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ABST RACT 

 

Background and Objective: Age-related macular degeneration (ARMD) is a degenerative disease that affects the retina, and the 

leading cause of visual loss. In its dry form, the pathology is characterized by the progressive, centrifugal expansion of re tinal 

lesions, called geographic atrophy (GA). In infrared eye fundus images, the GA appears as localized bright areas and its growth 

can be observed in series of images acquired at regular time intervals. However, illumination distortions between the images make 

impossible the direct comparison of intensities in order to study the GA progress. Here, we propose a new method to compensate 

for illumination distortion between images. 

Methods: We process all images of the series so that any two images have comparable gray levels. Our approach  relies on an 

illumination/reflectance model. We first estimate the pixel-wise illumination ratio between any two images of the series, in a 

recursive way; then we correct each image against all the others, based on those estimates. The algorithm is applied on a sliding 

temporal window to cope with large changes in reflectance. We also propose morphological processing to suppress illumination 

artefacts. 

Results: The corrected illumination function is homogeneous in the series, enabling the direct comparison of grey-levels intensities 

in each pixel, and so the detection of the GA growth between any two images. We present numerous experiments performed on a 

dataset of 18 series (328 images), manually segmented by an ophthalmologist. We demonstrate that the GA growth areas are better 

contrast after the proposed processing and we propose first segmentation methods to analyse the GA growth, with quantitative 

evaluation. Colored maps representing the GA evolution are derived from the segmentations. 

Conclusion: To our knowledge, the proposed method is the first one which corrects automatically and jointly the illumination 

inhomogeneity in a series of fundus images, regardless of the number of images, the size, shape and progression of lesion areas. 

This algorithm greatly facilitates the visual interpretation by the medical expert. It opens up the possibility of treating automatically 

each series as a whole (not just in pairs of images) to model the GA growth. 

 

Keywords – eye fundus images, normalization of series of images, dry age-related macular degeneration (ARMD), geographic 

atrophy (GA), GA progression detection, GA progression representation. 
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1. Introduction 

Age-related macular degeneration (ARMD) is the leading 

cause of visual loss in our countries. It affects the retina, the 
photosensitive layer located in the back of the eye. While the so-

called "wet" form of ARMD can be managed by a specific 

treatment, there is currently no therapeutic options for its "dry" 

form. The latter is characterized by the progressive, centrifugal 

expansion of retinal degeneration, giving rise to what has been 

compared to a geographic-like lesion, hence the name geographic 
atrophy (GA). The intimate mechanisms of the growth of the 

lesions remain elusive. 

The diagnosis of ARMD is done on fundus photographs, of 

which many technical modalities are available. The disease is 

visible under the form of a localized change in the coloration of 

the fundus. Indeed, the affected layer is called the retinal pigment 
epithelium, which contains a pigment, melanin. Hence the 

disappearance of this layer causes a change in the coloration of the 

fundus, which can be observed most specifically in fundus 

imaging using long wavelengths such as red or infrared (IR) light 

(Fig. 1). This is why infrared imaging of the fundus through 

confocal scanning laser ophthalmoscopy (cSLO) is being widely 
used. This modality is comfortable for the patient, more robust and 

less invasive than fundus autofluorescence (FAF) imaging; it has 

higher resolution and higher contrast between normal and diseased 

areas than color imaging, an older technology. In this work, we 

process cSLO images in IR. 

 

   

   

(a) (b) (c) 

Fig. 1. Examples of cSLO fundus images, acquired in infrared from three 

patients with dry ARMD. Each column shows two consecutive images 

extracted from the series. The arrows point to the GA (green arrows to point 

to new GA zones, blue arrows otherwise). 

 
Fig. 1 shows three pairs of consecutive images, taken at an 

interval of 6 months. The GA appears as brighter regions in the 

macula and around the optical disk. Automatic processing to 

follow up these areas is obviously very challenging given the 

quality of the images: uneven illumination inside images (a,b,c), 

even saturation to black or white, illumination distortion between 

images (a,b,c), GA poorly contrasted (a) with retinal structures 
interfering (vessel, optical disk), blur, etc. The difficulty relies also 

in the high variability of the lesions in shape, size and number. The 

lesion boundary is quite smooth in some cases (b) and very 

irregular in others (a). At any time, new spots can appear (c) while 

older lesions can merge. All these features make the interpretation, 

in terms of GA delineation and growth, very difficult. On one 
hand, the segmentation task of the GA in every image is very 

challenging, especially long and tedious to perform manually, and 

even experts cannot always be sure of their manual delineation. On 

the other hand, differential analysis between images 
cannot be applied without first compensating for illumination 

distortion.  

So, our objective is to automatically process series of eye 

fundus images acquired in infrared at regular time intervals, in 

order to detect the appearance of new atrophic areas and quantify 

the GA growth. The ultimate goal is to better understand the lesion 
evolution mechanisms and to propose predictive models of the 

disease progress. This article deals with the first step of this 

project, image preprocessing: the normalization of intensities 

between the images, which is a prerequisite to perform differential 

analysis, and the attenuation of artefacts thanks to morphological 

processing (Section 4). Experiments (Section 5) on a set of 18 
series (328 images manually segmented by a medical expert, 

Section 3) enable us to evaluate the benefits of the proposed 

processing, in terms of homogeneity between images and in terms 

of contrast between healthy and unhealthy areas. Preliminary 

segmentation results of the GA growth are also presented, 

demonstrating the interest of the proposed approach. All these 

results are discussed in Section 6. 

2. State of the art 

Automatic analysis of fundus images with dry ARMD has been 

an important research field for two decades, for diagnosis [11] or 
follow up [6] purposes. Ophthalmologists can observe pathologic 

features such as Drusen that occur in early stages of the ARMD, 

and GA progression at different stages of degeneration. Imaging 

modalities are most often color eye fundus images, fundus 

autofluorescence (FAF) images, confocal scanning laser 

ophthalmoscopy (cSLO) in infrared (IR), but also optical 
coherence tomography (OCT). This review includes all modalities 

of eye fundus images (color, IR, FAF). 

In the literature, most works deal with segmentation of single 

images. Standard processing methods are applied, such as region 

growing [6], region oriented variational methods with level set 

implementation [3][8], texture analysis [7]. To cope with GA 
variability, Köse proposed to first segment all healthy regions to 

get the GA as the remaining areas [7]. This approach requires 

segmenting separately the blood vessels, which is known to be also 

a difficult task. The method involves many steps and parameters 

that can be monitored by an user. Besides, several researchers 

acknowledged the difficulty to design fully automatic tools 
reaching the required level of performance and they developed 

user-guided segmentation frameworks [1][9]. Machine learning 

has also been experimented, with random forest [2] or k-nearest 

neighbor classifiers [4]. Feature vectors include image intensity, 

local energy, texture descriptors, values derived from multi-scale 

analysis and distance to the image center. Nevertheless, these 
algorithms are supervised, they require training the classifier from 

annotated data, which brings us back to the difficulty of manually 

segmenting GA areas. On the contrary, Ramsey’s algorithm is 

unsupervised, based on fuzzy c-means clustering [12]. However, 

if the method reaches good performances for FAF images, it 

performs less well for color fundus photographs. 

