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ABSTRACT

The
 
research

 
work

 
presented

 
in

 
this

 
paper

 
aims

 
to

 
optimize

 
the

 
dynamic

 
response

 
of

 
a

 
carbon-epoxy

 
plate

 
by

 
including

 
into

 
the

 
laminate

 
one

 
frequency-dependent

 
interleaved

 
viscoelastic

 
layer.

 
To

 
keep

 
an

 
acceptable

 
bending

 
stiffness,

 
some

 
holes

 
are

 
created

 
in

 
the

 
viscoelastic

 
layer,

 
thus

 
facilitating

 
the

 
resin

 
through

 
layer

 
penetration

 
during

 
the

 
co-curing

 
manufacturing

 
process.

 
Plates

 
including

 
(or

 
not)

 
one

 
perforated

 
(or

 
non-perforated)

 
viscoelastic

 
layer

 
are

 
manufactured

 
and

 
investigated

 
experimentally

 
and

 
numerically.

 
First,

 
static

 
and

 
dynamic

 
tests

 
are

 
performed

 
on

 
sandwich

 
coupons

 
to

 
characterize

 
the

 
stiffness

 
and

 
damping

 
properties

 
of

 
the

 
plates

 
in

 
a

 
given

 
frequency

 
range.

 
Resulting

 
mechanical

 
properties

 
are

 
then

 
used

 
to

 
set-

up
 
a

 
finite

 
element

 
model

 
and

 
simulate

 
the

 
plate

 
dynamic

 
response.

 
In

 
parallel,

 
frequency

 
response

 
measurements

 
are

 
car-ried

 
out

 
on

 
the

 
manufactured

 
plates,

 
then

 
successfully

 
confronted

 
to

 
the

 
numerical

 
results.

 
Finally,

 
a

 
design

 
of

 
experiments

 
is

 
built

 
based

 
on

 
a

 
limited

 
number

 
on

 
numerical

 
simulations

 
to

 
find

 
the

 
configuration

 
of

 
bridges

 
that

 
maximizes

 
the

 
damping

 
while

 
keeping

 
a

 
stiffness

 
higher

 
than

 
half

 
the

 
stiffness

 
of

 
the

 
equivalent

 
undamped

 
plate.

1. Introduction

Recent research on materials has focused on adding new

functionalities to composite structures, mixing for example

composite and viscoelastic materials. As a result, such multi-

functional composites are nowadays used for specific pur-

poses like damping or reducing acoustic emissions, which

were not initially the aim of those materials.
One of the first experimental works on constrained visco-

elastic composite laminates was performed in 1959 by

Ungar et al. [1], who characterized the influence of several

parameters like damping factor, thickness and number of

viscoelastic layers constrained between aluminum plates. It

was shown that adding damping functionalities always

affects the stiffness properties of the composite. Indeed, as

demonstrated by Liao et al. [2], inserting a viscoelastic layer

into the laminate may cause both delamination and import-

ant loss of bending stiffness. One solution to overcome this

problem consisted in perforating the viscoelastic layer(s),

allowing matrix polymer to get through the resulting holes

during the curing process.
Using the vacuum assisted resin transfer molding process,

Robinson and Kosmatka [3] manufactured similar sandwich

plates with the objective to control the damping to stiffness

ratio. The authors observed that maintaining a contact

between the rubber and the laminate equal or higher than

95% multiplies by up to 14 times the loss factor but, at the

same time, decreases the bending stiffness by up to 60%.

Moreover, keeping a contact surface equal to 95%, a

decrease of the hole size and distance between holes allows

to increase the plate rigidity. In the same way, Pan and

Zhang [4] worked on 5 composite laminate plates, all with

an embedded NBR rubber layer but with different hole sizes.

They demonstrated that when the rubber perforated area

exceeds 7% of the plate surface, the bending stiffness

becomes similar to the undamped plate but the loss factor

remains small.
In another paper [5], the same authors measured both

the loss factor and Young modulus of the plate using

dynamic mechanical thermal analysis (DMTA). Applying a

1Hz constant excitation, they observed that damping factor

increases with temperature from �60 to �7 �C, then

decreases from �7 to 100 �C, the maximum value occurring

during the viscous state. Moreover, the Young modulus was

shown to decrease slowly in glassy state, faster in viscous

state and slowly again in elastomeric state.
More recently, Hujare and Sahasrabudhe [6] also showed

that inserting viscoelastic materials in a 3D sandwich beam

structure allows to increase the damping factor. They com-

pared different viscoelastic materials in medium frequency

range and found that nitrile, SBR, urethane and butyl mate-

rials better damp vibrations of such beam than PMMA,

polyethylene, and polypropylene.
Several authors like Moreira and Rodrigues [7], Vasques

