problem.

However, in Section 4.3.1, we have seen that the AMD algorithm uses less memory than Metis, as the

matrix R computed by the QR factorization after AMD permutation is a bit sparser than with Metis.

Thus, in the next versions we will keep QR-AMD. In terms of time performance, the LDL versions are

much faster than the QR versions. On the first problem, the LDL versions are 5 times faster than the

QR ones, and this factor increases and reaches 15 in the last problems. We will nonetheless have a

look at the results of the QR normalized versions to see if it fixes the issue that causes the exception

in the last five problems. The slowness of the QR methods can be explained by the fact that Julia’s

interface to SuiteSparseQR does not allow the user to give the permutation vector as parameter. Thus,

in the QR versions, the permutation is computed at each iteration whereas in the LDL versions the

permutation is only computed once, at the beginning of the solver.

If we compare the LDL-AMD and LDL-Metis versions, LDL-AMD seems to have better time

performances (apart from the last problem), and better optimality performances. Indeed, for all

problems it has a lower or equal value of dual feasibility than LDL-Metis. On problem LadyBug-646-

73584, LDL-AMD reaches a lower objective value than LDL-Metis, but a higher dual feasibility. In

that case, we cannot say that one of them is better than the other on that problem. Indeed, what is

the most important proof of convergence: small residuals or a small gradient of the residuals (the dual

feasibility is ||∇(1
2 ||r||

2)|| = ||JT r||) ? So overall, LDL-AMD seems to be better than LDL-Metis in

terms of execution time and also in terms of convergence.

The following graph is called a performance profile. Let us consider a set of algorithms {Ai} and a

set of problems {Pj}. Let SPj ,Ai ≥ 0 be a statistic (for instance the execution time of the algorithm)

corresponding to the solution of Pj by Ai, and suppose that the smaller the statistic the better the

algorithm. Furthermore, let SPj
= min{SPj ,Ai

}. The performance profile of algorithm Ai is defined as:

πi(χ) =
|{Pj |

SPj,Ai

SPj
≤ χ}|

|{Pj}|
, χ ≥ 1

Les Cahiers du GERAD G–2020–42 21

where the ratio
SPj,Ai

SPj
is set to infinity if Ai fails in solving Pj . So the performance profile πi of

algorithm Ai at χ gives us the proportion of problems for which Ai is better than χ times worse than

the best algorithm. Thus πi(1) gives the percentage of problems for which Ai is the best, while the

percentage of problems that are successfully solved by Ai is limχ→∞ πi(χ).

The following performance profile compares the four versions of the solver that we have seen in this

section (LDL factorization with AMD permutation, LDL factorization with Metis permutation, QR

factorization with AMD permutation, QR factorization with Metis permutation) in terms of: execution

time (plot on the left hand side), number of evaluation of the residuals (plot in the center), number of

evaluation of the Jacobian (plot on the right hand side).

Figure 6: Profile of the simplest version on relatively small problems (the horizontal axis is a log scale so x means 2x

As seen in the tables, the QR versions only solve half of the given problems. The LDL versions

are, as expected, much faster than the QR ones, and LDL-AMD has better time performances than

LDL-Metis, as it is faster on 90% of the problems. In terms of function evaluations LDL-AMD is

better than LDL-Metis. This is due to the fact that LDL-Metis sometimes needs more iterations to

reach optimality.

The following tables present the results of the LDL version (with AMD and then Metis permutation

algorithm), on bigger problems:

Table 5: Results of the solver LDL-AMD on bigger problems

name nvar nequ objective elapsed time iter status dual feas

LadyBug-1723-156502-feasres 485013 1357436 6.3315e+05 1.1e+04 34 small step 1.2e+11
Dubrovnik-273-176305-feasres 531372 1885940 3.4564e+05 1.2e+03 30 first order 4.3e+03
Dubrovnik-356-226730-feasres 683394 2510536 4.9482e+05 1.2e+03 19 small step 3.8e+03
Venice-427-310384-feasres 934995 3398290 1.0621e+06 1.7e+03 20 small step 1.2e+05
Venice-1350-894716-feasres 2696298 9034252 2.6558e+06 1.9e+03 1 small step 3.7e+15

Table 6: Results of the solver LDL-Metis on bigger problems

name nvar nequ objective elapsed time iter status dual feas

LadyBug-1723-156502-feasres 485013 1357436 3.7932e+05 5.1e+03 20 first order 1.0e+08
Dubrovnik-273-176305-feasres 531372 1885940 3.4564e+05 1.2e+03 30 first order 4.3e+03
Dubrovnik-356-226730-feasres 683394 2510536 4.9482e+05 1.2e+03 19 small step 3.8e+03
Venice-427-310384-feasres 934995 3398290 1.0621e+06 1.8e+03 20 small step 1.2e+05
Venice-1350-894716-feasres 2696298 9034252 2.6558e+06 1.9e+03 1 small step 3.7e+15

These tables show that LDL-AMD and LDL-Metis give very similar results on big problems. Apart

from the first problem, the results nearly exactly the same. In the first problem, LDL-Metis converges

faster (in less iterations) to a lower objective value and a lower dual feasibility than LDL-AMD.

22 G–2020–42 Les Cahiers du GERAD

The profile below compares the LDL verion with AMD and Metis on the “bigger” problems:

Figure 7: Profile of the LDL version on “big problems”

On the profile, LDL-Metis seems to be a bit better than LDL-AMD, but not that much as the

horizontal axis is very spread out. From the tables we know that this difference is only due to one

problem, so we will not take it into account.

In the following versions we will use the AMD permutation algorithm, as it has proven to be faster

and more efficient on small problems than Metis in the LDL version, and a bit better (in terms of

memory allocations) than Metis in the QR version.

4.4 Results of the normalized versions

4.4.1 Results of the QR normalized versions

In the QR version, the normalizations used are: None (no normalization is used), J (the matrix J is

normalized) and A (the whole matrix

[
J√
λI

]
is normalized). For each one of these versions, the AMD

permutation algorithm is used, because it has proven better performance in the previous section.