The difference between the segmentations obtained in 

consecutive images gives the GA growth. However, the previous 

study shows the high difficulty in segmenting accurately the GA 

without training or user intervention. That is why a few works 

propose another approach, based on differential analysis, to catch 

the GA growth between two images. Troglio proposed an 
automatic algorithm to detect changes between two color fundus 

images, based on Kittler and Illingworth (K&I) method [13]. This 

method is unsupervised and allows to label pixels in two classes, 

“change” and “no change” in a Bayesian framework. The non-
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uniform illumination is corrected in each image using a 
homomorphic filtering technic, where the image intensity is 

modeled as a product of a luminance component and a reflectance 

component. The images are not corrected with respect to each 

other. Residual illumination variation are taken into account by 

applying the K&I algorithm in sub-windows and adopting a 

multiple classifier voting approach. The lack of joint processing 
induces extra complexity and computational cost. In contrast, 

Marrugo proposed to correct the images by pairs, by multiplying 

the second image by a polynomial surface of degree 4, whose 

parameters are estimated in the least-squares sense [10]. In this 

way, illumination distortion is compensated and the image 

difference enhances the areas of changes, which are segmented via 
a statistical test applied locally. This gives a mask of the change-

free areas, which are used to estimate the point spread function 

(PSF) in each image and apply deconvolution. The illumination 

compensation method is limited to pairs of images and cannot 

process all of the images in a series jointly. On the contrary, the 

blind deconvolution can be extended and is very interesting to 

compensate for blur present in some eye fundus images. 

This review shows that the issues mentioned in the introduction 

are not yet solved. To the best of our knowledge, the differential 

approach has not yet been fully explored. Especially, images have 

been processed in pairs and the proposed algorithms do not deal 

with large series. However, the differential analysis seems more 
promising than the segmentation approach, since it may enable us 

to better handle the high shape variability of the GA areas and the 

interference with retinal structures, as well as the lack of contrast. 

This requires designing an efficient illumination normalization 

algorithm and/or a differential algorithm robust to non-structural 

changes. 

This article focuses on the joint processing of the whole series, 

to obtain comparable intensities in the whole stack of images and 

attenuate illumination artefacts (Section 4). This result is in itself 

interesting since it facilitates the visual interpretation by the 

medical expert. We also present very preliminary results regarding 

the detection of the GA growth and many experiments assessing 
the benefit of the proposed image processing (Sections 5, 6). But 

before, we describe our dataset and the manually segmented subset 

used for the evaluation (Section 3). 

3. Dataset 

Our images were all acquired at the Quinze-Vingts National 

Ophthalmology Hospital in Paris, in cSLO with IR illumination. 

The study was carried out according to the tenets of the 

Declaration of Helsinki and followed international ethical 

requirements. Informed consent was obtained from all patients. 

These patients have been followed-up during a few years, hence 
we have series of retinal fundus images, often for both eyes, 

showing the progression of the GA. The images were acquired at 

a time interval of about six months. The average number of images 

in one series is 13 with a standard deviation of 12. All pictures are 

in grayscale and vary greatly in size, but the most common size is 

650 x 650 pixels. As mentioned previously, we notice many 
imperfections such as blur, artifacts and, above all, non-uniform 

illumination inside the images and between them (Fig. 1). All 

images were spatially aligned with i2k software. In every image, 

the area of useful data does not cover the entire image and is 

surrounded by black borders. The automatic detection of these 

black zones in each image gives a mask of the useful data, and the 
intersection of all masks the common retinal region where changes 

can be searched for. 

An ophthalmologist segmented manually a sub-database of 

eighteen series, for the quantitative evaluation of the proposed 

processing methods (Table 1). These series feature 
different characteristics in terms of disease progress, lesion shape, 

size, image quality. For 3 patients, we have series for both left and 

right eyes. The number of images per series ranges from 5 to 52 

(18.2±15.9 in average), with a total of 328 segmented images. We 

have images at the very beginning of the disease for 5 series. In 

this case, there is no apparent GA in the first image(s). 

 

P. ID Eye N P. ID Eye N P. ID Eye N 

001 R 24 008 L 47 089 R 10 

001 L 15 010 R 6 109 R 16 

003 R 5 016 L 31 110 L 11 

005 R 9 018 R 9 112 R 8 

005 L 9 019 R 11 115 R 9 

008 R 50 020 L 52 117 L 6 

Table 1.Sub-database used in the quantitative evaluation Patient ID, 

processed eye, left (L) or right (R), number of images in the series (N). 

Background in light gray when the acquisitions start with no GA (5 series). 

 

We developed several user-guided segmentation tools to make 
the ground truth, based on classical segmentation algorithms: 

thresholding applied locally on a rectangle defined by the user, 

parametric active contour model initialized by the user, simple 

linear interpolation between points entered by the user. The user 

chooses the most appropriate tool to locally delimit the lesion 

border, and thus progresses step by step. Automatic thresholding 
or active contour algorithm initialized by the user leads to 

segmentations that depend less on the user than the only use of 

interpolation, and the expert was encouraged to apply these tools 

as often as possible. However, the segmentation remains mostly 

manual, user-dependent and tedious. An ophthalmologist realized 

all segmentations used in our experiments. This has been a very 
hard and long task: as previously mentioned, GA boundaries may 

be very indented; moreover, there is very often a strong ambiguity 

on the true position of the GA border and on the appearance or not 

of new injured areas. Consequently, the expert had often to go 

through the images to make or review a decision. On average, it 

took 10 minutes to process one single image. 

4. Methods 

Let us denote by 𝑋𝑛 , 𝑛 ∈ [1, 𝑁] the series of acquired images, 

to be processed. The grayscale pixels are coded by floating point 

numbers in the interval [0,1]. Our method is made of two main 

steps: an image normalization to compensate for illumination 
variation between images, and morphological processing to 

enhance the consistent changes between images and attenuate 

artefacts. 

