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ABST RACT  

Background and Objective: Age-related macular degeneration (ARMD) is a degenerative disease that affects the retina, and the 
leading cause of visual loss. In its dry form, the pathology is characterized by the progressive, centrifugal expansion of retinal 
lesions, called geographic atrophy (GA). In infrared eye fundus images, the GA appears as localized bright areas and its growth 
can be observed in series of images acquired at regular time intervals. However, illumination distortions between the images make 
impossible the direct comparison of intensities in order to study the GA progress. Here, we propose a new method to compensate 
for illumination distortion between images. 

Methods: We process all images of the series so that any two images have comparable gray levels. Our approach relies on an 
illumination/reflectance model. We first estimate the pixel-wise illumination ratio between any two images of the series, in a 
recursive way; then we correct each image against all the others, based on those estimates. The algorithm is applied on a sliding 
temporal window to cope with large changes in reflectance. We also propose morphological processing to suppress illumination 
artefacts. 

Results: The corrected illumination function is homogeneous in the series, enabling the direct comparison of grey-levels intensities 
in each pixel, and so the detection of the GA growth between any two images. To demonstrate that, we present numerous
experiments performed on a dataset of 18 series (328 images), manually segmented by an ophthalmologist. First, we show that the 
normalization preprocessing dramatically increases the contrast of the GA growth areas. Secondly, we apply segmentation 
algorithms derived from Otsu’s thresholding to detect automatically the GA total growth and the GA progress between consecutive 
images. We demonstrate qualitatively and quantitatively that these algorithms, although fully automatic, unsupervised and basic, 
already lead to interesting segmentation results when applied to the normalized images. Colored maps representing the GA 
evolution can be derived from the segmentations. 

Conclusion: To our knowledge, the proposed method is the first one which corrects automatically and jointly the illumination 
inhomogeneity in a series of fundus images, regardless of the number of images, the size, shape and progression of lesion areas. 
This algorithm greatly facilitates the visual interpretation by the medical expert. It opens up the possibility of treating automatically 
each series as a whole (not just in pairs of images) to model the GA growth. 

Keywords – eye fundus images, normalization of series of images, dry age-related macular degeneration (ARMD), geographic 
atrophy (GA), GA progression detection, GA progression representation. 
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1. Introduction

Age-related macular degeneration (ARMD) is the leading
cause of visual loss in our countries. It affects the retina, the 
photosensitive layer located in the back of the eye. While the so-
called "wet" form of ARMD can be managed by a specific 
treatment, there is currently no therapeutic options for its "dry" 
form. The latter is characterized by the progressive, centrifugal 
expansion of retinal degeneration, giving rise to what has been 
compared to a geographic-like lesion, hence the name geographic 
atrophy (GA). The intimate mechanisms of the growth of the 
lesions remain elusive. 

In clinical routine, the diagnosis of ARMD requires optical 
coherence tomography (OCT) since this modality is very sensitive 
to reveal small atrophic areas [15]. However, our goal is not to 
diagnose but to analyze the GA progress. For that reason, we use 
confocal scanning laser ophthalmoscopy (cSLO), the resolution of 
which is higher than that of en-face OCT (limited to the interscan 
spacing, typically 50𝜇𝑚). Moreover, in OCT, the delineation of 
the limits of atrophy can most conveniently be done when the scan 
is perpendicular to the border, while cSLO imaging does not have 
such constraint. 

The disease is visible under the form of a localized change in 
the coloration of the fundus. Indeed, the affected layer is called the 
retinal pigment epithelium, which contains a pigment, melanin. 
Hence the disappearance of this layer causes a change in the 
coloration of the fundus, which can be observed most specifically 
in fundus imaging using long wavelengths such as red or infrared 
(IR) light (Fig. 1). This is why infrared imaging of the fundus 
through confocal scanning laser ophthalmoscopy (cSLO) is being 
widely used. This modality is comfortable for the patient, more 
robust and less invasive than fundus autofluorescence (FAF) 
imaging; it has higher resolution and higher contrast between 
normal and diseased areas than color imaging, an older technology 
much less used nowadays. In addition, the color photo is more 
often hampered by cataracts than infrared light. For all these 
reasons, we process cSLO images in IR in this project. 

(a) (b) (c) 
Fig. 1. Examples of cSLO fundus images, acquired in infrared from three 

patients with dry ARMD. Each column shows two consecutive images 
extracted from the series. The arrows point to the GA (green arrows to point 
to new GA zones, blue arrows otherwise). 

Fig. 1 shows three pairs of consecutive images, taken at an 
interval of 6 months. The GA appears as brighter regions in the 
macula and around the optical disk. Automatic processing to 
follow up these areas is obviously very challenging given the 
quality of the images: uneven illumination inside images (a,b,c), 
even saturation to black or white, illumination distortion between 

images (a,b,c), GA poorly contrasted (a) with retinal structures 
interfering (vessel, optical disk), blur, etc. The difficulty relies also 
in the high variability of the lesions in shape, size and number. The 
lesion boundary is quite smooth in some cases (b) and very 
irregular in others (a). At any time, new spots can appear (c) while 
older lesions can merge. All these features make the interpretation, 
in terms of GA delineation and growth, very difficult. On one 
hand, the segmentation task of the GA in every image is very 
challenging, especially long and tedious to perform manually, and 
even experts cannot always be sure of their manual delineation. On 
the other hand, differential analysis between images cannot be 
applied without first compensating for illumination distortion.  

So, our objective is to automatically process series of eye 
fundus images acquired in infrared at regular time intervals, in 
order to detect the appearance of new atrophic areas and quantify 
the GA growth. The ultimate goal is to better understand the lesion 
evolution mechanisms and to propose predictive models of the 
disease progress. This article deals with the first step of this 
project, image preprocessing: the normalization of intensities 
between the images, which is a prerequisite to perform differential 
analysis, and the attenuation of artefacts thanks to morphological 
processing (Section 4). Experiments (Section 5) on a set of 18 
series (328 images manually segmented by a medical expert, 
Section 3) enable us to evaluate the benefits of the proposed 
processing: first, in terms of homogeneity between images and of 
contrast between healthy and unhealthy areas; secondly in terms 
of ability to segment the GA growth. Concerning the second 
aspect, we applied standard pixel-wise, unsupervised and fully 
automatic algorithms, all based on Otsu’s threshold, to show the 
advantages of the preprocessing method for interpretating 
variations in intensity along the time axis, and ultimately 
monitoring the GA growth. All these results are discussed in 
Section 6 before conclusion (Section 7). 

2. State of the art

Automatic analysis of fundus images with dry ARMD has been
an important research field for two decades, for diagnosis [11] or 
follow up [6] purposes. Ophthalmologists can observe pathologic 
features such as Drusen that occur in early stages of the ARMD, 
and GA progression at different stages of degeneration. This 
review covers the various aspects of the research that has been 
carried out so far on fundus images with the aim of automatically 
analyzing ARMD lesions. It includes the main modalities of eye 
fundus images in cSLO (color, IR, FAF). 