The following two tables present the results of the QR-AMD version, with A normalization and

then J normalization (see the Table 1 to see the results without normalization):

Table 7: Results of the solver QR-AMD with A normalization

name nvar nequ objective elapsed time iter status dual feas

LadyBug-49-7776-feasres 23769 63686 1.3364e+04 2.0e+02 57 acceptable 2.1e+02
LadyBug-73-11032-feasres 33753 92244 1.7101e+04 1.1e+02 17 first order 7.1e+01
LadyBug-318-41628-feasres 127746 359838 8.6309e+04 2.0e+03 14 acceptable 4.5e+03
LadyBug-460-56811-feasres 174573 483754 1.2878e+05 6.5e+03 26 acceptable 2.0e+05
LadyBug-810-88814-feasres 273732 787550 2.0347e+05 8.1e+03 13 acceptable 4.8e+08
LadyBug-1031-110968-feasres 342183 1000530 2.7532e+05 2.7e+04 36 acceptable 1.6e+08
Dubrovnik-202-132796-feasres 400206 1503304 3.3014e+05 6.2e+03 10 first order 2.2e+03

Table 8: Results of the solver QR-AMD with J normalization

name nvar nequ objective elapsed time iter status dual feas

LadyBug-49-7776-feasres 23769 63686 1.3364e+04 2.1e+02 57 acceptable 2.1e+02
LadyBug-73-11032-feasres 33753 92244 1.7101e+04 1.2e+02 17 first order 7.1e+01
LadyBug-318-41628-feasres 127746 359838 8.6309e+04 2.0e+03 14 acceptable 4.5e+03
LadyBug-460-56811-feasres 174573 483754 1.2878e+05 6.5e+03 26 acceptable 2.0e+05
LadyBug-810-88814-feasres 273732 787550 2.0347e+05 8.4e+03 13 acceptable 4.8e+08
LadyBug-1031-110968-feasres 342183 1000530 2.7532e+05 2.7e+04 36 acceptable 1.6e+08
Dubrovnik-202-132796-feasres 400206 1503304 ∞ ∞ 0 exception ∞

Les Cahiers du GERAD G–2020–42 23

First of all, we are relieved to notice that the normalized versions are able to solve more problems

than the non-normalized versions. The solver with the A normalization solves all the problems, so

on this matter it is the best version of the three QR versions. In addition, it seems faster than the

J-normalized and non-normalized version (and it gives the same results in terms of convergence).

Thus, the A-normalized versions is the best of all three QR versions, as it does not suffer from bad

contionning, and is hence able to solve all problems, and it is faster than the other versions.

This profile compares the QR-AMD version with the three types of normalization: A, J and None:

Figure 8: Profile of the QR normalized versions

The profile confirms what we concluded from the table. Indeed, the values at the abscissa 0 tell us

that the A-normalized version is always faster than the others, and the values at infinity tell us that

the A-normalized version solves all problems, unlike the other versions.

4.4.2 Results of the LDL normalized versions

In the LDL version, the normalizations used are: None (no normalization is used), J (the matrix J

is normalized) and A (J is normalized and the matrix A is replaced by

[√
λI Ĵ

ĴT −
√
λ

]
as detailed in

Section 3.10). For each one of these versions, the AMD permutation algorithm is used, because it has

proven better performance in the previous section.

The following two tables present the results of the LDL-AMD version, with A normalization and
then J normalization (see the Tables 3 and 5 to see the results without normalization):

Table 9: Results of the solver LDL-AMD with A normalization

name nvar nequ objective elapsed time iter status dual feas

LadyBug-49-7776-feasres 23769 63686 1.3364e+04 4.4e+01 57 acceptable 4.1e+02
LadyBug-73-11032-feasres 33753 92244 1.7101e+04 1.9e+01 17 first order 7.1e+01
LadyBug-318-41628-feasres 127746 359838 8.6309e+04 1.5e+02 14 acceptable 4.5e+03
LadyBug-460-56811-feasres 174573 483754 1.2878e+05 4.6e+02 26 acceptable 2.0e+05
LadyBug-810-88814-feasres 273732 787550 2.0347e+05 5.6e+02 13 acceptable 4.8e+08
LadyBug-1031-110968-feasres 342183 1000530 2.7532e+05 1.9e+03 36 acceptable 1.6e+08
Dubrovnik-202-132796-feasres 400206 1503304 3.3014e+05 4.2e+02 10 first order 2.2e+03
Dubrovnik-273-176305-feasres 531372 1885940 3.4564e+05 1.3e+03 30 first order 4.3e+03
Dubrovnik-356-226730-feasres 683394 2510536 4.9482e+05 1.3e+03 19 small step 3.7e+03
Venice-427-310384-feasres 934995 3398290 1.0621e+06 1.8e+03 20 small step 1.2e+05
Venice-1350-894716-feasres 2696298 9034252 2.6558e+06 1.7e+03 1 small step 3.7e+15

The results of the three LDL-AMD versions are quite similar. However, one can notice some dif-

ferences. To begin with, on the first problem, all three versions have a different value of the dual

feasibility, the one of the non-normalized version being the lowest, and the one from the A-normalized

version being the highest. Then, on problem LabyBug-1031-110868, the non-normalized version ter-

minates with “first order”, in less iterations and with a much lower dual feasibility value than the two

other versions. In addition, the non-normalized version seems to be faster than the others overall.

24 G–2020–42 Les Cahiers du GERAD

Table 10: Results of the solver LDL-AMD with J normalization

name nvar nequ objective elapsed time iter status dual feas

LadyBug-49-7776-feasres 23769 63686 1.3364e+04 4.0e+01 57 acceptable 2.8e+02
LadyBug-73-11032-feasres 33753 92244 1.7101e+04 1.9e+01 17 first order 7.1e+01
LadyBug-318-41628-feasres 127746 359838 8.6309e+04 1.6e+02 14 acceptable 4.6e+03
LadyBug-460-56811-feasres 174573 483754 1.2878e+05 4.8e+02 26 acceptable 2.0e+05
LadyBug-810-88814-feasres 273732 787550 2.0347e+05 5.7e+02 13 acceptable 4.8e+08
LadyBug-1031-110968-feasres 342183 1000530 2.7532e+05 1.8e+03 36 acceptable 1.6e+08
Dubrovnik-202-132796-feasres 400206 1503304 3.3014e+05 4.0e+02 10 first order 2.2e+03
Dubrovnik-273-176305-feasres 531372 1885940 3.4564e+05 1.2e+03 30 first order 4.3e+03
Dubrovnik-356-226730-feasres 683394 2510536 4.9482e+05 1.3e+03 19 small step 3.7e+03
Venice-427-310384-feasres 934995 3398290 1.0621e+06 1.8e+03 20 small step 1.2e+05
Venice-1350-894716-feasres 2696298 9034252 2.6558e+06 2.0e+03 1 small step 3.7e+15

This profile compares the LDL-AMD version with the three types of normalization: A, J and None:

Figure 9: Profile of the LDL normalized versions

The profile confirms the fact that the non-normalized version is faster than the others, while the

two other versions seem to be more or less equivalent. However there is not a big time difference

between the three versions. Indeed, the horizontal axis is quite spread out, and one can notice that

the curves are very close at abscissa 0.35: the three solvers are at least as fast as 20.35 ' 1.27 times

slower than the fastest solver on 90% of the problems. Thus, the non-normalized is overall a bit faster

than the other versions and gives better results on some problems, but one can use either of the two

other versions to avoid bad conditioning problems (even if we have not seen such scenario in our test

problems), without suffering a great loss of time and optimality.