4.1. Normalization step 

We consider the model where each acquired image 𝑋𝑛 , 𝑛 ∈
[1, 𝑁], is the pixel-wise product of an image of reflectance 𝑅𝑛 and 

an image of illumination 𝐼𝑛: 

𝑋𝑛 = 𝑅𝑛𝐼𝑛 , 𝑛 ∈ [1, 𝑁]       (1) 

Our goal is to compensate for illumination variation (i.e. the 

fact that 𝐼𝑛 ≠ 𝐼𝑚 for 𝑛 ≠ 𝑚) to get homogeneous illumination 

between all processed images. In other words, we aim at 

calculating from 𝑋𝑛 a new series of images, 𝑌𝑛 = 𝑅𝑛𝐽𝑛, where 𝐽𝑛 

is the corrected illumination of the nth image, with 𝐽𝑛 = 𝐽𝑚 for all 

pairs. Note that the illumination can remain uneven over the image 
domain, but this inhomogeneity must be the same in all images of 

the series to allow differential analysis. 



4 
The illumination variation is generally smooth, and we can 

assume that the pixel-wise ratios 𝐼𝑛+1 𝐼𝑛⁄  only contain low 

frequencies. As there are only few and only small structural 

changes between two consecutive images, we can also consider 

that the lowpass filtered version of the ratio 𝑋𝑛+1 𝑋𝑛⁄  is a good 

estimate of 𝐼𝑛+1 𝐼𝑛⁄ . So we calculate 

𝑈𝑛 = (
𝐼𝑛+1

𝐼𝑛
)

̂
=

𝑋𝑛+1

𝑋𝑛
∗ 𝑓𝜎 , 𝑛 ∈ [1, 𝑁 − 1]     (2) 

where 𝑓𝜎 is a Gaussian kernel with standard deviation 𝜎 and * the 

convolution operator. 𝜎 is a scale parameter, chosen to remove 

structural change areas between consecutive images. Then we 

estimate the ratio of illumination for any pair of images in a 

recursive way: 

∀(𝑛, 𝑚) ∈ [1, 𝑁]2, 𝑚 ≥ 𝑛, 

      (3) 𝑉𝑚,𝑛 = (
𝐼𝑚

𝐼𝑛

)
̂

= 𝑈𝑚−1𝑉𝑚−1,𝑛 

𝑉𝑛,𝑚 =
1

𝑉𝑚,𝑛

 

 

So, the lowpass filter 𝑓𝜎 is only applied on ratios of consecutive 

images, so with little change from one to the other, and not on any 
other pairs where the reflectance is likely to be very different, with 

large areas of change. Our goal is to apply an algorithm that 

corrects the images, so that the new illumination ratio becomes 

close to 1 at each pixel, and that for any pair (𝑚, 𝑛). To achieve 

that, our preliminary idea was to propose an iterative algorithm 

that modifies each image against the (𝑁 − 1) others: 

∀(𝑚, 𝑛), 𝑚 > 𝑛, {
 𝑌𝑛

(𝑖+1)
=  𝑌𝑛

(𝑖)
𝑉𝑚,𝑛

(𝑖)
𝛼

2

𝑌𝑚
(𝑖+1)

=  𝑌𝑚
(𝑖)

𝑉𝑚,𝑛
(𝑖) −

𝛼

2

      (4) 

where 𝑖 denotes the iteration, 𝑌𝑛
(0)

= 𝑋𝑛, 𝑉𝑚,𝑛
(𝑖)

 is the updated 

estimate of the illumination ratio. 

Let us assume that the illumination at a given pixel (𝑥, 𝑦) is 

higher in 𝑌𝑚
(𝑖)

 than in 𝑌𝑛
(𝑖)

. Then its illumination in the nth image 

will be multiply by a factor 𝑉𝑚,𝑛
(𝑖)

𝛼

2(𝑥, 𝑦) > 1 while its illumination in 

the mth image will be divided by the same factor, resulting that the 

new illumination values in 𝑌𝑛
(𝑖+1)

 and 𝑌𝑚
(𝑖+1)

 become closer. 

Processing all pairs in this way enables us to correct every image 

against all the others. The parameter 𝛼 controls the amount of 

correction brought by each image of the series to process another 

one. Thus, we can assume that the illumination distortion between 

images progressively decreases so that, after 𝐿 iterations, we get a 

new series 𝑌𝑛 = 𝑌𝑛
(𝐿)

 with same illumination in all images: 𝐼𝑚
(𝐿)

=

𝐼𝑛
(𝐿)

 for all pairs (𝑛, 𝑚). Note that the algorithm in equation (4) is 

equivalent to  

∀𝑛, 𝑌𝑛
(𝑖+1)

=  𝑌𝑛
(𝑖)

∏ 𝑉𝑘,𝑛
(𝑖)

𝛼

2𝑁
𝑘=1        (5) 

Let us now go farther in the interpretation by studying the 

convergence of the proposed algorithm. For that, we consider the 

particular case where all images have the same reflectance but 

were acquired under different illuminations. For any pair, we have 

𝑉𝑘,𝑛
(𝑖)

= 𝐼𝑘
(𝑖)

𝐼𝑛
(𝑖)

⁄ = 𝑌𝑘
(𝑖)

𝑌𝑛
(𝑖)

⁄  and the correction algorithm becomes  

∀𝑛, 𝑌𝑛
(𝑖+1)

=  𝑌𝑛
(𝑖) ∏ (

𝑌𝑘
(𝑖)

𝑌𝑛
(𝑖))

𝛼

2
𝑁
𝑘=1   

We denote by 𝑍𝑛
(𝑖)

 the logarithm of 𝑌𝑛
(𝑖)

. We have 

∀𝑛, 𝑍𝑛
(𝑖+1)

=  𝑍𝑛
(𝑖)

+
𝛼

2
∑ (𝑍𝑘

(𝑖)
− 𝑍𝑛

(𝑖)
)𝑁

𝑘=1      (6) 

At iteration 𝑖, we define the difference between any two images: 

Δ𝑛,𝑚
(𝑖)

= 𝑍𝑛
(𝑖)

− 𝑍𝑚
(𝑖)

     

At the next iteration, we have 

Δ𝑛,𝑚
(𝑖+1)

= 𝑍𝑛
(𝑖+1)

− 𝑍𝑚
(𝑖+1)

=  (1 −
𝛼𝑁

2
) Δ𝑛,𝑚

(𝑖)
   

For 0 < 𝛼 <
2

𝑁
 we have lim

𝑖→∞
Δ𝑛,𝑚

(𝑖)
= 0 for any pair of images, 

meaning that the algorithm converges to a common image. From 

equation (6) we notice that the mean value of all images is constant 

and equal to 
1

𝑁
∑ log 𝑋𝑛

𝑁
𝑛=1 . Consequently the final corrected 

image, after convergence, is the geometric average of all input 

images:  