In the literature, most works deal with segmentation of single 
images. Standard processing methods are applied, such as region 
growing [6], region oriented variational methods with level set 
implementation [3][8], texture analysis [7]. To cope with GA 
variability, Köse proposed to first segment all healthy regions to 
get the GA as the remaining areas [7]. This approach requires 
segmenting separately the blood vessels, which is known to be also 
a difficult task. The method involves many steps and parameters 
that can be monitored by an user. Besides, several researchers 
acknowledged the difficulty to design fully automatic tools 
reaching the required level of performance and they developed 
user-guided segmentation frameworks [1][9]. Machine learning 
has also been experimented, with random forest [2] or k-nearest 
neighbor classifiers [4]. Feature vectors include image intensity, 
local energy, texture descriptors, values derived from multi-scale 
analysis and distance to the image center. Nevertheless, these 
algorithms are supervised, they require training the classifier from 
annotated data, which brings us back to the difficulty of manually 
segmenting GA areas. On the contrary, Ramsey’s algorithm is 
unsupervised, based on fuzzy c-means clustering [12]. However, 
if the method reaches good performances for FAF images, it 



performs less well for color fundus photographs. In all these 
works, few preprocessing algorithms are applied prior to GA 
segmentation. Ramsey filtered the vessels in FAF images, since 
they interfere with the GA, thanks to a wavelet-based method [12]. 
Uneven illumination that occurs often in eye fundus images has 
been only managed in [2] and [8]. In [2], the author dealt with 
artifactual horizonal intensity variation by correcting the mean 
intensity of every image column with respect to the mean intensity 
of the entire image. In [8], Lee estimated the background 
illumination of FAF images with a non-linear adaptive smoothing 
operator and corrected it. 

The difference between the segmentations obtained in 
consecutive images gives the GA growth. However, the previous 
study shows the high difficulty in segmenting accurately the GA 
without training or user intervention. That is why a few works 
proposed another approach, based on differential analysis, to catch 
the GA growth between two images. Troglio proposed an 
automatic algorithm to detect changes between two color fundus 
images, based on Kittler and Illingworth (K&I) method [13]. This 
method is unsupervised and allows to label pixels in two classes, 
“change” and “no change” in a Bayesian framework. The non-
uniform illumination is corrected in each image using a 
homomorphic filtering technic, where the image intensity is 
modeled as a product of a luminance component and a reflectance 
component. The images are not corrected with respect to each 
other. Residual illumination variations are taken into account by 
applying the K&I algorithm in sub-windows and adopting a 
multiple classifier voting approach. The lack of joint processing 
induces extra complexity and computational cost. In contrast, 
Marrugo proposed to correct the images by pairs, by multiplying 
the second image by a polynomial surface of degree 4, whose 
parameters are estimated in the least-squares sense [10]. In this 
way, illumination distortion is compensated and the image 
difference enhances the areas of changes, which are segmented via 
a statistical test applied locally. This gives a mask of the change-
free areas, which are used to estimate the point spread function 
(PSF) in each image and apply deconvolution. The illumination 
compensation method is limited to pairs of images and cannot 
process all of the images in a series jointly. On the contrary, the 
blind deconvolution can be extended and is very interesting to 
compensate for blur present in some eye fundus images. 

This review shows that the issues mentioned in the introduction 
are not yet solved. To the best of our knowledge, the differential 
approach has not yet been fully explored. Especially, images have 
been processed in pairs and the proposed algorithms do not deal 
with large series. However, the differential analysis seems more 
promising than the segmentation approach, since it may enable us 
to better handle the high shape variability of the GA areas and the 
interference with retinal structures, as well as the lack of contrast. 
This requires designing 1) an efficient illumination normalization 
algorithm and 2) a differential algorithm robust to residual non-
structural changes. The first step, which is the main contribution 
of this article, is crucial to enable the accurate segmentation of 
subtle and significant changes between images of the series. As 
highlighted by our review, the problem of illumination 
normalization has not been fully solved yet: solutions have been 
provided to correct uneven background illumination in single 
images [2][8][13] and joint processing is limited to pairs [10].  

So, this article focuses on the joint processing of the whole 
series, to obtain comparable intensities in the whole stack of 
images and attenuate illumination artefacts (Section 4). This result 
is interesting on its own since it facilitates the visual interpretation 
by the medical expert. We also present many experiments 
assessing the benefit of the proposed image processing: in terms 

of enhancement of GA growth areas and in terms of ability to 
segment these areas, even with basic automatic and unsupervised 
approaches (Sections 5). Our methods and results are discussed in 
Section 6. But before, we describe our dataset and the manually 
segmented subset used for the evaluation (Section 3). 

3. Dataset

Our images were all acquired at the Quinze-Vingts National
Ophthalmology Hospital in Paris, in cSLO with IR illumination. 
The study was carried out according to the tenets of the 
Declaration of Helsinki and followed international ethical 
requirements. Informed consent was obtained from all patients. 
These patients have been followed-up during a few years, hence 
we have series of retinal fundus images, often for both eyes, 
showing the progression of the GA. The images were acquired at 
a time interval of about six months. The average number of images 
in one series is 13 with a standard deviation of 12. All pictures are 
in grayscale and vary greatly in size, but the most common size is 
650 x 650 pixels. As mentioned previously, we notice many 
imperfections such as blur, artifacts and, above all, non-uniform 
illumination inside the images and between them (Fig. 1). All 
images were spatially aligned with i2k software. In every image, 
the area of useful data does not cover the entire image and is 
surrounded by black borders. The automatic detection of these 
black zones in each image gives a mask of the useful data, and the 
intersection of all masks the common retinal region where changes 
can be searched for. 

An ophthalmologist segmented manually a sub-database of 
eighteen series, for the quantitative evaluation of the proposed 
processing methods (Table 1). These series feature different 
characteristics in terms of disease progress, lesion shape, size, 
image quality. For 3 patients, we have series for both left and right 
eyes. The number of images per series ranges from 5 to 52 
(18.2±15.9 in average), with a total of 328 segmented images. We 
have images at the very beginning of the disease for 5 series. In 
this case, there is no apparent GA in the first image(s). 

P. ID Eye 𝑵 P. ID Eye N P. ID Eye 𝑵 

001 R 24 008 L 47 089 R 10 

001 L 15 010 R 6 109 R 16 

003 R 5 016 L 31 110 L 11 

005 R 9 018 R 9 112 R 8 

005 L 9 019 R 11 115 R 9 

008 R 50 020 L 52 117 L 6 

Table 1.Sub-database used in the quantitative evaluation Patient ID, 
processed eye, left (L) or right (R), number of images in the series (N). 
Background in light gray when the acquisitions start with no GA (5 series). 

We developed several user-guided segmentation tools to make 
the ground truth, based on classical segmentation algorithms: 
thresholding applied locally on a rectangle defined by the user, 
parametric active contour model initialized by the user, simple 
linear interpolation between points entered by the user. The user 
chooses the most appropriate tool to locally delimit the lesion 
border, and thus progresses step by step. Automatic thresholding 
or active contour algorithm initialized by the user leads to 
segmentations that depend less on the user than the only use of 
interpolation, and the expert was encouraged to apply these tools 
as often as possible. However, the segmentation remains mostly 
manual, user-dependent and tedious. An ophthalmologist realized 
all segmentations used in our experiments. This has been a very 
hard and long task: as previously mentioned, GA boundaries may 
be very indented; moreover, there is very often a strong ambiguity 
on the true position of the GA border and on the appearance or not 



of new injured areas. Consequently, the expert had often to go 
through the images to make or review a decision. On average, it 
took 10 minutes to process one single image. 

4. Methods

Let us denote by 𝑋 , 𝑛 ∈ [1, 𝑁] the series of acquired images,
to be processed. The grayscale pixels are coded by floating point 
numbers in the interval [0,1]. Our method is made of two main 
steps: joint image normalization to compensate for illumination 
variation between images, and morphological processing to 
enhance the consistent changes between images and attenuate 
artefacts. 