and Cardoso [8] reviewed the different theories and

approaches to model the dynamic response of such damped
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sandwich plates. 3D solid models were compared to less

time consuming 2D shell models and different approaches

to account for the damping of such structures were con-

fronted. Saravanos and Chamis [9] worked on modeling

composite and metallic laminates damped with interlaminar

viscoelastic layers. Using the so-called discrete layer laminate

damping theory, they compared different arrangements for

composite and aluminum constraining materials. They

showed that composite-based sandwiches with strong anisot-

ropy variations have potentially higher damping properties

than geometrically equivalent ones based on aluminum

skins. Wan et al. [10] used the transfer matrix method to

assess modal and damping characteristics of a multilayered

constrained plate. Varying both the number and the thick-

ness of the viscoelastic layers as well as their arrangement,

they demonstrated that multilayer structures achieve better

damping when the number of viscoelastic layers increases

but, beyond a certain number of layers, the loss factor does

not vary significantly anymore. In addition, symmetrical

structures were shown to offer a better loss factor than non

symmetric ones.
More recently, Xu et al. [11] presented a multi-objective

optimization of composite laminates including viscoelastic

layers. Using layer-wise finite element method, they maxi-

mized the modal damping while minimizing at the same

time the structural mass. Frequency-dependent viscoelastic

material properties were considered in their study. As a first

step, they investigated a symmetrically hybrid composite

laminated plate with two interleaved viscoelastic layers

inserted in different positions. They observed that these lat-

ter offer better damping properties when inserted at

mid-plane.
Finally, Zhai et al. [12] used the Navier solution based on

first-order shear deformation theory with the objective to

maximize the damping level by varying the plate aspect ratio

as well as the ratio between composite and viscoelastic layer

thicknesses. They found that a square plate offers the highest

loss factor and when the ratio between the plate dimensions

and thickness increases, the loss factor decreases.
Some analytical developments were performed to analyze

the behavior of composite beams and plates with soft core

layer. Berthelot [13] modeled beams and plates using first

order shear deformation theory (FSDT). However, when the

stiffness of the core differs sensitively from the skins, the

accuracy of such approach is not sufficient and layer-wise or

Zig-Zag theories seem to be more suitable. Carrera [14] and
more recently Hu et al. [15] reviewed theories for beams
and plates from basic theories as classical laminate theory to
more complex as Zig-Zag and layer-wise theory. Koutsawa
and Daya [16] used layer-wise theory to model a glass beam
including a polyvinylbutane (PVB) layer and more recently
Schulze et al. [17] compared FSDT and layer-wise theories
with different materials properties and different skin to core
thickness ratios. They found that although FSDT and layer-
wise theory results converge for certain skin to core stiffness
ratios, the layer-wise theory keeps the more accurate in all
cases. The same conclusion was obtained by Naumenko and
Eremeyev [18] for a photovoltaic plate considered as a com-
posite structure with a soft core. One can also build a
model, derived from the asymptotic expansion approach, to
describe the overall plate behavior, and accounting for the
stiffness constrast between the core and the skins [19].

Most of the above research works are based on either
experimental, analytical or numerical approach but very few
published works include both experimental and numerical
analyses. In the present study, static and dynamic experi-
mental analyses of carbon-epoxy plates that include (or not)
a perforated (or non perforated) viscoelastic layer are carried
out and compared with finite element simulations. In a first
step, the static and dynamic mechanical properties of the
plate constitutive materials are measured and used to set-up
the finite element models. A special attention is paid on
measuring and modeling accurately the variation of both the
shear modulus and the loss factor with the excitation fre-
quency. In a second step, the finite element models are vali-
dated by comparing the dynamic response of damped and
undamped plates post-processed from the simulations to
experimental results. In a third step, not only the influence
of the viscoelastic film but also the influence of the bridges
created between the upper and lower carbon-epoxy skins on
the plate accelerance are investigated. Finally, the numerical
models are used to set a design of experiments, which allows
to find the best location and size of the resin bridges that
maximizes the damping of the plates while keeping an
acceptable bending stiffness.

2. Experimental procedure

2.1. Plate particulars

As shown in Figure 1, 140� 85mm plate specimens were
manufactured, keeping the same layup for the laminate but
inserting, or not, a 1mm-thick viscoelastic DYAD layer
at mid-thickness. For some specimens, this layer was perfo-
rated before laying-up with 9 holes equally distributed
over its surface. Resulting stacking sequences are presented
in Table 1 for carbon-epoxy and carbon-epoxy-
DYAD specimens.