4.5 Results with line search

In this section, we compare LDL-AMD with and without line search. The following table presents the

results of the LDL-AMD version without normalization and with line search (the results without line

search are in Table 3:

As expected, the version with line search seems to be faster, as it performs, overall, less iterations,

apart from problem Dubrovnik-356-226730 where the version without line search preforms 5 less iter-

ations than the version with line search. In terms of convergence, the version with line search almost

always reaches a bit smaller or equal objective value. On the other hand, the final dual feasibility

value often differs in the two versions, with a factor of 10 (in one sens or another), and sometimes

with a bigger factor (in problem Ladybug-810-8814 the dual feasibility of the line search version in

1e4 times smaller, in problems Dubrovnik-273-176305 and Dubrovnik-356-226730 the dual feasibility

of the line search version is 1e2 and 1e3 bigger). All in all, the two versions seem pretty equivalent in

terms of convergence, even if the dual feasibility is often very different (not in the favor of any versions)

because, unlike the previous versions we have seen before, the linear problems solved at each iteration

differ between the two versions because of the line search. But in terms of time the version with line

Les Cahiers du GERAD G–2020–42 25

Table 11: Results of the solver LDL-AMD without normalization and with linesearch

name nvar nequ objective elapsed time iter status dual feas

LadyBug-49-7776-feasres 23769 63686 1.3361e+04 2.2e+01 26 acceptable 2.4e+03
LadyBug-73-11032-feasres 33753 92244 1.7099e+04 1.7e+01 13 acceptable 2.5e+02
LadyBug-318-41628-feasres 127746 359838 8.6326e+04 9.0e+01 7 first order 7.9e+02
LadyBug-460-56811-feasres 174573 483754 1.2855e+05 3.3e+02 17 acceptable 2.0e+05
LadyBug-810-88814-feasres 273732 787550 2.0348e+05 6.0e+02 13 acceptable 7.6e+04
LadyBug-1031-110968-feasres 342183 1000530 2.7523e+05 1.0e+03 19 first order 3.1e+06
Dubrovnik-202-132796-feasres 400206 1503304 3.3015e+05 5.1e+02 10 small step 7.6e+02
Dubrovnik-273-176305-feasres 531372 1885940 3.4477e+05 1.5e+03 30 acceptable 4.8e+05
Dubrovnik-356-226730-feasres 683394 2510536 4.9394e+05 1.6e+03 24 acceptable 1.8e+06
Venice-427-310384-feasres 934995 3398290 1.0621e+06 1.3e+03 13 small step 3.0e+04
Venice-1350-894716-feasres 2696298 9034252 2.6558e+06 1.6e+03 1 small step 3.7e+15

search seems overall faster because it needs less iterations (because of the iterations that are “hidden”

in the line search but that do not need to perform factorization).

The following profile compares the LDL-AMD version with and without line search.

Figure 10: Profile of the LDL-AMD-None version with and without line-search (the version with line-search is “lmldl ls”)

As seen in the tables, the version with line search is faster than the other one (on around 65%

of the problems). The profiles comparing the number of residuals and Jacobian evaluation are quite

interesting, as we notice that the versions with line search performs more evaluations of the residuals

but only a few more evaluations of the Jacobian than the version without line search. This is due to

the fact that in the line search algorithm, the residuals can be computed several times in one iteration

in order to know whether the new step δ
δd

is accepted, while the Jacobian is computed only one time

per iteration (but it is still computed more times in the line search version as a bigger proportion of

the iterations are accepted and thus need to compute a new Jacobian).

4.6 Comparison with Scipy’s least square function and Ceres solver

In this section, we compare the results of my solver (the LDL-AMD version) with open source solvers:

Scipy’s least square function and Ceres solver.

I created a Python script that run Scipy’s least square function on bundle adjustment problems,

using the modeling code given at [6]. It uses sparse finite differences to compute the Jacobian and

trust region methods to solve the problems. I used the same tolerances as in my solver and ran the

script on the same computer. The following table presents the results of Scipy’s least square function:

Let us compare the results from Scipy’s solver with the best version of my solver (LDL-AMD

without normalization and with line search). The final objective values of both solvers are quite

similar, with often better values obtained from my solver (except on the last the problem, where

the objective value of my solver is nearly two times bigger than the one from Scipy). On the other

hand, the dual feasibility values are often quite different, but not to any of the two solvers advantage

26 G–2020–42 Les Cahiers du GERAD

Table 12: Results of Scipy’s least square function

name nvar nequ objective elapsed time iter status dual feas

LadyBug-49-7776-feasres 23769 63686 1.3398e4 294 76 acceptable 8.6383e1
LadyBug-73-11032-feasres 33753 92244 1.7112e4 56 8 acceptable 1.7921e2
LadyBug-318-41628-feasres 127746 359838 8.6308e4 165 8 acceptable 2.4758e5
LadyBug-460-56811-feasres 174573 483754 1.2861e5 399 12 acceptable 2.7606e3
LadyBug-810-88814-feasres 273732 787550 2.1239e5 1547 24 acceptable 1.6922e5
LadyBug-1031-110968-feasres 342183 1000530 2.7637e5 831 16 small step 6.5953e24
Dubrovnik-202-132796-feasres 400206 1503304 3.2937e5 1085 10 acceptable 1.9758e3
Dubrovnik-273-176305-feasres 531372 1885940 3.4529e5 1481 12 acceptable 9.2544e3
Dubrovnik-356-226730-feasres 683394 2510536 4.9689e5 4034 15 acceptable 1.60050e4
Venice-427-310384-feasres 934995 3398290 1.0716e6 3875 15 acceptable 1.1900e5
Venice-1350-894716-feasres 2696298 9034252 1.4956e6 18002 22 acceptable 7.3690e11