∀𝑛, lim
𝑖⟶∞

𝑌𝑛
(𝑖)

= (∏ 𝑋𝑘
𝑁
𝑘=1 )

1

𝑁  

Thus, our final corrected images, all equal to the geometric 

average of the input images, are given by 

𝑌𝑛 = 𝑋𝑛 𝐹𝑛  with 𝐹𝑛 =
(∏ 𝑋𝑘

𝑁
𝑘=1 )

1
𝑁

𝑋𝑛
= ∏ (

𝐼𝑘

𝐼𝑛
)

1

𝑁
𝑁
𝑘=1     (7) 

As we are not in this ideal case where all images have the same 

reflectance, our strategy will be to estimate all illumination ratios 

as described by equations (2) and (3), and to calculate in just one 

pass the corrected images: 

𝑌𝑛 = 𝑋𝑛 𝐹𝑛 with 𝐹𝑛 = ∏ 𝑉𝑘,𝑛

1

𝑁𝑁
𝑘=1      (8) 

Finally, our correction algorithm is as follows: 

Input : series of images 𝑋𝑛 , 𝑛𝜖[1, 𝑁] 

• Calculate 𝑈𝑛 for 𝑛𝜖[1, 𝑁 − 1]  (2) 

• Calculate 𝑉𝑘,𝑛 for all pairs (𝑘, 𝑛)  (3)  

• Calculate new images 𝑌𝑛   (8) 

 

 
Fig. 2. Joint normalization applied on series 005-L. On the left, two 

consecutive source images 𝑋𝑛.and 𝑋𝑛+1 and their difference |𝑋𝑛+1 − 𝑋𝑛|. On 

the right, the same after normalization. 

 
The low-pass filtering in equations (2) and (3) gives only an 

approximation of the illumination ratio between two images. 

Therefore, considering all pairs (𝑚, 𝑛) of images, even when the 

two medical exams were done at a large time interval, with 
important reflectance changes, is probably not appropriate, even 

with our recursive approach. For that reason, we propose to 

implement the algorithm with a sliding temporal window: each 

image is corrected considering 2𝐾 + 1 images, 𝐾 images acquired 
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before and 𝐾 images acquired after the processed image. The 

overlap ensures that all images of the series will converge to the 

same illumination. Experiments showed that 2 ≤ 𝐾 ≤ 7 (5 to 15 

images in the window) are good values for our dataset (Section 

5.2). Fig. 2 shows an example of two consecutive images extracted 

from a series of 9 images. We observe that the initial absolute 

difference does not provide meaningful information, while it 

reveals the GA growth after normalization. 

The proposed algorithm corrects each image with respect to all 

the others. However, the new illumination generally remains 

spatially uneven. It is certainly possible to compensate for this 

distortion when the series begins without any GA, thanks to 

classical background subtraction technics. This has not been 

explored yet. 

4.2. Enhancement step 

The second step of our algorithm exploits prior knowledge 
about the studied disease: we know that the GA, which is brighter 

than the surrounding structures, growths continuously, without 

any chance of recovery. It means that the GA in image 𝑌𝑛 is 

included in the GA in 𝑌𝑚>𝑛. Therefore, we apply morphological 

reconstructions to all triplets 𝑌𝑛−1, 𝑌𝑛, , 𝑌𝑛+1 as follows: 

𝑍𝑛 = (𝑌𝑛  𝑅𝐷
𝑌𝑛  (𝑌𝑛−1) 𝑅𝐸

𝑌𝑛  (𝑌𝑛+1))

1

3
     (9) 

where 𝑅𝐷
𝑀  (𝑆) (resp. 𝑅𝐸

𝑀  (𝑆)) denotes the reconstruction by 

dilation (resp. erosion) of the marker S in the mask M. The first 

reconstruction ensures that we keep only bright areas that were 

already present in the previous image. The second one suppresses 

bright areas that are not present in the next image. The pixel-wise 

product to the power 1/3 merges all these conditions and enhances 

the meaningful bright areas in image 𝑛. The normalizing algorithm 

is applied again on the images 𝑍𝑛,, to ensure that the new series is 

properly normalized and to further reduce the influence of 

artefacts. 

 

  
(a) (b) 

  
(d) (c) 

Fig. 3. Normalization and image enhancement. (a) Three consecutive 

images 𝑋𝑛−1, 𝑋𝑛, 𝑋𝑛+1, 𝑛 = 30; the corresponding normalized images before 

(b) and after (c) morphological processing. The green arrows point to a part 

of the actual GA and the red arrows to bright artefacts; (d) corresponding 

difference images, emphasized by a factor 3, before normalization (left), after 

normalization (middle), after normalization and morphological processing 

(right). The normalization reveals the GA growth but light artefacts are also 

enhanced (inside the red circle); the morphological processing reduces the 

intensity of artefacts (green circle). 

 

Fig. 3 shows an example of the whole processing on 3 
consecutive images. The difference image is calculated by 

𝑚𝑎𝑥{|𝑋𝑛+1 − 𝑋𝑛|, |𝑋𝑛 − 𝑋𝑛−1|}. The first step (normalization) 

enables us to enhance the differences between the images, while 

the second step (morphological processing) attenuates the 

bright artefacts that are not new lesions. 

5. Results 

We rely on the manual segmentations performed by our expert 

(18 series, 328 images in total) to evaluate the proposed methods, 
in two different ways: though the estimation of the contrast 

between the GA and the background (i.e. surrounding tissues and 

anatomical structures) and through the evaluation of preliminary 

segmentation results based on automatic thresholding. 

5.1. Ground truth 

Let us denote by 𝐺𝑇𝑛 the binary image of the GA segmentation 

made by the medical expert in the nth image of a series. The inside 

of the GA delineated by the expert is set to 1 and the outside to 0. 

To deal with possible errors and inconsistencies (such as 𝐺𝑇𝑛 ⊄

𝐺𝑇𝑚>𝑛), we estimate the inside 𝐿𝑛
(𝑖𝑛)

 of the GA in image 𝑛 and the 

outside 𝐿𝑛
(𝑜𝑢𝑡)

 by: 

𝐿𝑛
(𝑖𝑛)

= ⋃ 𝐺𝑇𝑘
𝑛
𝑘=1

𝐿𝑛
(𝑜𝑢𝑡)

= 𝐿𝑛
(𝑖𝑛)̅̅ ̅̅ ̅̅        (10) 

where 𝐸̅ denotes the complement of the set 𝐸. This choice ensures 

that 𝐿𝑛
(𝑖𝑛)

⊆ 𝐿𝑛+1
(𝑖𝑛)

. 