As the prepreg carbon is manually applied in several
layers, some imperfections occur regarding the thickness of
the manufactured plates so length, width and thickness are
accurately measured with a 10�2 mm precision tool. As
highlighted in Figure 2 for a carbon-epoxy plate, both the
measured dimensions and thickness distribution are then

Figure 1. Specimen dimensions.
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registered for each plate assuming a piecewise constant

thickness and used as input for the numerical model.

2.2. Material specification

Prepreg carbon-epoxy (with and without viscoelastic layer)

lay-ups are first built with two fiber orientations (08, 908)

when draping the different plies. During the manufacturing

process, the extraction of air bubbles is performed every four

plies then co-curing is processed during 3 hours at 1208C. All

the plates are manufactured using HexPly[textregistered] UD

pre-preg carbon-epoxy M79/35%/UD6000/CHS.
Three different sets of plates are manufactured inserting

(or not) one 1mm-thick layer of DYAD 601[textregistered]

SoundcoatTM viscoelastic material inside the laminate and

creating (or not) some holes in the viscoelastic film before

laying-up:

� The first set of plates is made using only carbon-epoxy

plies. Resulting plates are expected to have the highest

stiffness but, at the same time, the lowest damping

characteristics.
� In the second set of plates, the carbone-epoxy laminate

includes one constrained viscoelastic layer. It is expected

to have the highest loss factor but at the same time the

lowest bending stiffness.
� In the third set, the laminate includes one viscoelastic

layer but 9 holes (diameter ¼ 10mm) have been cut in

the film. During co-curing, the resin is supposed to flow

through the holes, creating 9 “bridges” between the

upper and lower carbon-epoxy skins. Note that the holes,

which spatial distribution is shown in Figure 1, represent

6% of the plate surface.

Elastic properties of carbon-epoxy plies listed in Table 2

are retrieved from reference [20]. Then, some of these values

will be slightly modified in order to match with the three-

points bending tests performed by the authors, as will be

explained later. The density is extracted from sample weight

measurements and the loss factor is adjusted by confronting

forced response tests with finite element simulations.
The DYAD static properties, i.e. its density q, shear

modulus G and bulk modulus B are extracted from the

manufacturer’s data. As the deformations of the viscoelastic

layer is expected to remain small, a Neo-Hookean visco-

hyperelastic behavior law is considered for the numerical

simulations, which parameters are presented in Table 3.
The material is assumed here to be incompressible. In

this case, the strain energy per unit of reference volume U is

related to the first deviatoric strain invariant by the follow-

ing expression:

U ¼ C10ðI1 � 3Þ (1)

In the relation above, I1 is the trace of the right Cauchy

Green deformation tensor:

I1 ¼ k21 þ k22 þ k23 (2)

Where ki are the principal stretches.

2.3. Three-point bending measurement bench

As aforementioned, in order to adjust the mechanical char-

acteristics of both the carbon-epoxy laminate and carbon-

epoxy-DYAD sandwich for the simulations, three-points

bending quasi-static tests are performed on an Instron

5566A bench (Figure 4(a)). For the three samples tested for

each set of plates, a vertical displacement varying from 0 to

0.6mm is applied at mid-span and the resulting resistant

vertical force is measured.

2.4. Dynamic measurement analysis bench

It is well known that both the stiffness and damping factor of

a viscoelastic rubber-like material may vary significantly with

the frequency of the excitation (Snowdon [21]). That is why

Dynamical Mechanical Analysis (DMA) tests are performed

on 4 DYAD601 coupons at different temperatures. Figure

4(b) shows the Metravib DMA bench used for these measure-

ments. The related parameters are the following ones:

� Dynamic deflection amplitude: 0.175mm
� 1 to 100Hz frequency range with 20 logarithmic steps
� Temperatures tested: 24, 18, 14 �C

Table 1. Stacking sequences.

Set o f plates Stacking sequence Theoretical thickness [mm]

Set 1 - Carbon-epoxy [0, 902, 0]S 5
Set 2 - Carbon-epoxy with DYAD [0, 902, 0, DYAD601]S 6
Set 3 - Carbon-epoxy with perforated DYAD [0, 902, 0, DYAD601]S 6

Figure 2. Carbon epoxy sample dimensions.

Figure 3. Properties directions.
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Shear deformation is dynamically applied to the coupons

and the complex shear modulus and damping loss factor are

measured at three different temperatures. Then, the WLF

method developed by Williams et al. [22] and Ferry [23] is

applied to extrapolate the measurements up to 2000Hz. The

frequency evolutions of the storage modulus G0 and loss

modulus G00 are plotted in Figure 5. It may be observed that

both G0 and G00 seem to reach a maximum value (around

1.4GPa) at 2000Hz.