4.1. Joint normalization step 

We consider the model where each acquired image 𝑋 , 𝑛 ∈
[1, 𝑁], is the pixel-wise product of an image of reflectance 𝑅 and 
an image of illumination 𝐼: 

𝑋 = 𝑅𝐼 , 𝑛 ∈ [1, 𝑁]  (1) 

Our goal is to compensate for illumination variation (i.e. the 
fact that 𝐼 ≠ 𝐼 for 𝑛 ≠ 𝑚) to get homogeneous illumination 
between all processed images. In other words, we aim at 
calculating from 𝑋 a new series of images, 𝑌 = 𝑅𝐽 , where 𝐽 
is the corrected illumination of the nth image, with 𝐽 = 𝐽 for all 
pairs. Note that the illumination can remain uneven over the image 
domain, but this inhomogeneity must be the same in all images of 
the series to allow differential analysis. 

The illumination variation is generally smooth, and we can 
assume that the pixel-wise ratios 𝐼ାଵ 𝐼⁄  only contain low 
frequencies. As there are only few and only small structural 
changes between two consecutive images, we can also consider 
that the lowpass filtered version of the ratio 𝑋ାଵ 𝑋⁄  is a good 
estimate of 𝐼ାଵ 𝐼⁄ . So we calculate 

𝑈 = ቀ
ூశభ

ூ
ቁ


=

శభ


∗ 𝑓ఙ , 𝑛 ∈ [1, 𝑁 − 1]  (2) 

where 𝑓ఙ is a Gaussian kernel with standard deviation 𝜎 and * the 
convolution operator. 𝜎 is a scale parameter, chosen to remove 
structural change areas between consecutive images. Then we 
estimate the ratio of illumination for any pair of images in a 
recursive way: 

∀(𝑛, 𝑚) ∈ [1, 𝑁]ଶ, 𝑚 ≥ 𝑛, 

 (3) 𝑉, = ൬
𝐼

𝐼

൰


= 𝑈ିଵ𝑉ିଵ, 

𝑉, =
1

𝑉,

So, the lowpass filter 𝑓ఙ is only applied on ratios of consecutive 
images, so with little change from one to the other, and not on any 
other pairs where the reflectance is likely to be very different, with 
large areas of change. Our goal is to apply an algorithm that 
corrects the images, so that the new illumination ratio becomes 
close to 1 at each pixel, and that for any pair (𝑚, 𝑛). To achieve 
that, our preliminary idea was to propose an iterative algorithm 
that modifies each image against the (𝑁 − 1) others: 

∀(𝑚, 𝑛), 𝑚 > 𝑛, ቐ
𝑌

(ାଵ)
=  𝑌

()
𝑉,

()
ഀ
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𝑌
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() ି

ഀ

మ

 (4) 

where 𝑖 denotes the iteration, 𝑌
()

= 𝑋, 𝑉,
() is the updated 

estimate of the illumination ratio. 

Let us assume that the illumination at a given pixel (𝑥, 𝑦) is 

higher in 𝑌
() than in 𝑌

(). Then its illumination in the nth image

will be multiply by a factor 𝑉,
()

ഀ

మ(𝑥, 𝑦) > 1 while its illumination in 
the mth image will be divided by the same factor, resulting that the 
new illumination values in 𝑌

(ାଵ) and 𝑌
(ାଵ) become closer.

Processing all pairs in this way enables us to correct every image 
against all the others. The parameter 𝛼 controls the amount of 
correction brought by each image of the series to process another 
one. Thus, we can assume that the illumination distortion between 
images progressively decreases so that, after 𝐿 iterations, we get a 

new series 𝑌 = 𝑌
() with same illumination in all images: 𝐼

()
=

𝐼
() for all pairs (𝑛, 𝑚). Note that the algorithm in equation (4) is

equivalent to  

∀𝑛, 𝑌
(ାଵ)

=  𝑌
() ∏ 𝑉,

()
ഀ

మே
ୀଵ  (5) 

Let us now go farther in the interpretation by studying the 
convergence of the proposed algorithm. For that, we consider the 
particular case where all images have the same reflectance but 
were acquired under different illuminations. For any pair, we have 
𝑉,

()
= 𝐼

()
𝐼

()
ൗ = 𝑌

()
𝑌

()
ൗ  and the correction algorithm becomes 
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(ାଵ)

=  𝑌
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We denote by 𝑍
() the logarithm of 𝑌

(). We have

∀𝑛, 𝑍
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+
ఈ

ଶ
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At iteration 𝑖, we define the difference between any two images: 

Δ,
()

= 𝑍
()

− 𝑍
()

At the next iteration, we have 

Δ,
(ାଵ)

= 𝑍
(ାଵ)

− 𝑍
(ାଵ)

=  ቀ1 −
ఈே

ଶ
ቁ Δ,

()  

For 0 < 𝛼 <
ଶ

ே
 we have lim

→ஶ
Δ,

()
= 0 for any pair of images, 

meaning that the algorithm converges to a common image. From 
equation (6) we notice that the mean value of all images is constant 
and equal to 

ଵ

ே
∑ log 𝑋

ே
ୀଵ . Consequently the final corrected

image, after convergence, is the geometric average of all input 
images:  

∀𝑛, lim
⟶ஶ

𝑌
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ே
ୀଵ ൯

భ

ಿ

Thus, our final corrected images, all equal to the geometric 
average of the input images, are given by 

𝑌 = 𝑋 𝐹  with 𝐹 =
ቀ∏ ೖ

ಿ
ೖసభ ቁ
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ே
ୀଵ  (7) 

As we are not in this ideal case where all images have the same 
reflectance, our strategy will be to estimate all illumination ratios 
as described by equations (2) and (3), and to calculate in just one 
pass the corrected images: 

𝑌 = 𝑋 𝐹 with 𝐹 = ∏ 𝑉,

భ

ಿே
ୀଵ (8)



Finally, our correction algorithm is as follows: 

Input : series of images 𝑋 , 𝑛𝜖[1, 𝑁] 

 Calculate 𝑈 for 𝑛𝜖[1, 𝑁 − 1]  (2) 

 Calculate 𝑉, for all pairs (𝑘, 𝑛)  (3)  

 Calculate new images 𝑌   (8) 

 

 
Fig. 2. Joint normalization applied on series 005-L. On the left, two 

consecutive source images 𝑋.and 𝑋ାଵ and their difference |𝑋ାଵ − 𝑋|. On 
the right, the same after normalization. 
 

The low-pass filtering in equations (2) and (3) gives only an 
approximation of the illumination ratio between two images. 
Therefore, considering all pairs (𝑚, 𝑛) of images, even when the 
two medical exams were done at a large time interval, with 
important reflectance changes, is probably not appropriate, even 
with our recursive approach. For that reason, we propose to 
implement the algorithm with a sliding temporal window: each 
image is corrected considering 2𝐾 + 1 images, 𝐾 images acquired 
before and 𝐾 images acquired after the processed image. The 
overlap ensures that all images of the series will converge to the 
same illumination. Experiments showed that 2 ≤ 𝐾 ≤ 7 (5 to 15 
images in the window) are good values for our dataset (Section 
5.2). Fig. 2 shows an example of two consecutive images extracted 
from a series of 9 images. We observe that the initial absolute 
difference does not provide meaningful information, while it 
reveals the GA growth after normalization. 

Finally, it is worth noting that the new illumination generally 
remains spatially uneven. It is certainly possible to compensate for 
this distortion when the series begins without any GA, thanks to 
classical background subtraction technics. This has not been 
explored yet. 