overall. One notices the very high dual feasibility value (1e18 times bigger than the one of my solver)

of Scipy’s solver on problem LadyBug-1031-110968, and also the high dual feasibility of my solver on

the last problem (1e3 times bigger than the one of Scipy’s solver). However, the high objective and

high dual feasibility of my solver on the last problem is due to the fact that my solver only performs

one iteration on this problem. Thus, by relaxing the step tolerances, one can reach similar results

as the ones of Scipy’s solver (here we have chosen the default tolerance values on all problems, but

by tuning those tolerances one can obtain better results). So overall, my solver seems a bit better in

terms of convergence. In terms of number of iterations, the two solvers seem more or less equivalent,

and in terms of time (as the number of iterations varies a lot between the two solvers, the time is

compared in terms of mean time per iteration), my solver is almost always faster (except on the last

problem) than Scipy’s, by at least a factor 2. This comparison with Scipy’s solver is quite satisfying

as my solver has proven to have equal or better convergence than a standard optimization library, and

most importantly, it has proven to be faster.

I downloaded the binary files of Ceres solver [18] and used the file called “bundle adjuster”. It mod-

els a bundle adjustment problem from a file and solves it with Ceres. A lot of options are available in

Ceres, I chose the solver the most similar to mine. It is called “SPARSE CHOLESKY”, and it computes

the Cholesky decomposition of JTJ + λI. If RTR = JTJ + λI then δ∗ = −R−1RTJT r. The matrix

R is the same as in the QR factorization of

[
J√
λI

]
= QR. Indeed, JTJ + λI =

[
JT

√
λI
] [J√

λI

]
=

RTQTQR = RTR, as Q is orthonormal. Ceres solver also has a QR version very similar to mine, but

not comparable in terms of time as they use a dense QR factorization which is much more longer than

SuiteSparseQR. So I chose “SPARSE CHOLESKY”, as it is somehow equivalent to my QR version

but not with the same factorization type, and because it uses a Cholesky factorization which is close

to a LDL factorization, even if they do not factorize the same matrix as in my LDL version. Once

again, I used the same tolerances as in my solver and ran the script on the same computer. Table 13
contain the results of Ceres solver:

Table 13: Results of Ceres solver

name nvar nequ objective elapsed time iter status dual feas

LadyBug-49-7776-feasres 23769 63686 1.3345e4 7.86 25 acceptable 2.48e1
LadyBug-73-11032-feasres 33753 92244 1.7100e4 4.02 8 acceptable 6.65e1
LadyBug-318-41628-feasres 127746 359838 8.6341e4 27.66 10 acceptable 4.57e4
LadyBug-460-56811-feasres 174573 483754 1.2870e5 62.94 14 acceptable 2.56e3
LadyBug-810-88814-feasres 273732 787550 2.0471e5 546.00 56 acceptable 1.80e4
LadyBug-1031-110968-feasres 342183 1000530 2.7525e5 148.20 13 acceptable 2.09e6
Dubrovnik-202-132796-feasres 400206 1503304 3.2513e5 289.25 33 acceptable 7.16e5
Dubrovnik-273-176305-feasres 531372 1885940 3.4477e5 162.84 13 acceptable 7.82e4
Dubrovnik-356-226730-feasres 683394 2510536 4.9393e5 183.18 10 acceptable 6.68e5
Venice-427-310384-feasres 934995 3398290 1.0713e6 373.50 14 acceptable 8.19e5
Venice-1350-894716-feasres 2696298 9034252 1.5005e6 1827.87 11 small step 8.46e13

Les Cahiers du GERAD G–2020–42 27

Let us compare the results of Ceres solver on these problems with the ones of my solver with line

search. The final objective values of the two solvers are very close on each problem (apart from the last

one, but once again this is due to the default tolerances). As for the dual feasibility values, they are

often quite different, but they are equivalent overall. The two solvers also seem equivalent in terms of

number of iterations. Now, in terms of execution time (per iteration), Ceres solver is in average three

times faster than my solver. Once again the convergence results of my solver are quite satisfying, but

this time the execution time is a bit disappointing. However, Ceres solver is a library specialized in

non-linear solvers (contrary to Scipy), and has been developed by a whole team of brilliant researchers

and engineers during probably more than four months (contrary to my solver).

4.7 Use of several precisions

This section presents the results of the solver used as described below:

• first, the solver is launched in simple precision until one of the stopping criteria (with tolerances

in simple precision) is met, we keep the solution xsol in memory,

• then, the solver is launched in double precision with x0 = xsol until one of the stopping criteria

(with tolerances in double precision) is met.

As the computer used does not have a simple precision processor, we will not observe a decrease

of the execution time. However, we know that the computations in simple precision will be twice as

slow as the computations in double precision. Thus, by comparing the number of iterations in simple

precision and in double precision, we will be able to compute a time saving, as well as an energy

saving. Indeed, we saw in Section 3.13 that dividing the precision by 2, divides the energy produced

by 4. Let us denote 4α the energy produced by an iteration in double precision. If a problem needs

k iterations in double precision to be solved, or k1 iterations in simple precision then k2 iterations in

double precision, the percentage of energy saved is:

E = 1− k1α+ 4k2α

4kα
= 1− k1 + 4k2

4k
.

The following table presents the results of the solver used in simple then double precision on a few

problems. k1 denotes the number of iterations in simple precision, k2 the number of iterations in double

precision, and k the number of total iterations when the solver (LDL-AMD without normalization,

line search is not used as the time spent for one iteration is variable when line search is used so it

would have made the computations less accurate) is ran in double precision from the start. E is

the percentage of energy saved, computed as explained above, and T is the percentage of time saved

(following the same reasoning as for the energy T = 1 − k1+2k2
2k). The tolerances used for the simple

precision are: oatol = ortol = atol = 1e− 4, rtol = 1e− 3, satol = 1e− 6 and srtol = 1e− 7.