2.5. Dynamic forced response bench

An instrumented test bench is set-up to measure the fre-

quency response of the different manufactured plates when

they are subjected to a sinusoidal excitation.

Recommendations found in the book of Ewins [24] are fol-

lowed to choose and position the different components of

the bench such as the exciter, the transducer, the force sen-

sor, the accelerometer, etc. As represented in Figure 6, the

plates are suspended to a rigid frame using nylon threads.

In order to excite the first bending mode of the plate, a

shaker fixed to a rigid structure and controlled by a fre-

quency generator is used to apply a sinusoidal displacement

at the plate center. The acceleration is then measured at the

same location using a PCB sensor (353 B17) bounded on

the other side of the plate.
To measure the load applied by the shaker, a PCB force

sensor (208 C02) is inserted between the shaker and the

plate. A 60mm-long rod with a 4mm diameter is used to

connect the shaker to the plate center. An overview of the

bench is shown in Figure 6.

3. Numerical modeling

For the three different sets of plates, static and forced

dynamic response finite element analyses are then per-

formed using the commercial code ABAQUS. By applying a

given static or dynamic load at the center of the plates, the

mechanical responses in term of static deflection or acceler-

ation are post-processed.

Figure 4. Experimental benches.

Figure 5. Frequency evolution of shear storage and loss modulii.

Table 2. Carbon-epoxy properties (the 3 axes are defined in Figure 3).

E11 [MPa]
E22¼E33
[MPa]

G12¼G13
[MPa]

G23
[MPa] �12¼�13 �23

q
[T=mm3] tan d

100000 8110 4650 5000 0.3 0.4 1.4E-9 0.018

Table 3. DYAD601 properties.

C10¼G/2 [MPa] q [T=mm3]

0.2 1.3E-9
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3.1. Finite element models

As the first set is concerned, carbon-epoxy plates are meshed

using 4-nodes reduced integrated shell (S4R) elements based

on Koiter-Sanders formulation [25]. For the second and third

sets of plates, carbon-epoxy skins are also meshed using S4R

elements but 8-nodes hybrid reduced integrated solids

(C3D8RH) elements are chosen for the viscoelastic layer (see

Figure 7). As the shell nodes are coincident with the nodes of

the outer faces of the solid mesh, it is assumed that carbon-

epoxy skins are perfectly bonded to the DYAD layer. The

resin bridges created through the viscoelastic layer of the third

set plates are explicitly modeled using C3D8RH solid elements

and mechanical characteristics of the epoxy resin listed in

Table 4 are assigned to the corresponding elements.

3.2. Loading and boundary conditions

The loading conditions are slightly different in the static and

dynamic experimental tests: in the three-points bending

tests, the load is distributed over a 0.75mm-width band
located at mid-span of the plate while for the frequency
response analyses, the sinusoidal load exerted by the shaker
is distributed over a small squared surface located at the
plate center.

To simulate both the static and dynamic response tests,
only a quarter of the plate is modeled and symmetry condi-
tions are applied on the nodes located in the two sym-
metry planes.

In the static test, the plate is assumed to be simply sup-
ported near two opposite edges and the corresponding sym-
metrical finite element model is presented in Figure 8. In
order to represent the test loading conditions, three different
static forces are distributed over a 0.75mm-width band
located at mid-plate (see Figure 8).

Regarding the frequency response analyses, the plates are
supposed to be completely free. As aforementioned, only a
quarter plate is modeled and symmetry boundary conditions
are applied to the relevant nodes. In order to represent one
quarter of the rod and sensor mass that is captured by the
force sensor, lumped masses (8.5 grams) are distributed on
some nodes located at the plate center. Then, a uniform
pressure with a sinusoidal time-dependence is applied over a
16mm2 centered squared surface, i.e. the surface that has
been actually loaded during the dynamic tests.

3.3. Direct solution approach

Numerical frequency response analyses are performed for
the three different sets of plates using ABAQUS software.
With the objective to account for the frequency dependent
properties of the viscoelastic material, the direct solution
approach is considered for the numerical solution as sug-
gested by Vasques [8] and used by Myklestad [26],
Snowdon [21] and Beth [27]. In such approach, the follow-
ing matrix equation is solved varying the frequency f
between 500Hz and 1400 or 1700Hz with a frequency step
of 5Hz to observe mainly the response related to the first
bending mode of the plates:

RðDðxÞÞ IðDðxÞÞ
IðDðxÞÞ �RðDðxÞÞ

� �

R uðxÞ½ �
I uðxÞ½ �

� �

¼
R FðxÞ½ �
�I FðxÞ½ �

� �

(3)

Where u(x) is the unknown complex displacement vec-
tor, FðxÞ is the complex applied sinusoidal load. RðDðxÞÞ
and IðDðxÞÞ are respectively the real and imaginary parts
of the so-called dynamic stiffness matrix DðxÞ, defined as:

RðDÞ ¼ K � x2M IðDÞ ¼ �C tan dðxÞ (4)

Figure 6. Forced response analysis bench.