4.2. Enhancement step 

The second step of our algorithm exploits prior knowledge 
about the studied disease: we know that the GA, which is brighter 
than the surrounding structures, growths continuously, without 
any chance of recovery. It means that the GA in image 𝑌 is 
included in the GA in 𝑌வ. Therefore, we apply morphological 
reconstructions to all triplets 𝑌ିଵ, 𝑌,, 𝑌ାଵ as follows: 

𝑌
(ெ)

= ቀ𝑌  𝑅
  (𝑌ିଵ) 𝑅ா

  (𝑌ାଵ)ቁ

భ

య     (9) 

where 𝑅
ெ  (𝑆) (resp. 𝑅ா

ெ  (𝑆)) denotes the reconstruction by 
dilation (resp. erosion) of the marker S in the mask M. The first 
reconstruction ensures that we keep only bright areas that were 
already present in the previous image. The second one suppresses 
bright areas that are not present in the next image. The pixel-wise 
product to the power 1/3 merges all these conditions and enhances 
the meaningful bright areas in image 𝑛. The normalizing algorithm 

is applied again on the images 𝑌
(ெ), to ensure that the new 

series is properly normalized and to further reduce the influence of 
artefacts. We denote by 𝑍 the resulting images. 

Fig. 3 shows an example of the whole processing on 3 
consecutive images. The difference image is calculated by 
𝑚𝑎𝑥{|𝑋ାଵ − 𝑋|, |𝑋 − 𝑋ିଵ|}. The first step (normalization) 
enables us to enhance the differences between the images, while 
the second step (morphological processing) attenuates the bright 
artefacts that are not new lesions. 

 

  
(a) (b) 

 
(d) (c) 

Fig. 3. Normalization and image enhancement. (a) Three consecutive 
images 𝑋ିଵ, 𝑋 , 𝑋ାଵ, 𝑛 = 30; the corresponding normalized images before 
(b) and after (c) morphological processing. The green arrows point to a part 
of the actual GA and the red arrows to bright artefacts; (d) corresponding 
difference images, emphasized by a factor 3, before normalization (left), after 
normalization (middle), after normalization and morphological processing 
(right). The normalization reveals the GA growth but light artefacts are also 
enhanced (inside the red circle); the morphological processing reduces the 
intensity of artefacts (green circle). 

 
4.3. Pairwise correction based on polynomial fitting [10] 

The proposed normalizing algorithm (Section 4.1) corrects 
each image with respect to all the others and this is our main 
contribution with respect to the literature. In [10], two images are 
processed to correct the second one with respect to the first one, 
based on surface fitting through a polynomial function. Here we 
extend the method to process the whole stack iteratively. Let us 
denote by 𝑋෨ , 𝑛 ∈ [1, 𝑁], the resulting images, with 𝑋෨ଵ = 𝑋ଵ. For 
every 𝑛 ∈ [2, 𝑁], a fourth-order polynomial function 𝑃 (15 

parameters) is estimated to minimize ฮ𝑋෨ିଵ − 𝑃𝑋 ฮ
ଶ
 where ‖. ‖ 

is the L2 norm. So, we have 

𝑋෨ = 𝑃𝑋

with 𝑃 = arg min
ொ

ฮ𝑋෨ିଵ − 𝑄𝑋 ฮ
ଶ     (10) 

As our goal is to detect subtle changes between consecutive 
images, we plan to apply this processing on the series 𝑌

(ெ) (9), 
instead of applying the joint normalization a second time as 
described in Section 4.2. We denote by 𝑍෨  the resulting series: 

𝑍෨ = 𝑃𝑌
(ெ)

with 𝑃 = arg min
ொ

ฮ𝑍෨ିଵ − 𝑄𝑌
(ெ)

ฮ
ଶ     (11) 

So, in the end we propose two possible workflows that will be 
evaluated in Section 5: 

𝑋

୭୧୬୲
୬୭୰୫.  (଼)
ሱ⎯⎯⎯⎯⎯ሮ 𝑌

୭୰୮୦୭୪୭୧ୡୟ୪
ୣ୬୦ୟ୬ୡୣ୫ୣ୬୲ (ଽ)
ሱ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ሮ 𝑌

(ெ)

୭୧୬୲
୬୭୰୫.  (଼)
ሱ⎯⎯⎯⎯⎯ሮ 𝑍  

𝑋

୭୧୬୲
୬୭୰୫.  (଼)
ሱ⎯⎯⎯⎯⎯ሮ 𝑌

୭୰୮୦୭୪୭୧ୡୟ୪
ୣ୬୦ୟ୬ୡୣ୫ୣ୬୲ (ଽ)
ሱ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ሮ 𝑌

(ெ )

ୟ୧୰୵୧ୱୣ
୰ୣ୧୬ୣ୫ୣ୬୲  (ଵଵ)
ሱ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ሮ 𝑍෨  



These workflows will be compared to the algorithm of [10] 
extended according to (10): 

𝑋

ୟ୧୰୵୧ୱୣ
୰ୣ୧୬ୣ୫ୣ୬୲  (ଵ)
ሱ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ሮ 𝑋෨  

5. Results 

We rely on the manual segmentations performed by our expert 
(18 series, 328 images in total) to evaluate the proposed methods, 
in two different ways: though the estimation of the contrast 
between the GA and the background (i.e. surrounding tissues and 
anatomical structures, Sections 5.1 and 5.2) and through the 
evaluation of preliminary segmentation results (Sections 5.3 and 
5.4). It is worth noting that all experiments apply to the whole 
series (not on single images or in pairs) since our main contribution 
is the joint processing of the entire stack of images. Furthermore, 
the proposed segmentation methods are basic and do not constitute 
a methodological contribution on its own; but as they are fully 
automatic, unsupervised and applied pixel-wise over the entire 
series, they help us to assess the relevance of the joint intensity 
normalization. 

5.1. Ground truth 

Let us denote by 𝐺𝑇 the binary image of the GA segmentation 
made by the medical expert in the nth image of a series. The inside 
of the GA delineated by the expert is set to 1 and the outside to 0. 
To deal with possible errors and inconsistencies (such as 𝐺𝑇 ⊄

𝐺𝑇வ), we estimate the inside 𝐿
() of the GA in image 𝑛 and the 

outside 𝐿
(௨௧) by: 

𝐿
()

= ⋃ 𝐺𝑇

ୀଵ

𝐿
(௨௧)

= 𝐿
(ప)തതതതതത        (12) 

where 𝐸ത denotes the complement of the set 𝐸. This choice ensures 
that 𝐿

()
⊆ 𝐿ାଵ

() . 

To deal with series where a GA is already present in the first 
image (13 series over 18), we define the total growth of the GA 
from the first image to the nth by: 

𝐺𝑇ℎ = 𝐿
()

∩ ⋂ 𝐺𝑇
ே
ୀଵ

തതതതതതതതതതതത      (13) 

Finally, the growth between two images is given by 

𝑔𝑡ℎ:வ = 𝐺𝑇ℎ ∩ 𝐺𝑇ℎ
തതതതതതത      (14) 

These three equations gives us the ground truth for the GA 
segmentation (12), the growth from the first image to the nth (13) 
and the growth between two images (14). We rely on these 
definitions to evaluate our methods. 

We also estimate the contrast between two regions, denoted by 
𝑅ଵ and 𝑅ଶ, in a given image 𝑋, by calculating the mean signal 
power 𝑃(𝑋, 𝑅) in these two regions, and then the difference 
∆𝑃(𝑋, 𝑅ଵ, 𝑅ଶ) in dB: 

𝑃(𝑋, 𝑅) = 10 logଵ ቂ
ଵ

|ோ|
∑ ൫𝑋(𝑥, 𝑦)൯

ଶ
(௫,௬)∈ୖ ቃ     (15) 

where |𝑅| denotes the number of pixels in the region 𝑅. 

∆𝑃(𝑋, 𝑅ଵ, 𝑅ଶ) = 𝑃(𝑋, 𝑅ଵ) − 𝑃(𝑋, 𝑅ଶ)     (16) 

The higher |∆𝑃(𝑋, 𝑅ଵ, 𝑅ଶ)|, the higher the mean contrast in 𝑋 
between the two regions 𝑅ଵ and 𝑅ଶ and the easier the two regions 

can be segmented. This measure will help us to evaluate the benefit 
of our algorithms by comparing the contrast between healthy and 
unhealthy areas in images derived from 𝑋 (source images), 𝑌 
(after normalization), and 𝑍 or 𝑍෨ (after morphological 
processing). 