To deal with series where a GA is already present in the first 

image (13 series over 18), we define the total growth of the GA 

from the first image to the nth by: 

𝐺𝑇ℎ𝑛 = 𝐿𝑛
(𝑖𝑛)

∩ ⋂ 𝐺𝑇𝑘
𝑁
𝑘=1

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅       (11) 

Finally, the growth between two images is given by 

𝑔𝑡ℎ𝑛:𝑚>𝑛 = 𝐺𝑇ℎ𝑚 ∩ 𝐺𝑇ℎ𝑛
̅̅ ̅̅ ̅̅ ̅      (12) 

These three equations gives us the ground truth for the GA 

segmentation (10), the growth from the first image to the nth (11) 

and the growth between two images (12). We rely on these 

definitions to evaluate our methods. 

We also estimate the contrast between two regions, denoted by 

𝑅1 and 𝑅2, in a given image 𝑋, by calculating the mean signal 

power 𝑃(𝑋, 𝑅) in these two regions, and then the difference 

∆𝑃(𝑋, 𝑅1, 𝑅2) in dB: 

𝑃(𝑋, 𝑅) = 10 log10 [
1

|𝑅|
∑ (𝑋(𝑥, 𝑦))

2
(𝑥,𝑦)∈R ]    (13) 

where |𝑅| denotes the number of pixels in the region 𝑅. 

∆𝑃(𝑋, 𝑅1, 𝑅2) = 𝑃(𝑋, 𝑅1) − 𝑃(𝑋, 𝑅2)     (14) 

The higher |∆𝑃(𝑋, 𝑅1, 𝑅2)|, the higher the mean contrast in 𝑋 

between the two regions 𝑅1 and 𝑅2 and the easier the two regions 

can be segmented. This measure will help us to evaluate the benefit 

of our algorithms by comparing the contrast between healthy and 

unhealthy areas in images derived from 𝑋𝑛 (source images), 𝑌𝑛 

(after normalization) and 𝑍𝑛 (after morphological processing). 

5.2. Evaluation from variance images calculated along the 
temporal axis 

Our algorithm aims at correcting illumination variations 

between images. As a result, the illumination may be still uneven 

in every image, but it should be the same in all images of the series. 

So, the gray level of a pixel belonging to an healthy region (outside 
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the GA in all images) must be stable in the series (low variance), 
contrary to a pixel belonging to a region of GA growth whose gray 

level increases significantly at a given time. Consequently, we can 

evaluate the benefit of our normalization algorithm by estimating 

the contrast between these two regions in a variance image. 

We consider a sliding temporal window of 𝑀 = 2𝑚 + 1 

consecutive images (Fig. 4). For each image 𝑛 ∈ [𝑚 + 1, 𝑁 − 𝑚] 
we take the images 𝑋𝑛−𝑚 to 𝑋𝑛+𝑚 to calculate the variance of the 

gray levels at each pixel. We denote by 𝑋𝑛
(𝑉𝐴𝑅)

 the resulting image. 

We consider the heathy region 𝑅𝑛
(ℎ𝑒𝑎𝑙𝑡ℎ𝑦)

= 𝐿𝑛+𝑚
(𝑜𝑢𝑡)

 and the region 

of growth 𝑅𝑛
(𝑔𝑟𝑜𝑤𝑡ℎ)

= 𝑔𝑡ℎ𝑛−𝑚:𝑛+𝑚, and we evaluate the contrast 

between both: ∆𝑃(𝑋𝑛
(𝑉𝐴𝑅)

, 𝑅𝑛
(𝑔𝑟𝑜𝑤𝑡ℎ)

, 𝑅𝑛
(ℎ𝑒𝑎𝑙𝑡ℎ𝑦)

) (13)(14). We 

average the results in the series and over all series to get mean 

values, denoted by ∆𝑃(𝑋𝑉𝐴𝑅).  

 
Fig. 4. Variance images calculated over 𝑀 = 2𝑚 + 1 consecutive images. 

Mean power values are interpreted by considering the GA growth over this 

temporal window (𝑅𝑛
(𝑔𝑟𝑜𝑤𝑡ℎ)

) and the still healthy area (𝑅𝑛
(ℎ𝑒𝑎𝑙𝑡ℎ𝑦)

). 

 

  

(a) Source images (b) After normalization 

  

(c) After the whole processing (d) Gain (whole processing) 

Fig. 5. Contrast enhancement between the GA growth area and the healthy 

area for several parameters 𝐾 (temporal window in the normalization 

algorithm) and 𝑀 (temporal window to compute the variance). 

 

Fig. 5 displays the results for different sizes of sliding window 

in the normalization algorithm (2𝐾 + 1, Section 4.1), different 

sizes of sliding window to compute the variance images 
(𝑀 = 2𝑚 + 1 ∈ {5,9,11,13,15}), and at different steps of the 

algorithm: on the source images (𝑋𝑛), after normalization (𝑌𝑛) and 

after morphological processing (𝑍𝑛). We consider only the 6 series 

having more than 15 images (maximum value for 𝑀) with GA, for 

the sake of comparison. These results demonstrate the benefits of 

our algorithm with great improvements of the contrast whatever 

the parameter 𝐾 and the length of the analysis (M): the gain ranges 

from 11 to 15dB (Fig. 5d) after the whole processing. Most of the 

gain results from the normalization algorithm but the 

morphological processing contributes also to enhance the 

GA growth area (about +1.5dB). Setting 2𝐾 + 1 = 11 leads to the 

highest contrasts (b,c) whatever 𝑀. But this experiment shows also 

that 𝐾 is not a sensitive parameter since the performances remain 

similar for (2𝐾 + 1) ∈ [5,21]. 

 
5.3. Evaluation from an enhanced image of the GA total growth 

Let us define the image 𝐺𝑛
(𝑋)

enhancing the area of growth 

between the first and the nth image: 

𝐺𝑛
(𝑋)

= max
𝑘∈[2,𝑛],𝑙<𝑘

(𝑋𝑘 − 𝑋𝑙), 𝑛 ∈ [2, 𝑁]     (15) 

Note that maximizing over all differences, (𝑋𝑘 − 𝑋𝑙) with 𝑙 <
𝑘, makes sense only because all images have been jointly 

normalized. We compare the signal power in the total growth area 

𝐺𝑇ℎ𝑁  (11) to the power outside the GA, 𝐿𝑁
(𝑜𝑢𝑡)

 (10), by calculating 

∆𝑃(𝐺𝑁
(𝑋)

, 𝐺𝑇ℎ𝑁 , 𝐿𝑁
(𝑜𝑢𝑡)

) (13)(14) at the different steps of the 

algorithm. Table 2 summarizes the results averaged on the 18 

series of the experimentation sub-database. The main gain 

obviously results from the normalization step, but the 
morphological treatment improves generally slightly the contrast, 

(+0.5dB). The results are again stable over 𝐾, with slightly better 

contrasts for 2𝐾 + 1 = 9. 