Figure 7. Finite elements used for carbon-epoxy-DYAD sandwich plate modeling.
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Where K is the stiffness matrix, x ¼ 2pf is the circular

frequency, M is the structural mass matrix and C tan dðxÞ is

the stiffness proportional structural damping matrix. It may

be expressed as:

C tan dðxÞ ¼ tan dðxÞ � K (5)

Where tan dðxÞ is the loss factor which characterizes the

structural damping of the material.
In parallel, thanks to the test bench presented in subsec-

tion 2.5, forced response measurements are performed

between 500 to 1700Hz for the first set of plates and

between 500 to 1400Hz for the second and third sets.
To compare numerical and experimental results, the

acceleration at the plate center is post-processed and the

accelerance is determined at each circular frequency as:

AðxÞ ¼
aðxÞ

FðxÞ

�

�

�

�

�

�

�

�

; aðxÞ ¼ �x2uðxÞ (6)

Where aðxÞ is the acceleration post-processed at the

plate center (at the position of the accelerometer) and FðxÞ
is the magnitude of the applied sinusoidal force. The gain of

accelerance may then be calculated as:

GdB ¼ 20:Log10
aðxÞ

FðxÞ

�

�

�

�

�

�

�

�

 !

(7)

3.4. Mesh size sensitivity analysis

Element size varying from 0.66mm to 4mm for quadrilat-

eral (square) elements and varying from 0.66� 0.17mm to

4� 1mm for hexahedral (cubic) elements are considered in

the numerical mesh sensitivity analysis. The plate static stiff-

ness and the gain of accelerance obtained for the different

mesh sizes are compared in Table 5 and Figure 9,

respectively.
It may be observed that both the stiffness and the

dynamic response are not sensitive to the considered mesh

sizes. In fact, even the coarser mesh is fine enough for

effectively capturing the bending deformation of the plate as

well as the shear deformation of the core layer. In order to

have at least 4 elements through the viscoelastic layer thick-

ness while keeping a correct element shape factor, quadrilat-
eral element sizing 0.75mm and hexahedral element sizing
0.75� 0.25mm are finally selected.

4. Results and discussions

4.1. Comparison of numerical and experimental results

In-plane dimensions and thicknesses of the manufactured

plates presented in subsection 2.1 are set to the finite elem-
ent model in order to reproduce the exact geometry of each
plate sample, i.e by taking into account the slight variations
of the thickness over the plate surface. Once the numerical

models for static and dynamic analyses have been set-up,
experimental results are used to validate/adjust both the car-
bon-epoxy and DYAD properties to be used in further
numerical simulations.

4.1.1. Fitting of carbon-epoxy laminate properties

In a first step, three-points bending quasi-static tests are
performed on three 5mm-thick carbon-epoxy plates. In
order to adjust the material characteristics of the laminate,

the numerical simulation of the 3-point bending test is run
and confronted to experimental results, as illustrated in
Figure 10. It is worth mentioning that the experimental
curve plotted in this figure has been obtained by averaging

the curves retrieved from the tests performed on three dif-
ferent specimens. Maximum and minimum measured values
are highlighted with error bars. It appears that good fitting
is obtained by setting the elastic modulus E11 to 90,000MPa

for the simulations of carbon-epoxy plates. Additional simu-
lations were realized varying the elastic modulii E22 and E33
but these parameters did not affect the results significantly.
Such small sensitivity is due to the lay-up which includes

the same number of 0 and 908 plies. The stiffness of the
skins in tension and compression is the same along

Table 4. Epoxy mechanical properties.

Elastic modulus [MPa] � q [T=mm3] tan d

2400 0.38 1.11E-9 0.018

Figure 8. Boundary and loading conditions for numerical static analysis.

Table 5. Mesh sizes.

Mesh size [mm] K [N/mm]

0.66� 0.17 405
0.75� 0.25 405
1.32� 0.33 405
4� 1 405

Figure 9. Comparison of accelerance frequency evolution obtained from several
mesh element sizes.

6



direction 1 (fiber direction in 08 ply) and direction 2 (fiber
direction in 908 ply).