5.2. Evaluation from variance images calculated along the 
temporal axis 

We first evaluate the joint normalization processing (Section 
4.1) and the morphological enhancement (Section 4.2). These 
algorithms aim at correcting illumination variations between all 
images. As a result, the illumination may be still uneven in every 
image, but it should be the same in all images of the series. So, the 
gray level of a pixel belonging to a healthy region (outside the GA 
in all images) must be stable in the series (low variance), contrary 
to a pixel belonging to a region of GA growth whose gray level 
increases significantly at a given time. Consequently, we can 
evaluate the benefit of our normalization algorithm by estimating 
the contrast between these two regions in a variance image. 

We consider a sliding temporal window of 𝑀 = 2𝑚 + 1 
consecutive images (Fig. 4). For each image 𝑛 ∈ [𝑚 + 1, 𝑁 − 𝑚] 
we take the images 𝑋ି to 𝑋ା to calculate the variance of the 
gray levels at each pixel. We denote by 𝑋

(ோ) the resulting image. 

We consider the healthy region 𝑅
(௧ )

= 𝐿ା
(௨௧) and the region 

of growth 𝑅
(௪௧ )

= 𝑔𝑡ℎି:ା, and we evaluate the contrast 

between both: ∆𝑃൫𝑋
(ோ)

, 𝑅
(௪௧)

, 𝑅
(௧௬)

൯ (15)(16). We 
average the results in the series and over all series to get mean 
values, denoted by ∆𝑃(𝑋ோ).  

 
Fig. 4. Variance images calculated over 𝑀 = 2𝑚 + 1 consecutive images. 

Mean power values are interpreted by considering the GA growth over this 
temporal window (𝑅

(௪௧)
) and the still healthy area (𝑅

(௧ )). 
 
Fig. 5 displays the results for different sizes of sliding window 

in the normalization algorithm (2𝐾 + 1, Section 4.1), different 
sizes of sliding window to compute the variance images 
(𝑀 = 2𝑚 + 1 ∈ {5,9,11,13,15}), and at different steps of the 
algorithm: on the source images (𝑋), after normalization (𝑌) and 
after morphological processing (𝑍). We consider only the 6 series 
having more than 15 images (maximum value for 𝑀) with GA, for 
the sake of comparison. These results demonstrate the benefits of 
our algorithm with great improvements of the contrast whatever 
the parameter 𝐾 and the length of the analysis (M): the gain ranges 
from 11 to 15dB (Fig. 5d) after the whole processing. Most of the 
gain results from the normalization algorithm but the 
morphological processing contributes also to enhance the GA 
growth area (about +1.5dB). Setting 2𝐾 + 1 = 11 leads to the 
highest contrasts (b,c) whatever 𝑀. But this experiment also shows 
that 𝐾 is not a sensitive parameter since the performances remain 
similar for (2𝐾 + 1) ∈ [5,21]. 



(a) Source images (b) After normalization 

(c) After the whole processing (d) Gain (whole processing) 

Fig. 5. Contrast enhancement between the GA growth area and the healthy 
area for several parameters 𝐾 (temporal window in the normalization 
algorithm) and 𝑀 (temporal window to compute the variance). 

5.3. Evaluation from an enhanced image of the GA total growth 

Let us define the image 𝐺𝑛
(𝑋)enhancing the area of growth 

between the first and the nth image: 

𝐺
()

= max
∈[ଶ,],ழ

(𝑋 − 𝑋), 𝑛 ∈ [2, 𝑁]  (17) 

Note that maximizing over all differences, (𝑋 − 𝑋) with 𝑙 <
𝑘, makes sense only because all images have been jointly 
normalized. We compare the signal power in the total growth area 
𝐺𝑇ℎே  (13) to the power outside the GA, 𝐿ே

(௨௧) (12), by calculating 

∆𝑃൫𝐺ே
()

, 𝐺𝑇ℎே, 𝐿ே
(௨௧)

൯ (15)(16) at the different steps of the 
algorithm. Table 2 summarizes the results averaged on the 18 
series of the experimentation sub-database. The main gain 
obviously results from the normalization step, but the 
morphological treatment improves generally slightly the contrast, 
(+0.6dB). The results are again stable over 𝐾, with slightly better 
contrasts for 2𝐾 + 1 = 7.  

∆𝑷൫𝑮𝑵
(𝑿)

൯ 𝑲 ∆𝑷൫𝑮𝑵
(𝒀)

൯ Gain ∆𝑷(𝑮𝑵
(𝒁)

) Gain 

2.76 ± 3.47 

2 8.44 ± 2.35 5.68 ± 2.37 9.52 ± 2.04 6.77 ± 2.91 

3 9.08 ± 2.01 6.32 ± 3.24 𝟗. 𝟗𝟎 ± 𝟏. 𝟖𝟒 𝟕. 𝟏𝟒 ± 𝟑. 𝟑𝟐 

4 𝟗. 𝟐𝟓 ± 𝟐. 𝟎𝟕 𝟔. 𝟒𝟗 ± 𝟑. 𝟓𝟕 9.70 ± 1.71 6.94 ± 3.52 

5 9.06 ± 2.06 6.30 ± 3; 79 9.52 ± 1.81 6.75 ± 3.50 

Table 2. Contrast between the area of GA growth 𝐺𝑇ℎ𝑁 and the outside 
𝐿ே

(௨௧) in the enhanced image (17) calculated from 𝑋, 𝑌 or 𝑍. The gains are 
calculated with respect to the initial contrast ∆𝑃൫𝐺ே

()
൯. Values are in dB. 

In Table 3, we evaluate the pairwise processing described in 
Section 4.3, where a fourth-order polynomial (15 parameters) 
is estimated to model and correct the illumination distortion 
between two consecutive images (10,11). This treatment 
extends the pairwise normalization proposed in [10] when 
iterated on the source images 𝑋 (10). It is used as refinement 

of our joint processing when applied to 𝑌
() (11).

The highest gains are achieved with our joint processing 
methods, with a slightly higher contrast when the last step is 

the pairwise polynomial fitting (𝑍෨ ) instead of a second joint 
normalization (𝑍 ). The contrast between the total GA and the 
outside is improved by 7.4dB. In contrast, the polynomial 
fitting alone [10] leads to less good results (-2.2 dB), showing 
the interest of first processing the whole series jointly. It is even 
more evident when monitoring the images, as illustrated in Fig. 
6: despite the noise, a good enhancement of the true structural 
changes between consecutive images is obtained with our 
method (𝑍෨); in contrast, the polynomial fitting applied directly 
on the source images (𝑋෨, [10]) does not completely 
compensate for illumination variation, and white areas are still 
present in the background of the difference images. 

Method 
(𝑰𝑷) 

𝑲 ∆𝑷 ቀ𝑮𝑵
(𝑰𝑷)

ቁ Gain 

Source images (𝑋) - 2.76 ± 3.47 
Polynomial fitting [10] (𝑋෨) - 7.93 ± 2.81 5.17 ± 2.74 

Our method 1 (𝑍) 3 9.90 ± 1.84 7.14 ± 3.32 
Our method 2 (𝒁෩) 2 𝟏𝟎. 𝟏𝟐 ± 𝟐. 𝟑𝟕 𝟕. 𝟑𝟕 ± 𝟐. 𝟗𝟗 

Table 3. Contrast of the GA growth area 𝐺𝑇ℎ𝑁: comparison with the 
illumination correction method of [10]. Values are in dB. 