Table 14: Results of my solver using simple precision then double precision

name objective k1 k2 k T E

LadyBug-73-11032-feasres 1.7168e4 17 2 17 38% 63%
LadyBug-138-41628-feasres 6.0103e4 49 2 27 2% 67%
LadyBug-318-41628-feasres 8.6403e4 17 2 14 25% 55%
LadyBug-460-56811-feasres 1.2988e5 27 1 26 44% 71%

The results show that, by well tuning the tolerances of the solver in simple precision, most iterations

can be performed in simple precision (in the problems in the table, no more than 2 iterations have been

performed in double precision). This leads to a save up to 44% of time and 71% of energy. Moreover,

even when the time gain is not that big (for instance 2% in the second problem), the save of energy

is huge (more than the half on the four problems tested). The final objective values are a bit bigger

than without this strategy, but by refining the tolerances of the solver in double precision (here the

default values are used), one can obtain the same results as before.

28 G–2020–42 Les Cahiers du GERAD

Conclusion

During this internship, I created an interface to read the bundle adjustment datasets given in [26]

and modeled such problems using NLPModels, which was way easier to use than JuMP as they allow

vector modeling. As I did not found a working sparse automatic differentiation module in Julia, I

computed the Jacobian by hand, and used multithreading to speed up the computations. I coded

a solver based on the Levenberg-Marquardt algorithm, using QR and LDL factorizations, AMD and

Metis permutation algorithms, normalization and line search.

The experimental results proved that the QR version is much slower than the LDL, and this speed

difference increases when the problem gets bigger. This slowness is due to the need to compute the

permutation at each iteration in the QR version. The normalized versions allow a better conditioning of

the problems, which provides a stabler solver (especially for the QR version, which produces errors due

to numerical approximations when used without normalization). Finally, the LDL version with AMD

permutation has shown to be the faster version of my solver, with the same convergence properties as

the other versions, and the speed can be increased again by activating the line search option.

The comparison with other solvers has shown that my solver is quite competitive with Scipy’s solver

and Ceres solver in terms of convergence, and that it is in average two times faster than Scipy’s solver

and three times slower than Ceres. However, the advantage of my solver is that it is coded is Julia

and thus allows the user to run it in several precisions in a very efficient way, in order to gain time

and energy (in small precisions) or accuracy (in big precisions). The experimental results have shown

that we can save up to 44% of time and 71% of energy by running the solver in simple precision first

before refining the results with double precision.

There is much scope for further development of the solver I created during this internship. Indeed,

the comparison with other solvers have shown that my solver converges well, but that it could be

faster. The QR version could be improved by changing Julia’s interface to SuiteSparseQR to allow the

user to give the permutation vector as parameter (which is allowed in the C++ version) which should

make this version much more faster. The Givens strategy could be improved, or the version with

block-banded matrices discussed in [20] could be implemented or interfaced, to avoid computing the

full QR factorization at each iteration. Moreover, the linear problems solved at each iteration could be

solved approximately, like in [2], and the line search strategy could be refined. All those improvements

will increase the execution time of each iteration, but another way to gain time is to perform less

iterations (and still converge to the same point). One way to reduce the number of iterations would be

to use the improvement discussed in Section 3.13. It consists in using second order derivatives, which

will allow to find a better descent direction at each iteration, and at low cost if we compute the second

order derivatives in simple precision for instance.

During this internship, I have learnt a lot about bundle adjustment problems. I have been able

to understand the datasets given in [26] and to create an interface to read them in Julia. I have also

learnt a lot about Julia, a language that I had never used before, and its usefulness to model and

solve optimization problems, with libraries such as JuMP and NLPModels. I also learnt a lot about

optimization, especially about the Levenberg-Marquardt algorithm. I used LDL and QR factorizations

for my solver, but more than that I went quite deep in understanding how sparse QR factorizations

work by spending some time trying to implement the Givens strategy. I also got used to standard

techniques such as normalization and line search.

Les Cahiers du GERAD G–2020–42 29

Appendices

Appendix A Structure of the datasets

The datasets from [26] look like this



ncam npoints nobs
camera index point index xobs1 yobs1

. . . .

. . . .

. . . .
camera index point index xobsnobs yobsnobs

rx1

ry1

rz1

tx1

ty1

tz1

f1

k11

k21

.

.

.
rxncam
ryncam
rzncam
txncam
tyncam
tzncam
fncam
k1ncam
k2ncam
x1

y1

z1

.

.

.
xnpnts
ynpnts
znpnts



30 G–2020–42 Les Cahiers du GERAD

Appendix B Computations for the jacobian of the residuals

First of all, we have:

∀a ∈ {x, y, z}, ∂θ

∂ra
=
ra
θ

= ka

And:
∂ka
∂ra

=
∂

∂ra
(

ra√
r2
x + r2

y + r2
z

) =
θ − raka

θ2
=

1− k2
a

θ

Then:

∂

∂rx
(k2
xx+ kykxy + kzkxz) =

∂

∂rx
(

r2
x

r2
x + r2

y + r2
z

x+
rxry

r2
x + r2

y + r2
z

y +
rxrz

r2
x + r2

y + r2
z

z)

= 2
rxθ

2 − r3
x

θ4
x+

ryθ
2 − 2r2

xry
θ4

y +
rzθ

2 − 2r2
xrz

θ4
z

= 2x
kx − k3

x

θ
+ y

ky − 2kyk
2
x

θ
+ z

kz − 2kzk
2
x

θ

=
1

θ
(2xkx(1− k2

x) + yky(1− 2k2
x) + zkz(1− 2k2

x))

And:

∂

∂ry
(k2
xx+ kykxy + kzkxz) =

∂

∂ry
(

r2
x

r2
x + r2

y + r2
z

x+
rxry

r2
x + r2

y + r2
z

y +
rxrz

r2
x + r2

y + r2
z

z)

= −2ryr
2
x

θ4
x+

rxθ
2 − 2rxr

2
y

θ4
y − 2rxryrz

θ4
z

= −2x
kyk

2
x

θ
+ y

kx − 2kxk
2
y

θ
− 2z

kxkykz
θ

=
1

θ
(−2xk2

xky + ykx(1− 2k2
y)− 2zkxkykz)

Similarly:

∂

∂rz
(k2
xx+ kykxy + kzkxz) =

∂

∂rz
(

r2
x

r2
x + r2

y + r2
z

x+
rxry

r2
x + r2

y + r2
z

y +
rxrz

r2
x + r2

y + r2
z

z)