In the same way, the loss factor of UD carbon-epoxy
material to be used in finite element models is fitted by

comparing the plate dynamic response extracted from the

measurements with numerical simulations, for which the

loss factor has been varied from 0.01 to 0.02. Thus, numer-

ical direct frequency response simulations are run consider-

ing each sample separately and resulting accelerance vs

frequency curves are confronted in Figure 11 to experimen-

tal measures. In addition, peak values extracted from the

experimental and numerical curves are compared in Table 6.
It is found that whatever the tested plate, a loss factor of

0.018 leads to the best correlation between numerical and

experimental responses. The discrepancies related to reson-

ant frequencies do not exceed 1.3% and the corresponding

levels of accelerance differ by less than 10%.

4.1.2. Fully damped sandwich model validation

In a second step, similar bending tests and numerical simu-

lations are carried out for carbon-epoxy laminated plates

including a viscoelastic layer. As for carbon-epoxy plates

with S4R elements, the parameters required to define the

Figure 10. Three-points bending tests of carbon-epoxy plates: comparison of
experimental and numerical results - Numerical results are shown with � while
experimental ones are shown with continuous line.

Figure 11. Frequency evolution of the accelerance at the plate center - Comparison of experimental and numerical results for the 3 manufactured carbon-
epoxy plates.
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visco-hyperelastic behavior law related to C3D8RH solid ele-

ments are set based on Table 3 and Figure 5.
As the stiffness of the resulting sandwich is concerned,

Figure 12(a) clearly shows that using carbon-epoxy elastic

modulus E11 ¼ 90,000MPa combined with DYAD601 static

characteristics provided by the manufacturer allows to

obtain a good correlation.
The dynamic behavior of the sandwich plates is also

addressed with the objective to confirm the use of

DYAD601 frequency dependant viscoelastic properties

extracted from DMA tests. At each frequency step, when

setting the stiffness matrix K, the complex shear modulus

G� is recalculated using the following expressions:

xRðG�Þ ¼
G00

G
(8)

xIðG�Þ ¼ 1�
G0

G

� �

(9)

Where G00 is the loss shear modulus, G0 is the storage shear

modulus and G is the static shear modulus
Numerical direct frequency response analysis is thus per-

formed on the second set of plates and resulting accelerance

vs frequency curve is compared in Figure 12(b) to the

experimental one. As for carbon-epoxy plates, remarkable

values extracted from these curves are presented in Table 7,

where it can be noted that the discrepancies between numer-

ical and experimental values do not exceed 0.8%. The higher

difference observed at the antiresonance is probably due to

the contribution of the swinging rigid body mode at 0.9Hz

(remember that the plate is suspended to the frame with

nylon threads), which is not captured by the simulation

where free-free boundary conditions have been assumed.
Despite the discrepancy observed at the antiresonance, it

is reasonable to say that the numerical model allows to

reproduce in a satisfactory manner the experimental

measurements.

4.1.3. Confrontation of the “bridged” sandwich model to

experimental results

Three-points bending tests are also performed on three

plates of the third set, for which the carbon-epoxy laminate

includes 9 bridges of resin between upper and lower skins

(see Figure 1). On the numerical side, the bending stiffness

appears to be far higher than the one extracted from the

measurements. The question then arises as to whether some

of the holes created in the viscoelastic film are not com-

pletely filled by the resin during the co-curing phase, leading

to a lower surface of bridges compared to the expected one.

Therefore, several cutouts are performed on the manufac-

tured “bridged” sandwiches followed by a progressive sand-

ing to analyze the section passing through the greatest

diameter of the bridges.
Figure 13 shows two different bridge sections and high-

lights two main defects. On the left side, it is observed that

the maximal diameter of the bridges is close to 8.5mm,

while 10mm circular holes have been initially created. This

defect, observed in almost all the bridges, is probably due to

the fact that the DYAD601 layer is compressed during the

co-curing process, which seems to reduce the diameter of

holes when the resin flows inside. On the right side, a lack

of epoxy is also observed: it seems that the volume of resin

Table 6. Summary of the results obtained from experimental test and finite
element simulation on Carbon epoxy samples.

Plate Peak amplitude [dB] Natural frequency [Hz]

Num. Exp. Discrepancy Num. Exp. Discrepancy
P1 57 55 3.5% 1539 1520 1.3%
P2 57 55 3.5% 1480 1480 0%
P3 57 51 10% 1495 1490 0.4%

Figure 12. Numerical vs experimental results for carbon-epoxy plates including a viscoelastic layer.
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included in the prepreg is not sufficient to entirely fill the

holes made in the viscoelastic layer.
In order to investigate the number and location of holes

which may have been actually filled, different bridge config-

urations incorporating 9, 5, 4 and 3 bridges (see Figure 14)

are simulated considering the fitted material characteristics.