∆𝑷(𝑮𝑵
(𝑿)

) 𝑲 ∆𝑷(𝑮𝑵
(𝒀)

) Gain ∆𝑷(𝑮𝑵
(𝒁)

) Gain 

2.76 ± 3.47 

2 8.44 ± 2.42 5.68 ± 2.44 9.52 ± 2.10 6.76 ± 3.03 

4 𝟗. 𝟐𝟓 ± 𝟐. 𝟏𝟑 𝟔. 𝟒𝟗 ± 𝟑. 𝟔𝟕 𝟗. 𝟕𝟎 ± 𝟏. 𝟕𝟔 𝟔. 𝟗𝟑 ± 𝟑. 𝟔𝟐 

5 9.06 ± 2.06 6.30 ± 3; 79 9.52 ± 1.81 6.75 ± 3.50 

6 8.95 ± 2.08 6.19 ± 3; 70 9.49 ± 1.91 6.73 ± 3.36 

Table 2. Contrast between the area of GA growth 𝐺𝑇ℎ𝑁 and the outside 

𝐿𝑁
(𝑜𝑢𝑡)

 in the enhanced image (15) calculated from 𝑋𝑛, 𝑌𝑛 or 𝑍𝑛. The gains are 

calculated with respect to the initial contrast ∆𝑃(𝐺𝑁
(𝑋)

). Values are in dB 

 

    
𝑋1 𝑋𝑁, 𝑁 = 24 𝐺𝑁

(𝑋)
 𝐺𝑁

(𝑋,𝑆𝐸𝐺)
 

    
𝑍1 𝑍𝑁 , 𝑁 = 24 𝐺𝑁

(𝑍)
 𝐺𝑁

(𝑍,𝑆𝐸𝐺)
 

Fig. 6. GA growth enhancement and segmentation, applied on a series of 

24 images with no lesion in the first image (Patient 001-R). The first row 

shows the images before normalization (𝑋𝑛) and the second row after 

processing (𝑍𝑛). The enhanced GA growth is shown in the third column and 

the corresponding segmentation in the fourth column (F1 score: 0.77 for 

𝐺𝑁
(𝑍,𝑆𝐸𝐺)

).  

 

Fig. 6 shows the enhanced GA growth (15) before and after 
processing. In this example, the set of images starts from the very 

early stages of the disease to advanced ones and the whole GA is 

enhanced with a very dark background (𝐺𝑁
(𝑍)) compared to the 

result without processing (𝐺𝑁
(𝑋)). The growth of diseased tissues 

around the optical disk is also clearly visible. 

A simple thresholding with Otsu’s method enables us to 
segment the total GA growth, thanks to the proposed processing, 

while it was impossible with the source images (Fig. 6). We denote 

by 𝐺𝑁
(𝑋,𝑆𝐸𝐺)

 the binarized 𝐺𝑁
(𝑋)

 image. The segmentation is 

evaluated in Table 3 via classical metrics: precision, recall and F1-
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score, which is the harmonic mean of precision and recall, given 

the ground truth 𝐺𝑡ℎ𝑁 (11).  

 

  Lesion (5 series) Growth (13 series) 

 𝑇𝑂𝑡𝑠𝑢 Prec. Rec. F1-sc. Prec. Rec. F1-sc. 

𝐺𝑁
(𝑋,𝑆𝐸𝐺)

 
0.44 0,29 0,86 0,42 0,27 0,63 0,33 

±0.04 ±0,10 ±0,15 ±0,13 ±0,23 ±0,16 ±0,17 

𝐺𝑁
(𝑌,𝑆𝐸𝐺)

 0.33 0,82 0,75 0,77 0,50 0,68 0,53 

±0.02 ±0,15 ±0,15 ±0,10 ±0,27 ±0,12 ±0,20 

𝐺𝑁
(𝑍,𝑆𝐸𝐺)

 0,37 0,86 0,76 0,80 0,52 0,65 0,53 

±0,02 ±0,09 ±0,14 ±0,09 ±0,26 ±0,12 ±0,18 

Table 3. Evaluation of the GA growth segmentation by Otsu’s method at 

the different steps of the algorithm. 

 

 
(a) A series starting from a very early stage where no GA is observable. 

 
(b) A series starting from an advanced stage. Texture changes inside the lesion 

are classified as lesion growth areas ( ), resulting in low precision. The recall 

is low since the expert segmented the right part as lesion in the last image ( ), 

contrary to the algorithm. 

Fig. 7. Segmentation of the GA growth. Left to right: enhanced image 

𝐺𝑁
(Z)

, proposed segmentation 𝐺𝑁
(Z,SEG)

, ground truth 𝐺𝑡ℎ𝑁 , and comparison 

(true positives in green, false negatives in red and false positives in magenta). 

 

The best scores are achieved with the whole processing, 

normalization and morphological treatment. We notice that Otsu’s 

threshold (𝑇𝑂𝑡𝑠𝑢) is remarkably stable over the series (0.37 ±
0.02). The results for the detection of the whole growth are 

especially good with a F1-score equal to 0.80±0.09 (Table 3, Fig. 

6a). For the other series, the F1-score is much lower, equal to 

0.53±0.18. The main problem is that the texture changes inside 

the GA over time, resulting in a lot of false positives and lower 

precision (Fig. 6b). 

 
5.4. GA progress between consecutive images  

Finally, still with the aim of evaluating our image processing 
algorithms, we tried to segment the GA growth between 

consecutive images. This process is a prerequisite to elaborate 

predictive models of the disease. For that, we consider the pixels 

belonging to the GA growth area, so satisfying 𝐺𝑁
(𝑍,𝑆𝐸𝐺)(𝑥, 𝑦) = 1 

(Section 5.3), and we study their gray levels in the whole series. 