= −2rzr
2
x

θ4
x− 2rxryrz

θ4
y +

rxθ
2 − 2rxr

2
z

θ4
z

= −2x
kzk

2
x

θ
− 2y

kxkykz
θ

+ z
kx − 2kxk

2
z

θ

=
1

θ
(−2xk2

xkz − 2ykxkykz + zkx(1− 2k2
z))

By similar computations we get: ∂
∂rx

(kxkyx+k2
yy+kzkyz) = 1

θ (xky(1−2k2
x)−2ykxk

2
y−2zkxkykz)

∂
∂ry

(kxkyx+ k2
yy + kzkyz) = 1

θ (xkx(1− 2k2
y) + 2yky(1− k2

y) + zkz(1− 2k2
y))

∂
∂rz

(kxkyx+ k2
yy + kzkyz) = 1

θ (−2xkxkykz − 2yk2
ykz + zky(1− 2k2

z))

And: ∂
∂rx

(kxkzx+ kykzy + k2
zz) = 1

θ (xkz(1− 2k2
x)− 2ykxkykz − 2zkxk

2
z)

Les Cahiers du GERAD G–2020–42 31

∂
∂ry

(kxkzx+ kykzy + k2
zz) = 1

θ (−2xkxkykz + ykz(1− 2k2
y)− 2zkxk

2
z)

∂
∂rz

(kxkzx+ kykzy + k2
zz) = 1

θ (xkx(1− 2k2
z) + yky(1− 2k2

z) + 2zkz(1− k2
z))

Now, let us compute the derivatives of P1.x:

• ∂P1.x
∂x = cos(θ) + (1− cos(θ))k2

x

• ∂P1.x
∂y = −sin(θ)kz + (1− cos(θ))kykx

• ∂P1.x
∂z = sin(θ)ky + (1− cos(θ))kzkx

• ∂P1.x
∂rx

= −sin(θ)xkx + cos(θ)kx(kyz − kzy) + sin(θ)
−kykxz+kzkxy

θ + sin(θ)k2
x(kxx+ kyy + kzz) +

1−cos(θ)
θ (2xkx(1− k2

x) + yky(1− 2k2
x) + zkz(1− 2k2

x))

• ∂P1.x
∂ry

= −sin(θ)xky+cos(θ)ky(kyz−kzy)+sin(θ)
(1−k2y)z+kzkyy

θ +sin(θ)kxky(kxx+kyy+kzz)+
1−cos(θ)

θ (−2xk2
xky + ykx(1− 2k2

y)− 2zkxkykz)

• ∂P1.x
∂rz

= −sin(θ)xkz+cos(θ)kz(kyz−kzy)+sin(θ)
−kykzz−(1−k2z)y

θ +sin(θ)kxkz(kxx+kyy+kzz)+
1−cos(θ)

θ (−2xk2
xkz − 2ykxkykz + zkx(1− 2k2

z))

Then the derivatives of P1.y:

• ∂P1.y
∂x = sin(θ)kz + (1− cos(θ))kykx

• ∂P1.y
∂y = cos(θ) + (1− cos(θ))k2

y

• ∂P1.y
∂z = −sin(θ)kx + (1− cos(θ))kzky

• ∂P1.y
∂rx

= −sin(θ)ykx + cos(θ)kx(kzx − kxz) + sin(θ)
−kzkxx−(1−k2x)z

θ + sin(θ)kykx(kxx + kyy +

kzz) + 1−cos(θ)
θ (xky(1− 2k2

x)− 2ykxk
2
y − 2zkxkykz)

• ∂P1.y
∂ry

= −sin(θ)yky + cos(θ)ky(kzx−kxz)+sin(θ)
−kzkyx+kxkyz

θ +sin(θ)kyky(kxx+kyy+kzz)+
1−cos(θ)

θ (xkx(1− 2k2
y) + 2yky(1− k2

y) + zkz(1− 2k2
y))

• ∂P1.y
∂rz

= −sin(θ)ykz +cos(θ)kz(kzx−kxz)+sin(θ)
(1−k2z)x+kxkzz

θ +sin(θ)kykz(kxx+kyy+kzz)+
1−cos(θ)

θ (−2xkxkykz − 2yk2
ykz + zky(1− 2k2

z))

Then the derivatives of P1.z:

• ∂P1.z
∂x = −sin(θ)ky + (1− cos(θ))kzkx

• ∂P1.z
∂y = sin(θ)kx + (1− cos(θ))kzky

• ∂P1.z
∂z = cos(θ) + (1− cos(θ))k2

z

• ∂P1.z
∂rx

= −sin(θ)zkx+cos(θ)kx(kxy−kyx)+sin(θ)
(1−k2x)y+kxkyx

θ +sin(θ)kzkx(kxx+kyy+kzz)+
1−cos(θ)

θ (xkz(1− 2k2
x)− 2ykxkykz − 2zkxk

2
z)

• ∂P1.z
∂ry

= −sin(θ)zky + cos(θ)ky(kxy − kyx) + sin(θ)
−kxkyy−(1−k2y)x

θ + sin(θ)kzky(kxx + kyy +

kzz) + 1−cos(θ)
θ (−2xkxkykz + ykz(1− 2k2

y)− 2zkxk
2
z)

• ∂P1.z
∂rz

= −sin(θ)zkz + cos(θ)kz(kxy−kyx) +sin(θ)
−kxkzy+kzkyx

θ +sin(θ)kzkz(kxx+kyy+kzz) +
1−cos(θ)

θ (xkx(1− 2k2
z) + yky(1− 2k2

z) + 2zkz(1− k2
z))

Now, let us compute the derivatives of P2.x and P2.y:

• ∂P2.x
∂x = − 1

z

• ∂P2.x
∂y = 0

• ∂P2.x
∂z = x

z2

• ∂P2.y
∂x = 0

32 G–2020–42 Les Cahiers du GERAD

• ∂P2.y
∂y = − 1

z

• ∂P2.y
∂z = y

z2

And finally, let us compute the derivatives of P3.x and P3.y:

• ∂P3.x
∂x = f(1 + k1(x2 + y2) + k2(x2 + y2)2) + f(2k1x+ k2(4x3 + 4xy2))x

• ∂P3.x
∂y = f(2k1y + k2(4y3 + 4yx2))x

• ∂P3.x
∂f = (1 + k1(x2 + y2) + k2(x2 + y2)2)x

• ∂P3.x
∂k1

= f(x2 + y2)x

• ∂P3.x
∂k2

= f(x2 + y2)2x

• ∂P3.y
∂x = f(2k1x+ k2(4x3 + 4xy2))y

• ∂P3.y
∂y = f(1 + k1(x2 + y2) + k2(x2 + y2)2) + f(2k1y + k2(4y3 + 4yx2))y

• ∂P3.y
∂f = (1 + k1(x2 + y2) + k2(x2 + y2)2)y

• ∂P3.y
∂k1

= f(x2 + y2)y

• ∂P3.y
∂k2

= f(x2 + y2)2y

Appendix C Algorithms for the Givens strategy

Here are the algorithms I coded for the Givens strategy. The main one is called fullQR Givens!, and

the one that computes the Givens rotations is called apply givens!.