𝑋 

𝑍෨

𝑋෨

(a) 

|𝑋 − 𝑋ିଵ| 

ห𝑍෨ − 𝑍ିଵห 

ห𝑋෨ − 𝑋෨ିଵห 

(b) 
Fig. 6. Comparison between our joint processing method and the pairwise 

correction of [10]: (a) source images (first line), series processed with our 
joint normalization method (𝑍෨ , second line), and series processed pairwise 
[10] (𝑋 , third line); (b) the difference images after contrast stretching. 

𝑋ଵ 𝑋ே , 𝑁 = 24 𝐺ே
()

𝐺ே
(,ௌாீ)

𝑍෨ଵ 𝑍෨ே , 𝑁 = 24 𝐺ே
(෨)

𝐺ே
(෨,ௌாீ)

Fig. 7. GA growth enhancement and segmentation, applied on a series of 
24 images with no lesion in the first image (001-R). The first row shows the 
images before normalization (𝑋) and the second row after processing (𝑍෨). 
The enhanced GA growth is shown in the third column and the corresponding 
segmentation in the fourth column (F1 score: 0.82 for 𝐺ே

(෨,ௌாீ)).

Fig. 7 shows the enhanced GA growth (17) before and after 
processing. In this example, the set of images starts from the very 
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early stages of the disease to advanced ones and the whole GA is 
enhanced with a very dark background (𝐺ே

(෨)) compared to the 
result without processing (𝐺ே

()). The growth of diseased tissues 
around the optical disk is also clearly visible. 

A simple thresholding with Otsu’s method enables us to 
segment the total GA growth, thanks to the proposed processing, 
while it was impossible with the source images (Fig. 7). We denote 
by 𝐺ே

(,ௌாீ) the binarized 𝐺ே
() image. The segmentation is 

evaluated in Table 4 via classical metrics: precision, recall and F1-
score, which is the harmonic mean of precision and recall, given 
the ground truth 𝐺𝑡ℎே (13). 

Lesion (5 series) Growth (13 series) 
𝑇ை௧௦௨ Prec. Rec. F1-sc. Prec. Rec. F1-sc. 

𝐺ே
(,ௌாீ) 0.44 0,29 0,86 0,42 0,27 0,63 0,33 

±0.04 ±0,10 ±0,15 ±0,13 ±0,23 ±0,16 ±0,17 

𝐺ே
(,ௌாீ) 0.37 0,79 0,79 0,78 0,45 0,70 0,49 

±0.04 ±0,11 ±0,08 ±0,07 ±0,27 ±0,12 ±0,21 

𝐺ே
(,ௌாீ) 0,37 0,84 0,78 0,81 0,51 0,68 0,54 

±0,03 ±0,06 ±0,10 ±0,06 ±0,25 ±0,13 ±0,19 

𝐺ே
(෨,ௌாீ) 0,36 0,80 0,72 0,74 0,56 0,66 0,56 

±0,02 ±0,18 ±0,11 ±0,08 ±0,26 ±0,13 ±0,19 

𝐺ே
(෨,ௌாீ)

[10] 

0,37 0,66 0,76 0,70 0,49 0,68 0,52 
±0,03 ±0,19 ±0,15 ±0,16 ±0,25 ±0,14 ±0,20 

Table 4. Evaluation of the GA growth segmentation by Otsu’s method at 
the different steps of the algorithm (𝐺ே

(,ௌாீ), 𝐺ே
(,ௌாீ) with 𝐾 = 3, 𝐺ே

(,ௌாீ) or 
𝐺ே

(෨,ௌாீ) with 𝐾 = 2) and comparison with the results obtained with the 
pairwise polynomial correction [10] (𝐺ே

(෨,ௌாீ)
). 

(a) 

(b) 

(c) 

(d) 

Fig. 8. Segmentation of the GA growth for series starting at an advanced 
stage: results obtained from 𝑋෨ (pairwise method of [10], left) and from 𝑍෨ 
(our joint processing, right). The enhanced images 𝐺ே

൫෩൯ are better contrast than 
𝐺ே

൫ଡ଼෩൯, leading to a more accurate segmentation of the total GA growth. 

The best scores are achieved with the joint normalization 
(𝑌, 𝑍 or 𝑍෨), and the highest F1-scores are obtained with the 
whole processing including morphological treatment (𝑍 or 𝑍෨). 
The polynomial fitting alone (𝑋෨)  [10] performs less, with smaller 
mean scores and higher standard deviations; moreover, the 
precision scores are significantly worse, revealing over 
segmentation issues (Fig. 8, left column). We notice that Otsu’s 
threshold (𝑇ை௧௦௨) is remarkably stable over the series ( 0.36 ± 0.02 
for 𝑍෨). The results for the detection of the whole growth are 
especially good with a F1-score equal to 0.81±0.06 (𝑍) or 

0.74±0.08 (𝑍෨) (Fig. 7, Fig. 9a). For the other series, the F1-score 
is much lower, equal to 0.56±0.19 (𝑍෨, Fig. 8, right column). The 
main problem is that the texture changes inside the GA over time, 
resulting in a lot of false positives and lower precision (Fig. 9b). 

(a) A series starting from a very early stage where no GA is observable. 

(b) A series starting from an advanced stage. Texture changes inside the lesion 
are classified as lesion growth areas ( ), resulting in low precision. The recall 
is low since the expert segmented the right part as lesion in the last image ( ), 
contrary to the algorithm. 

Fig. 9. Segmentation of the GA growth. Left to right: enhanced image 
𝐺ே

(), proposed segmentation 𝐺ே
(,ୗୋ), ground truth 𝐺𝑡ℎே , and comparison

(true positives in green, false negatives in red and false positives in magenta). 

5.4. GA progress between consecutive images 

Finally, still with the aim of evaluating our image processing 
algorithms, we tried to segment the GA growth between 
consecutive images. This process is a prerequisite to elaborate 
predictive models of the disease. For that, we consider the pixels 
belonging to the GA growth area, so satisfying 𝐺ே

(,ௌாீ)
(𝑥, 𝑦) = 1

(Section 5.3), and we study their gray levels in the whole series. 
Let us denote by 𝑉(,(௫,௬))(𝑛), 𝑛 ∈ [1, 𝑁], the gray levels of such a 
pixel (𝑥, 𝑦) in the processed series 𝑍. We assume that this pixel 
is not part of the GA in the first image and that it will be included 
in the GA at a given time 𝑡. This means that the gray levels in 
𝑉(,(௫,௬)) may be low for 1 ≤ 𝑛 < 𝑡 and much higher for 𝑡 ≤ 𝑛 ≤
𝑁 and roughly stable in the two states. For each index 𝑘 ∈ [2, 𝑁], 
we classify the elements of 𝑉(,(௫,௬)) in 2 classes: 𝑉(,(௫,௬))(𝑛) ∈

𝐶(𝑘) if 𝑛 < 𝑘, 𝑉(,(௫,௬))(𝑛) ∈ 𝐶ଵ(𝑘) otherwise. We calculate the 
inter-class variance according to Otsu’s criterion for each index 𝑘: 

𝜎ை௧௦௨

ଶ ൫,(௫,௬)൯ 
(𝑘) =

𝑘 − 1

𝑁
൬𝑉

ଵ:ିଵ

൫,(௫,௬)൯തതതതതതതതതതത
− 𝑉

ଵ:ே

൫,(௫,௬)൯തതതതതതതതതതത
൰

ଶ

+ 

ேିାଵ

ே
ቀ𝑉:ே

(,(௫,௬))തതതതതതതതതതത
− 𝑉ଵ:ே

(,(௫,௬))തതതതതതതതതതത
ቁ

ଶ

 (18) 

where 𝑉:
(,(௫,௬))തതതതതതതതതതത

 denotes the mean value of the elements k to l of 
vector 𝑉(,(௫,௬)). We calculate a segmentation map by maximizing 

the interclass variance 𝜎ை௧௦௨

ଶ ൫,(௫,௬)൯ 
: 