In Figure 15(a) which compares the resulting force vs dis-

placement curves, the experimental data corresponds to the

average of the bending test results performed on three speci-

mens and the error bars correspond to minimum and max-

imum measured values. This figure clearly shows that the

bridges located near the plate corners bring more stiffness

than the ones located near the center. Moreover, comparing

the slope of the different curves, one may notice that add-

itional stiffness is much more important when the location

of the bridges is changed (e.g., going from the 4-bridges

configuration to the 5-bridges one), than when the bridge

number is changed (e.g., going from 5 to 9 bridges). In

other words, the location of the bridges seems to influence

much more the stiffness that the number of bridges. Figure

15(a) also shows that the curve related to the 4-bridges con-

figuration is the one that correlates better with the experi-

mental curve. That is why this configuration will be further

considered to simulate the frequency response of the third

set of plates.
A direct frequency response analysis is finally performed

on a “bridged” sandwich, considering only 4 bridges to

reproduce the bending stiffness of the manufactured plates.

Numerical and experimental accelerances are compared in

Figure 15(b) and Table 8. However, we are aware that the

agreement obtained between the 4-bridges numerical model

and experiments does not mean that the tested plates have

actually four bridges completely filled with resin and the

others without resin. Further study should be carried out

to identify, thanks to an inverse approach, the number of

bridges with resin and their diameter. But we lack of

experimental results such as mode shapes to perform such

kind of study. In addition, it is not desirable to use a pro-
cess which leads to manufacturing uncertainties. This is
why, in the following, it will be assumed that the manufac-
turing process will be improved in order to obtain plates
with bridges of the desired diameter that are completely
filled with resin.

4.2. Influence of the viscoelastic layer

In this section, static and dynamic responses extracted from
the measurements made on the three different sets of plates
are compared. In Figure 16(a), one observe that including a
non perforated constrained viscoelastic layer decreases the
structure bending stiffness by 65% compared to an
undamped carbon-epoxy plate (see Table 9). However, creat-
ing bridges between the upper and lower skins allows to
reduce the stiffness loss to 54%.

When comparing in Figure 16(b) the experimental forced
responses of the different sets of plates, it is observed that
resonance frequencies, accelerance peak levels and damping
values are very sensitive to both the presence of the visco-
elastic layer and inclusion of bridges. More precisely, Table
10 shows that inserting into the carbon-epoxy laminate a
viscoelastic film allows to decrease by around 23 dB the
accelerance peak level compared to the undamped plate. On
the other side, creating bridges between lower and upper
skins allows to decrease the accelerance peak level by around
20 dB. Table 10 also shows that the first natural frequency of

Table 7. Summary of the results obtained from experimental tests and finite
element simulation of carbon-epoxy plates including a viscoelastic layer.

Peak amplitude [dB] Natural frequency [Hz]

Num. Exp. Discrepancy Num. Exp. Discrepancy
31.9 31.8 0.4% 1089 1092 0.8%

Figure 13. Micro-analysis of resin bridges.

Figure 14. Holes and bridges location.
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the plate is shifted from around 1500Hz to 1092Hz (28%
lower) for the full viscoelastic sandwich and to 1182Hz
(22% lower) for the “bridged” one.

5. Sensitive analysis of bridges on stiffness
and damping

5.1. Influence of bridge location and size: analysis of a

“bridged” sandwich beam

A sensitivity analysis is performed on a “Equasi-2D” simply
supported beam to investigate to which extent the bridge
location and size affect its static and dynamic behavior. The
beam has 2 bridges, symmetrically located. Four different
locations defined in Table 11 are considered as well as four

Figure 15. Numerical vs experimental results for carbon-epoxy plates including one viscoelastic layer and bridges - Numerical results are shown with � ,�, w ,w
and experimental ones are shown with continuous lines.

Table 8. “Bridged” sandwich plate: comparison of first natural frequency and peak amplitude.

Peak amplitude [dB] Natural frequency [Hz]

Num. Exp. Discrepancy Num. Exp. Discrepancy
34.2 33.7 1.5% 1150 1182 2.4%

Figure 16. Comparison of test results for the three types of plates.

Table 9. Comparison of resulting bending stiffness.

Carbon epoxy with DYAD Carbon epoxy with perforated DYAD Carbon-epoxy plates

K: Stiffness [N/mm] 387 508 1111
Stiffness loss 65% 54% /

Table 10. Summary of forced response results.