In fullQR Givens!, we go through each row k of the matrix R (starting from the last one), we

perform a Givens rotation with the diagonal element of R to eliminate a
√
λ and store the rotation

in a list. The fuction apply givens stores the elements created in
√
λI by the rotation in a 1D vector

called news (at iteration k, news contains the k-th row of
√
λI. As we know that R will have all his

non-zero elements around the last columns, we do not want to go through the whole row of R. Thus,

we look for the second non-zero element (the first one is the diagonal element) of row k of R. As R is

stored in compressed sparse columns format, it is not easy to access the elements of a whole row, that

is why RT is an argument of the function, so that we have access to row k of R by the column k of

RT . Then we perform the Givens rotations the eliminate the new elements and store them in the list

of rotations.

Algorithm 3 fullQR Givens!

1: counter = 0
2: for k = n→ 1 do
3: G, r = givens(R[k, k],

√
λ, k,m+ k)

4: min news = apply givens!(R,Rt,G, r, news, n,m, true, 0)
5: counter+ = 1
6: G list[counter] = G
7: if Rt.colptr[k] < nnz R then
8: vbeg = Rt.rowval[Rt.colptr[k] + 1]
9: else

10: beg = n+ 1
11: end if
12: for col = beg → n do
13: if news[col] 6= 0 then
14: G, r = givens(R[col, col], news[col], col,m+ k)
15: min news = apply givens!(R,Rt,G, r, news, n,m, false,min news+ 1)
16: counter+ = 1
17: G list[counter] = G
18: end if
19: end for
20: end for

Les Cahiers du GERAD G–2020–42 33

The function apply givens! takes as input the Givens rotation to perform. There are two cases:

either this rotation is performed to eliminate a
√
λ and we know that the news vector is empty so far,

either this rotation is performed to eliminate the new elements in
√
λI. In the first case, we look for

the second non-zero element of the row just like before, and we perform the Givens rotation starting

from this column. We keep in memory the index of the first new element created. In the second case,

we start from the first new element that has not yet been eliminated and we keep in memory what

will be the next one.

Algorithm 4 apply givens!

1: min news = 0
2: min found = false
3: if diag then
4: R[G.i1, G.i1] = r
5: for k = Rt.colptr[G.i1] + 1 : Rt.colptr[G.i1 + 1]− 1 do
6: col = Rt.rowval[k]
7: R[G.i1, col], news[col] = G.c ∗R[G.i1, col],−G.s ∗R[G.i1, col]
8: if !minfound && news[col]! = 0 then
9: min found = true

10: min news = col
11: end if
12: end for
13: else
14: R[G.i1, G.i1] = r
15: news[G.i1] = 0
16: if old min news! = 0 then
17: beg = old min news
18: else
19: beg = n+ 1
20: end if
21: for col = beg : n do
22: R[G.i1, col], news[col] = G.c ∗R[G.i1, col] +G.s ∗ news[col],−G.s ∗R[G.i1, col] +G.c ∗ news[col]
23: if !min found && news[col]! = 0 then
24: min found = true
25: min news = col
26: end if
27: end for
28: end if

References

[1] Jump. https://www.juliaopt.org/JuMP.jl/stable/.

[2] An inexact levenberg-marquardt method for large sparse non-linear least squares. https:

//www.cambridge.org/core/journals/anziam-journal/article/an-inexact-levenbergmarquardt-

method-for-large-sparse-nonlinear-least-squres/C92147BBF93B355F317369800FF8CF6A, 1983.

[3] Algorithm 849: A concise sparse cholesky factorization package. https://dl.acm.org/doi/10.1145/

1114268.1114277, 2005.

[4] Pushing the envelope of modern methods for bundle adjustment. https://www.microsoft.com/en-us/

research/wp-content/uploads/2010/06/Jeong-CVPR10.pdf, 2010.

[5] Suitesparseqr. https://github.com/PetterS/SuiteSparse, 2012.

[6] Large-scale bundle adjustment in scipy. https://scipy-cookbook.readthedocs.io/items/bundle_

\adjustment.html, 2016.

[7] Course on slam. https://www.iri.upc.edu/people/jsola/JoanSola/objectes/toolbox/courseSLAM.

pdf, 2017.

[8] Ldlfactorizations. https://github.com/JuliaSmoothOptimizers/LDLFactorizations.jl, 2017.

[9] Bundle adjustment. https://en.wikipedia.org/wiki/Bundle_adjustment, 2019.

[10] Bundle adjustment revisited. https://arxiv.org/pdf/1912.03858.pdf, 2019.

[11] Julia smooth optimizers. https://github.com/JuliaSmoothOptimizers, 2019.

[12] Nlpmodels. https://github.com/JuliaSmoothOptimizers/NLPModels.jl, 2019.

https://www.juliaopt.org/JuMP.jl/stable/
https://www.cambridge.org/core/journals/anziam-journal/article/an-inexact-levenbergmarquardt-method-for-large-sparse-nonlinear-least-squres/C92147BBF93B355F317369800FF8CF6A
https://www.cambridge.org/core/journals/anziam-journal/article/an-inexact-levenbergmarquardt-method-for-large-sparse-nonlinear-least-squres/C92147BBF93B355F317369800FF8CF6A
https://www.cambridge.org/core/journals/anziam-journal/article/an-inexact-levenbergmarquardt-method-for-large-sparse-nonlinear-least-squres/C92147BBF93B355F317369800FF8CF6A
https://dl.acm.org/doi/10.1145/1114268.1114277
https://dl.acm.org/doi/10.1145/1114268.1114277
https://www.microsoft.com/en-us/research/wp-content/uploads/2010/06/Jeong-CVPR10.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2010/06/Jeong-CVPR10.pdf
https://github.com/PetterS/SuiteSparse
https://scipy-cookbook.readthedocs.io/items/bundle_\adjustment.html
https://scipy-cookbook.readthedocs.io/items/bundle_\adjustment.html
https://www.iri.upc.edu/people/jsola/JoanSola/objectes/toolbox/courseSLAM.pdf
https://www.iri.upc.edu/people/jsola/JoanSola/objectes/toolbox/courseSLAM.pdf
https://github.com/JuliaSmoothOptimizers/LDLFactorizations.jl
https://en.wikipedia.org/wiki/Bundle_adjustment
https://arxiv.org/pdf/1912.03858.pdf
https://github.com/JuliaSmoothOptimizers
https://github.com/JuliaSmoothOptimizers/NLPModels.jl

34 G–2020–42 Les Cahiers du GERAD

[13] Nlsmodels. https://github.com/JuliaSmoothOptimizers/NLPModels.jl/blob/master/src/

NLSModels.jl, 2019.