𝑀𝐴𝑃
()

(𝑥, 𝑦) = arg max


𝜎
𝑂𝑡𝑠𝑢

2 ൫Z,(𝑥,𝑦)൯ 
(𝑘)  (19) 

This method is not relevant for pixels that do not switch from a 
heathy to an unhealthy state. Consequently, the method is only 
applied in the GA growth area, so for pixels satisfying 
𝐺ே

(,ௌாீ)
(𝑥, 𝑦) = 1 (Section 5.3). So, we calculate the series 



𝑆𝐸𝐺
()

, 𝑛 ∈ [1, 𝑁], of binary images of the GA from image 1 to 
image 𝑁 by 

𝑆𝐸𝐺
()

(𝑥, 𝑦) =

          ൜1 if 𝑛 ≥ 𝑀𝐴𝑃
()

(𝑥, 𝑦) and 𝐺ே
(,ௌாீ)

(𝑥, 𝑦) = 1

𝑂 otherwise
      (20) 

Finally, we calculate the growth between two consecutive 
images by 

𝑆𝐸𝐺ିଵ:
()

= 𝑆𝐸𝐺
()

 & 𝑆𝐸𝐺ିଵ
()തതതതതതതതതത       (21) 

which reveals the progression of the GA between the (𝑛 − 1)th and 
the 𝑛th images. 

Table 5 shows the quantitative evaluation of this segmentation 
method, applied on the processed series 𝑋෨, 𝑍 and 𝑍෨. The 
method is obviously not applicable before normalization. The 
automatic segmentations (𝑆𝐸𝐺ିଵ:

(෨) , 𝑆𝐸𝐺ିଵ:
() , 𝑆𝐸𝐺ିଵ:

(෨) ) are com-
pared to the manual segmentations 𝑔𝑡ℎିଵ: (14) using the 
classical metrics, which are averaged over the images n and then 
over the series. The best results are obtained on the series 𝑍෨, while 
the segmentations deduced from the pairwise treatment (𝑋෨) [10] 
reach lower mean scores with higher standard deviations. This 
again demonstrates the interest of jointly normalizing all the 
images in a series before attempting to detect growth. 

 
 Precision Recall F1-score 

𝑺𝑬𝑮𝒏ି𝟏:𝒏
(𝒁)  

0.29 0.29 0.25 
±0.12 ±0.14 ±0.12 

𝑺𝑬𝑮𝒏ି𝟏:𝒏

൫𝒁෩൯
 

0.30 0.31 0.28 
±0.13 ±0.14 ±0.12 

𝑺𝑬𝑮𝒏ି𝟏:𝒏

൫𝑿෩൯
 

[10] 

0.27 0.28 0.25 
±0.16 ±0.14 ±0.14 

Table 5. Evaluation of the segmentation of the GA progress between 
consecutive images. The results are given for the series 𝑍 and 𝑍෨ (𝐾 = 2) 
processed with our approach and for the series 𝑋෨ processed with [10]. 
 

Fig. 10 shows samples of growth segmentation between 

consecutive images (𝑆𝐸𝐺ିଵ:
(෨)

, (21)) in one series, and Fig. 11 

colored representations of the GA growth (𝑀𝐴𝑃
(෨)

, (19)) for two 
different series, along with the corresponding ground truth. 

 

  

  
Fig. 10. Examples of very consistent change detections between 

consecutive images, with F1 scores. Every time, the automatic segmentation 
𝑆𝐸𝐺ିଵ:

(෨)  (19) is on the left and the ground truth 𝑔𝑡ℎିଵ: (12) on the right. 
 

Overall, the segmentation images 𝑆𝐸𝐺ିଵ:
(෨)  (Fig. 10) look very 

consistent, and the colored maps (Fig. 11) look similar to their 
equivalent deduced from the ground truth. However, the average 
metrics are quite low (Table 5). There are several explanations for 

this. First, it should be remembered that the manual segmentation 
is very difficult to achieve and is not accurate either. Second, the 
GA progress between two consecutive images is structurally very 
thin, which explains that a small difference between the segmented 
area and the ground truth results immediately in low metrics. 
Especially, small shifts in the change detection maps lead to an 
increase of false positives and false negatives, therefore to weaker 
metrics, although the automatic GA growth detection looks very 
nice (Fig. 10, Fig. 12b). 

 

   
Fig. 11. Colored map of the GA progress in the series (17). The nth color 

in the colormap corresponds to a GA progress between image n-1 and image 
n. The automatic result is on the left and the ground truth on the right. The F1 
score is the average of all F1 scores obtained for each pair of consecutive 
images (21). 
 

  

 
(a) (b) 

Fig. 12. Limits of the segmentation method. In each illustration, the 
automatic result is on the left and the ground truth on the right. (a) Case of a 
series of 9 images corresponding to late stages of ARMD. The area of total 
GA growth 𝐺ே

(෨,ௌாீ) is over segmented (first row) leading to many false 
positives in the detection of changes between consecutive images, inside and 
outside the GA (second row). (b) Case of a series starting from the beginning 
of the disease. The black areas inside the colored map 𝑀𝐴𝑃

(෨)
 come from the 

under-segmentation of the total GA growth 𝐺ே
(෨,ௌாீ) (second row). Apart from 

that, the segmentation between two consecutive images looks very consistent 
(first row), and the low metrics result also from their sensitivity to manual 
segmentation imprecision, as the structures to be detected are very thin. 
 

Finally, the main limits of the proposed segmentation method 
come from the texture changes inside the lesion during the growth, 
disturbing the decision criterion (high variance in the class 𝐶ଵ). In 
addition, an over-segmentation of the total growth (𝐺ே

(෨,ௌாீ)) allows 
false positives inside and outside the GA (20), and this has a strong 
impact on the precision and on the F1 score, especially for series 
starting with advanced GA for which we have a low precision in 
the 𝐺ே

(෨,ௌாீ) segmentations (0.56 ± 0.26, Table 4). Under-
segmentation of the total GA growth has also a negative impact. 
Fig. 12 illustrates all of these problems, responsible for the rather 
low metrics presented in Table 5, despite the detections of changes 
appear to be very consistent. The best results are obtained on 
average with the normalized images processed by mathematical 
morphology and refined pairwise (𝑍෨), for 𝐾 = 2 (5 images in the 
sliding window), with a F1 score around 0.28 ± 0.12. The 



morphological treatment improves the joint normalization by 
introducing a better consistency along the temporal axis, and the 
final pairwise refinement further enhance the GA growth between 
two consecutive images. 

Fig. 13 shows additional examples of colored maps obtained 
with our joint processing method (center column) or with the 
pairwise treatment [10] (right column), along with the ground truth 
(left). Despite the metrics are not much higher with our method 
(Table 5), we can observe that the colored maps derived from 𝑍෨ 
are more consistent than the ones derived from 𝑋෨. We can assume 
than the 𝑍෨ series are likely to give better segmentation results than 
the 𝑋෨ series once a more advanced segmentation algorithm 
involving spatial regularization and/or morphological processing 
is applied. In some cases, our colored map looks also more 
consistent than the one derived from the manual segmentation, 
especially when the GA has a very complex shape (Fig. 13b,d).  

(a) 

(b) 

(c) 

(d) 

Fig. 13. Colored maps of the GA progress in the series: comparison 
between the ground truth (left), the maps derived from our joint normalization 
method (center, 𝑍෨) and from the pairwise processing of [10] (right, 𝑋෨). 