Let us denote by 𝑉(𝑍,(𝑥,𝑦))(𝑛), 𝑛 ∈ [1, 𝑁], the gray levels of such a 

pixel (𝑥, 𝑦) in the processed series 𝑍𝑛. We assume that this pixel 

is not part of the GA in the first image and that it will be included 

in the GA at a given time 𝑡. This means that the gray levels in 

𝑉(𝑍,(𝑥,𝑦)) may be low for 1 ≤ 𝑛 < 𝑡 and much higher for 𝑡 ≤ 𝑛 ≤
𝑁 and roughly stable in the two states. For each index 𝑘 ∈ [2, 𝑁], 
we classify the elements of 𝑉(𝑍,(𝑥,𝑦)) in 2 classes: 𝑉(𝑍,(𝑥,𝑦))(𝑛) ∈

𝐶0(𝑘) if 𝑛 < 𝑘, 𝑉(𝑍,(𝑥,𝑦))(𝑛) ∈ 𝐶1(𝑘) otherwise. We calculate the 

inter-class variance according to Otsu’s criterion for each index 𝑘: 

𝜎𝑂𝑡𝑠𝑢

2 (Z,(𝑥,𝑦)) 
(𝑘) =

𝑘 − 1

𝑁
(𝑉

1:𝑘−1

(𝑍,(𝑥,𝑦))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
− 𝑉1:𝑁

(𝑍,(𝑥,𝑦))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
)

2

+ 

                            
𝑁−𝑘+1

𝑁
(𝑉𝑘:𝑁

(𝑍,(𝑥,𝑦))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
− 𝑉1:𝑁

(𝑍,(𝑥,𝑦))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
)

2

     (16) 

where 𝑉
𝑘:𝑙

(𝑍,(𝑥,𝑦))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
 denotes the mean value of the elements k to l of 

vector 𝑉(𝑍,(𝑥,𝑦)). We calculate a segmentation map by maximizing 

the interclass variance 𝜎𝑂𝑡𝑠𝑢

2 (Z,(𝑥,𝑦)) 
: 

𝑀𝐴𝑃
(𝑍)(𝑥, 𝑦) = arg max

𝑘
𝜎𝑂𝑡𝑠𝑢

2 (Z,(𝑥,𝑦)) 
(𝑘)      (17) 

This method is not relevant for pixels that do not switch from 

an heathy to an unhealthy state. Consequently the method is only 
applied in the GA growth area, so for pixels satisfying 

𝐺𝑁
(𝑍,𝑆𝐸𝐺)(𝑥, 𝑦) = 1 (Section 5.3). So we calculate the series 

𝑆𝐸𝐺𝑛
(𝑍)

, 𝑛 ∈ [1, 𝑁], of binary images of the GA from image 1 to 

image 𝑁 by 

𝑆𝐸𝐺𝑛
(𝑍)(𝑥, 𝑦) =

          {1 if 𝑛 ≥ 𝑀𝐴𝑃
(𝑍)

(𝑥, 𝑦) and 𝐺𝑁
(𝑍,𝑆𝐸𝐺)

(𝑥, 𝑦) = 1

𝑂 otherwise
      (18) 

Finally we calculate the growth between two consecutive 

images by 

𝑆𝐸𝐺𝑛−1:𝑛
(𝑍)

= 𝑆𝐸𝐺𝑛
(𝑍)

 & 𝑆𝐸𝐺𝑛−1
(𝑍)̅̅ ̅̅ ̅̅ ̅̅ ̅̅

       (19) 

which reveals the progression of the GA between the (𝑛 − 1)th and 

the 𝑛th images. 

Table 4 shows the quantitative evaluation of this segmentation 

method, applied on the processed series 𝑌𝑛 and 𝑍𝑛. The method is 

obviously not applicable before normalization. The automatic 

segmentation 𝑆𝐸𝐺𝑛−1:𝑛
(𝑌,𝑍)  is compared to the manual segmentation 

𝑔𝑡ℎ𝑛−1:𝑛 (12) using the classical metrics, which are averaged over 

the images n and then over the series. Fig. 8 shows samples of 

growth segmentation between consecutive images 

(𝑆𝐸𝐺𝑛−1:𝑛
(𝑍)

, (19)) in one series, and Fig. 9 colored representations 

of the GA growth (𝑀𝐴𝑃
(𝑍)

, (17)) for two different series, along 

with the corresponding ground truth. 

 
 Lesion (5 series) Growth (13 series) 

 Prec. Rec. F1-sc.  Prec. Rec. F1-sc. 

𝑆𝐸𝐺𝑛−1:𝑛
(𝑌)

 
2𝐾 + 1 = 9 

0.21 0.23 0.19 0.20 0.28 0.21 

±0.12 ±0.13 ±0.11 ±0.12 ±0.12 ±0.11 

𝑆𝐸𝐺𝑛−1:𝑛
(𝑍)

 
2𝐾 + 1 = 5 

0.25 0.24 0.19 0.23 0.31 0.24 

±0.12 ±0.12 ±0.10 ±0.13 ±0.14 ±0.12 

Table 4. Evaluation of the segmentation of the GA progress between 

consecutive images. The results are given for the series 𝑌𝑛 and 𝑍𝑛 with the 

optimal value of 𝐾 in both cases. 

 

Overall, the segmentation images 𝑆𝐸𝐺𝑛−1:𝑛
(𝑍)

 (Fig. 8) look very 

consistent, and the colored maps (Fig. 9) look similar to their 

equivalent deduced from the ground truth. However the average 

metrics are quite low (Table 4). There are several explanations for 

this. First, it should be remembered that the manual segmentation 

is very difficult to achieve and is not accurate either. Second, the 

GA progress between two consecutive images is structurally very 
thin, which explains that a small difference between the segmented 

area and the ground truth results immediately in low metrics. 
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Especially, small shifts in the change detection maps lead to an 
increase of false positives and false negatives, therefore to weaker 

metrics, although the automatic GA growth detection is not bad 

(Fig. 8). 

 

   

   
Fig. 8. Examples of very consistent change detections between 

consecutive images, with F1 scores. Every time, the automatic segmentation 

𝑆𝐸𝐺𝑛−1:𝑛
(𝑍)

 (19) is on the left and the ground truth 𝑔𝑡ℎ𝑛−1:𝑛 (12) on the right. 

 

    
Fig. 9. Colored map of the GA progress in the series (17). The nth color in the 

colormap corresponds to a GA progress between image n-1 and image n. The 

automatic result is on the left and the ground truth on the right. The F1 score is 

the average of all F1 scores obtained for each pair of consecutive images (19). 

 

  

   
(a) (b) 

Fig. 10. Limits of the segmentation method. In each illustration, the 

automatic result is on the left and the ground truth on the right. (a) Case of a 

series of 9 images corresponding to late stages of ARMD. The area of total 

GA growth 𝐺𝑁
(𝑍,𝑆𝐸𝐺)

 is over segmented (first row) leading to many false 

positives in the detection of changes between consecutive images, inside and 

outside the GA (second row). (b) Case of a series starting from the beginning 

of the disease. Texture changes over time result in false positives inside the 

GA, and the F1 score is low despite the good detection of the border growth 

(top). This results also in differences in the colored maps 𝑀𝐴𝑃
(𝑍)

 (bottom). 