[14] Sparsedifftools. https://github.com/JuliaDiff/SparseDiffTools.jl, 2019.

[15] Cutest. https://github.com/JuliaSmoothOptimizers/CUTEst.jl, 2020.

[16] Levenberg-marquardt algorithm. https://en.wikipedia.org/wiki/Levenberg%E2%80%93Marquardt_

\algorithm, 2020.

[17] Rodrigues’rotation formula. https://en.wikipedia.org/wiki/Rodrigues’_rotation_formula, 2020.

[18] Sameer Agarwal, Keir Mierle, and Others. Ceres solver. http://ceres-solver.org.

[19] Charles Van Loaner and Christian Bischof. The WY representation for products of Householder matrices.
Cornell University, 1987.

[20] Andrew Fitzgibbon, Jan Svoboda, Thomas Cashman. Qrkit: Sparse, composable qr decompositions for
efficient and stable solutions to problems in computer vision. https://arxiv.org/pdf/1802.03773.pdf,
2018.

[21] George Karypis. A Software Package for Partitioning Unstructured Graphs, Partitioning Meshes, and
Computing Fill-Reducing Orderings of Sparse Matrices Version 5.1.0. 2013.

[22] Jorge J. Moré. Lecture Notes in Mathematics. G.A Watson, 1978.

[23] Hans Bruun Nielsen. damping parameter in marquardt’s method. http://www2.imm.dtu.dk/documents/
ftp/tr99/tr05_99.pdf.

[24] Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer, 2006.

[25] Iain S. Duff, Patrick R. Amestoy, Timothy A. Davis. An approximate minimum degree ordering algo-
rithm. http://faculty.cse.tamu.edu/davis/publications_files/An_Approximate_Minimum_Degree\

_Ordering_Algorithm.pdf, 1996.

[26] Steven M. Seitz, Richard Szeliski, Sameer Agarwal, Noah Snavely. Bundle adjustment in the large.
https://grail.cs.washington.edu/projects/bal, 2010.

[27] Steven M. Seitz, Richard Szeliski, Sameer Agarwal, Noah Snavely. Bundle adjustment in the large. 2010.

[28] Micheal A. Saunders. Solution of sparse rectangular systems using lsqr and craig, 1995.

[29] Jin yan Fan and Ya xiang Yuan. On the quadratic convergence of the levenberg-marquardt method
without nonsingularity assumption. https://www.researchgate.net/publication/220261230_

On_the_Quadratic_Convergence_of_the_Levenberg-Marquardt_Method_without_Nonsingularity_

Assumption, 2001.

https://github.com/JuliaSmoothOptimizers/NLPModels.jl/blob/master/src/NLSModels.jl
https://github.com/JuliaSmoothOptimizers/NLPModels.jl/blob/master/src/NLSModels.jl
https://github.com/JuliaDiff/SparseDiffTools.jl
https://github.com/JuliaSmoothOptimizers/CUTEst.jl
https://en.wikipedia.org/wiki/Levenberg%E2%80%93Marquardt_\algorithm
https://en.wikipedia.org/wiki/Levenberg%E2%80%93Marquardt_\algorithm
https://en.wikipedia.org/wiki/Rodrigues'_rotation_formula
http://ceres-solver.org
https://arxiv.org/pdf/1802.03773.pdf
http://www2.imm.dtu.dk/documents/ftp/tr99/tr05_99.pdf
http://www2.imm.dtu.dk/documents/ftp/tr99/tr05_99.pdf
http://faculty.cse.tamu.edu/davis/publications_files/An_Approximate_Minimum_Degree_Ordering_Algorithm.pdf
http://faculty.cse.tamu.edu/davis/publications_files/An_Approximate_Minimum_Degree_Ordering_Algorithm.pdf
https://grail.cs.washington.edu/projects/bal
https://www.researchgate.net/publication/220261230_On_the_Quadratic_Convergence_of_the_Levenberg-Marquardt_Method_without_Nonsingularity_Assumption
https://www.researchgate.net/publication/220261230_On_the_Quadratic_Convergence_of_the_Levenberg-Marquardt_Method_without_Nonsingularity_Assumption
https://www.researchgate.net/publication/220261230_On_the_Quadratic_Convergence_of_the_Levenberg-Marquardt_Method_without_Nonsingularity_Assumption

	Understanding the datasets
	Modeling bundle adjustment problems
	Camera projection
	Optimization problem
	Modeling with JuMP
	Modeling with NLPModels
	A new function to read the datasets
	Computing the Jacobian of the residuals by hand
	Use of multiple threads

	Solving bundle adjustment problems
	The Levenberg-Marquardt algorithm
	Update of the damping parameter
	Stopping criteria
	Factorization and permutation
	The QR version
	Givens rotations
	Improvements to the QR version
	The LDL version
	Improvements to the LDL version
	Normalization
	The line search strategy
	Global convergence of the Levenberg-Marquardt algorithm
	Use of several precisions

	Experimental results
	Improving the execution time with multi-threading
	Results of the Givens strategy
	Comparison of QR and LDL version with AMD and Metis permutations
	Sparsity structure of the factors in QR and LDL factorizations
	Results of the solver with LDL and QR factorizations and with AMD and Metis permutations

	Results of the normalized versions
	Results of the QR normalized versions
	Results of the LDL normalized versions

	Results with line search
	Comparison with Scipy's least_square function and Ceres solver
	Use of several precisions

	Structure of the datasets
	Computations for the jacobian of the residuals
	Algorithms for the Givens strategy