6. Discussion

We have presented a set of experiments evaluating the
advantages of our normalization algorithm for the direct 
comparison of gray levels in a series of fundus images, and, 
ultimately, the detection of the GA growth by differential analysis. 
We first calculated the variance at each pixel, which must be low 
in the areas that remain healthy and, if applicable, within the GA 
present in the first image, and high in the region of GA growth 
(Section 5.2). We found that our processing increases the contrast 
between the growth area and the rest of the image by 11 to 15dB 
(Fig. 5), which is very important. It means that the visual 
inspection of the series, by scrolling through the images, is greatly 
facilitated, since illumination distortions no longer disturb the 
interpretation. The GA expansion becomes much more visible. 
The main gain results from the illumination normalization, but the 

morphological treatment attenuates local artefacts that could be 
mistaken for new GA zones. This experiment also demonstrates 
the advantage of normalizing on a sliding window and helps us to 
set its optimal size (around 9 consecutive images). 

In addition, the proposed preprocessing allows to perform a 
differential analysis, in order to detect the GA growth between any 
two examinations.  
Thus, in Section 5.3, we calculated an enhanced image of the total 
GA growth and we demonstrated that the contrast between the GA 
growth area and the outside (still heathy region) is around 10dB 
while it is only around 3dB without treatment (Table 2) and less 
than 8dB with the pairwise processing proposed in [10] (Table 3). 
We then experimented standard segmentation methods to further 
evaluate the benefit of our image preprocessing. We considered 
two processing flows, including both the joint normalization 
followed by the morphological processing, but lastly refined by a 
second joint normalization (𝑍) or a pairwise polynomial fitting 
(𝑍෨). The gain in contrast enables a segmentation of the total GA 
growth area with a F1-score equal to 0.81 ± 0.06 (𝑍) for series 
starting from the earliest stages of the disease (0.42 ± 0.13 
without treatment). The F1-score is equal to 0.70 ± 0.16 with the 
pairwise processing [10], which is significantly lower (Table 4). 
The segmentation methods is basic, based on Otsu’s thresholding, 
but the results are already good despite this. The segmentation of 
the GA growth from an already advanced stage is less good, with 
an average F1-score equal to 0.56 ± 0.19 (𝑍෨), against 0.33 ±
0.17 without treatment and 0.52 ± 0.20 with the pairwise 
processing [10]. The smaller metrics are due to texture changes 
inside the lesion during time, resulting in higher values in the 
difference images, and therefore lower precision. 
Finally, we explored the possibility of calculating colored maps of 
the GA progress, in order to obtain a visualization of the growth 
and speed of growth in a single image (Section 5.4). The proposed 
method is based on the idea that the grey-levels are stable in each 
state, healthy (low values) or unhealthy (high value). We faced 
again the problem of texture variations inside the GA that disturb 
the detection of the time at which a pixel has switched from a 
healthy state to an unhealthy one. However, we got nice maps in 
many cases (Fig. 11, Fig. 13), close to the ground truth, and also 
very good sets of binary images showing the GA growth between 
two consecutive images (Fig. 10). The best F1-scores evaluating 
the segmentation of the GA growth between consecutive images 
are obtained on 𝑍෨ (joint normalization with a window of size 5 
followed by morphological processing and pairwise refinement). 
The F1-scores are not high (around 0.28 ± 0.12 on the whole 
database, Table 5), but these poor results should be put into 
perspective, as the structures to be detected are very thin and the 
manual segmentation prone to inaccuracies. That is why we 
measured weak metrics in many cases despite the binary images 
of change looked very consistent (Fig. 10), as did the colored maps 
summarizing the GA progression (Fig. 11, Fig. 13). 

All these experiments demonstrate that the proposed image 
processing enables the detection of changes between any two 
images of a series of fundus images, regardless the number of 
images, the size and shape of the GA. This is very new compared 
to the literature, which has focused much more on the 
segmentation of the GA in single images (Section 2), and much 
less on change detection in series [10][13]. Contrary to [10], we 
normalize all images jointly and not just in pairs, and the visual 
inspection of the GA progression maps shows clearly a better 
consistency with the joint processing (Fig. 13), confirmed by the 
metrics (Table 5). The differential analysis proposed in [13], where 
the images are preprocessed separately by a homomorphic filter, 
could also benefit from our global normalization.  



7. Conclusion and perspectives

Very large databases of patients available through routine
imaging systems offer an opportunity to study a vast amount of 
data on dry ARMD. Especially, deriving models of GA 
progression from fundus images is of high medical interest, in 
order to better understand the intimate mechanisms of lesion 
growth or to assess the benefit of medical treatments. However, 
there is a real lack of automatic algorithms to process all these 
images, and especially to detect and quantify the GA progression 
between two medical examinations. Many research works deal 
with the GA segmentation in single images, but there is not yet an 
automatic and reliable solution. A promising alternative is to carry 
out a differential analysis between consecutive images, but the first 
obstacle is the great illumination inhomogeneity inside the images 
and especially between the images. This article deals with the 
correction of illumination inhomogeneity between all the images 
in a series in order to allow the differential analysis between any 
two images. For that, we have proposed a method which 
recursively estimates the illumination ratio between any two 
images in the series and correct the illumination of every image to 
the geometric mean of all illuminations. Then, we have presented 
a morphological processing that enhances the consistent changes 
between consecutive images and attenuate the others, based on the 
fact that the GA increases continuously. The resulting images are 
refined either by another joint normalization or a pairwise 
polynomial fitting. Finally, we have presented many experiments 
realized on a database of 18 series (328 images) acquired from 15 
patients and segmented manually by a medical expert. The 
experiments show the benefit of the normalization algorithm and 
of the morphological processing, in terms of contrast between the 
healthy area and the GA growth area, and in terms of ability to 
detect cumulative changes in the series or between consecutive 
images. The experimental results demonstrate that the 
normalization algorithm makes possible the differential analysis, 
and that the morphological processing brings some improvements 
by attenuating light artefacts. Our first attempt to detect the GA 
growth in consecutive images shows that it is possible to process 
all the images of the series jointly, since the gray levels are now 
comparable at each pixel. We got very nice colored maps of GA 
progression, offering an intuitive understanding for clinicians, in 
terms of growth and speed of growth. Further research is needed 
to determine which refinement is the most suitable after the 
morphological processing, a second joint normalization or the 
pairwise polynomial fitting. 

It is worth noting that the joint normalization process (Section 
4.1) can apply to other types of images, for example color or 
autofluorescence fundus images, which present the same type of 
illumination defects. One of the strengths of our algorithm is that 
there is no precondition, except that the structural changes from 
one image to the next one must not be too important. There is no 
sensitive parameter either: the only parameter is the length of the 
sliding window and it does not require fine tuning. Furthermore, 
the joint normalization process can be useful to monitor clinical 
signs of other diseases than dry ARMD. Only the morphological 
processing (Section 4.2) exploits the fact that the GA continuously 
grows in dry ARMD, which does not apply medically treated wet 
ARMD, for example. 

More robust segmentation algorithms are required to segment 
the GA growth in dry ARMD, and we continue investigating 
several approaches. We have proposed an unsupervised deep 
learning architecture, based on joint autoencoders, to detect 
structural changes between two consecutive images [14]. The 
neural network takes as input the normalized images, as described 
in Section 4, to help it learn a meaningful representation of the 

input data and get rid of insignificant residual illumination 
variations. Ongoing works follow on from what was presented in 
section 5.4, but with spatial and temporal regularizations. In 
parallel, we carry on deep learning approaches, but based on 
LSTM architectures to process entire time series. 
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