 

Finally, the main limits of the proposed segmentation method 
come from the texture changes inside the lesion during the growth, 

disturbing the decision criterion (high variance in the class 𝐶1). In 

addition, an over-segmentation of the total growth (𝐺𝑁
(𝑍,𝑆𝐸𝐺)

) allows 

false positives inside and outside the GA (18), and this has a strong 

impact on the precision and on the F1 score, especially for series 

starting with advanced GA for which we have a low 

precision in the 𝐺𝑁
(𝑍,𝑆𝐸𝐺) segmentations (0.52 ± 0.26, Table 3). Fig. 

10 illustrates these problems. All this explains the rather low 

metrics presented in Table 4, despite consistent detections of 

changes. The best results are obtained on average with the 

normalized images processed by mathematical morphology (𝑍𝑛), 

for 𝐾 = 5, with a F1 score around 0.21 ± 0.12. For the normalized 

series 𝑌𝑛, the best scores are for 𝐾 = 9, and are slightly lower than 

those for the images 𝑍𝑛. The morphological treatment improves 

the results by introducing a better consistency along the temporal 

axis. 

However, these first results are already interesting, given that 

the segmentation method is basic, without any spatial 

regularization. Despite all previously mentioned problems, the 
normalization algorithm and the morphological processing make 

it possible to produce interpretable colored maps, and better results 

are likely to be obtained with more advanced segmentation 

algorithms. 

6. Discussion 

We have presented a set of experiments evaluating the 

advantages of our normalization algorithm for the direct 

comparison of gray levels in a series of fundus images, and, 

ultimately, the detection of the GA growth by differential analysis. 
We first calculated the variance at each pixel, which must be low 

in the areas that remain healthy and, if applicable, within the GA 

present in the first image, and high in the region of GA growth 

(Section 5.2). We found that our processing increases the contrast 

between the growth area and the rest of the image by 11 to 15dB 

(Fig. 5), which is very important. It means that the visual 
inspection of the series, by scrolling through the images, is greatly 

facilitated, since illumination distortions no longer disturb the 

interpretation. The GA expansion becomes much more visible. 

The main gain results from the illumination normalization, but the 

morphological treatment attenuates local artefacts that could be 

mistaken for new GA zones. This experiment demonstrates also 
the advantage of normalizing on a sliding window and helps us to 

set its optimal size (around 11 consecutive images). 

In addition, the proposed preprocessing enables us to perform a 

differential analysis, in order to detect the GA growth between any 

two examinations. Thus, in Section 5.3, we calculated an enhanced 

image of the total GA growth and we demonstrated that the 
contrast between the GA growth area and the outside (still heathy 

region) is around 10dB while it was only around 3dB without 

treatment (Table 2). The gain enables a segmentation of the GA 

growth area with a F1-score equal to 0.80 ± 0.09 for series 

starting from the earliest stages of the disease, while it was only 

equal to 0.42 ± 0.13 without treatment (Table 3). The 
segmentation methods is basic, based on Otsu’s thresholding, but 

the results are already good despite this. The segmentation of the 

GA growth from an already advanced stage is less good, with an 

average F1-score equal to 0.53 ± 0.18 (0.33 ± 0.17 without 

treatment). This is due to texture changes inside the lesion during 

time, resulting in higher values in the difference images, and 
therefore lower precision. Finally, we explored the possibility of 

calculating colored maps of the GA progress, in order to obtain a 

visualization of the growth and speed of growth in a single image 

(Section 5.4). The proposed method is based on the idea that the 

grey-levels are stable in each state, healthy (low values) or 

unhealthy (high value). We faced again the problem of texture 
variations inside the GA that disturb the detection of the time at 

which a pixel has switched from a healthy state to an unhealthy 

one. However, we got nice maps in some cases (Fig. 9), close to 

the ground truth, and also very good sets of binary images showing 
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the GA growth between two consecutive images. The F1-scores 
evaluating the segmentation of the GA growth between 

consecutive images are not high (around 0.21 ± 0.12 on the whole 

database), but these poor results should be put into perspective, as 

the structures to be detected are very thin and the manual 

segmentation prone to inaccuracies. We measured weak metrics in 

many cases despite the binary images of change looked very 

consistent (Fig. 8). 

All these experiments demonstrate that the proposed processing 

enables the detection of changes between any two images of a 

series of fundus images, regardless the number of images, the size 

and shape of the GA. This is very new compared to the literature, 

which has focused much more on the segmentation of the GA in 
single images (Section 2), and much less on change detection in 

series [10][13]. Contrary to [10], we normalize all images jointly 

and not just in pairs, and the differential analysis proposed in [13], 

where the images are preprocessed separately by a homomorphic 

filter, could benefit from our global normalization.  

7. Conclusion and perspectives 

Very large databases of patients available through routine 

imaging systems offer an opportunity to study a vast amount of 

data on dry ARMD. Especially, deriving models of GA 

progression from fundus images is of high medical interest, in 
order to better understand the intimate mechanisms of lesion 

growth or to assess the benefit of treatments. However, there is a 

real lack of automatic algorithms to process all these images, and 

especially to detect and quantify the GA progression between two 

medical examinations. Many research works deal with the GA 

segmentation in single images, but there is not yet an automatic 
and reliable solution. A promising alternative is to carry out a 

differential analysis between consecutive images, but the first 

obstacle is the great illumination inhomogeneity inside the images 

and especially between the images. This article deals with the 

correction of illumination inhomogeneity between all the images 

in a series in order to allow the differential analysis between any 
two images. For that, we have proposed a method which 

recursively estimates the illumination ratio between any two 

images in the series and correct the illumination of every image to 

the geometric mean of all illuminations. Then, we have presented 

a morphological processing that enhances the consistent changes 

between consecutive images and attenuate the others, based on the 
fact that the GA increases continuously. Finally, we have 

presented many experiments realized on a database of 18 series 

(328 images) acquired from 15 patients and segmented manually 

by a medical expert. The experiments show the benefit of the 

normalization algorithm and of the morphological processing, in 

terms of contrast between the healthy area and the GA growth area, 
and in terms of ability to detect cumulative changes in the series 

or between consecutive images. The experimental results 

demonstrate that the normalization algorithm makes possible the 

differential analysis, and that the morphological processing brings 

some improvements by attenuating light artefacts. Our first 

attempt to detect the GA growth in consecutive images shows that 
it is possible to process all the images of the series jointly, since 

the gray levels are now comparable at each pixel. We got very nice 

colored maps of GA progression, offering an intuitive 

understanding for clinicians, in terms of growth and speed of 

growth. However, a more robust segmentation algorithm, 

integrating spatial and temporal regularization, is required to 

obtain more reliable and more accurate maps of the GA growth. 
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