Plates set

Peak
amplitude

[dB]

Natural
frequency

[Hz]
dBCE
[dB]

Carbon-epoxy plate 53 1500 /
Damped plate 31.8 1092 21.2
“Bridged” damped plate 33.7 1182 19.3
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different bridge volume fractions, i.e the percentage of beam

volume occupied by the bridge, varying from 0.75%

(0.5mm3) to 6% (4.2mm3) with two intermediate values.
The beam dimensions and sandwich lay-up are

as follows:

� Beam length: 140mm
� Beam thickness: 6mm
� Beam width: 1mm
� Lay-up: [0,90,90,0,DYAD601]s
� Carbon-epoxy skin thickness: 2.5mm
� DYAD601 layer thickness: 1mm

The beam is assumed to be supported at 5mm from its

extremities and loaded at mid-span.
The stiffness ratio K/KCE is calculated from a 2D FE

model under plane stress assumption for the 16 configura-

tions (combining 4 locations with 4 volume fractions).

Resulting values are compared in Figure 17(a) and Table 12.

K is the stiffness of the “bridged” damped beam and KCE

the stiffness of the undamped carbon-epoxy beam.
Similarly, the attenuation ratios A/Avisco are compared in

Figure 17(b) and Table 13. Here, Avisco is the attenuation of

the fully damped beam (without bridge). A and Avisco are

calculated as:

AðxÞ ¼ 20Log10
acarbonðxÞ

FðxÞ

� �

� 20Log10
aconf ðxÞ

FðxÞ

!

AviscoðxÞ ¼ 20Log10
acarbonðxÞ

FðxÞ

� �

� 20Log10
aviscoðxÞ

FðxÞ

� �

(10)

Where acarbonðxÞ, aconf ðxÞ, aviscoðxÞ are the acceleration

amplitudes post-processed at the center of the carbon-epoxy,

“bridged” damped and fully damped carbon-epoxy beams

respectively and FðxÞ is the amplitude of the applied force.
The ratio K/KCE varies from 0.15 (fully damped beam) to 1

(undamped beam). The ratio A/Avisco varies from 0
(undamped beam) to 1 (fully damped beam). Reducing the
level of a “bridged” beam dynamic response comes to maxi-

mize this ratio.
The following observations may be done:

� Whatever the location of the bridge, a beam with a small
bridge volume fraction (0.75%) behaves like a fully

damped beam (see the gray first column in Tables 12
and 13).

� Whatever the volume fraction, a bridge located close to
the beam center (position 4 - yellow bars) leads also to a
behavior similar to the one of a fully damped beam (see

the gray last row in Tables 12 and 13).
� The influence of the bridge on both the bending stiffness

and damping is as expected more important when the
volume fraction increases.

� When the bridge gets closer to the support, the loss of

stiffness is smaller (see Figure 17(a)) and the loss of

damping larger (see Figure 17(b)).

The last point may be easily justified by analyzing in

Figure 18 the spatial evolution of the elastomer transverse
shear deformation, post-processed for the different bridge
configurations. It appears that cxz increases when the bridge

comes close to the support. However, the presence of the
bridge tends to limit this evolution, and is more pronounced
as the bridge is closer to the support.

This first sensitivity analysis carried out on a “quasi-2D”
beam clearly shows that the main challenge consists in find-
ing the best compromise between damping and stiffness. In

other words, optimizing a damped composite plate that
includes resin bridges comes to find the best spatial distribu-
tion and size of the bridges to maximize the damping while

keeping a reasonable bending stiffness.
Let us now consider a 500� 250mm carbon-epoxy plate

including a DYAD601 layer. In the parametric study pre-
sented below, from 0 to 9 holes with different diameters are

Table 11. Bridge locations.

Position n8 1 2 3 4

Distance from beam extremity [mm] 20.7 36.4 52.2 67.9

Figure 17. Simply supported beam: sensitivity to bridge location and bridge volume fraction.
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supposed to be entirely filled by the resin during the co-cur-
ing process. The numerical model that has been validated in
previous section is used to simulate a certain number of
configurations with the objective to build a design of
experiments.

5.2. Influence of bridge location and size: analysis of a

“bridged” sandwich plate

The dimensions of the “bridged” sandwich plates considered
as well as the position of the holes are depicted in
Figure 19. The plate particulars are the following ones:

� Dimensions: 500� 250� 6mm
� DYAD601 layer thickness: 1mm
� Skins carbon-epoxy thickness: 2.5mm
� Lay-up: [0,90,90,0,DYAD601]S

The dynamic response of the free-free plate is investi-
gated in a frequency range that includes its first four natural
frequencies. A sinusoidal force is applied perpendicularly to
the plate and its location is chosen so as to excite properly
the mode shapes depicted in Figure 20. The first four

natural frequencies calculated for both the undamped and
fully damped plates are listed in Table 14.

Some authors used the modal damping as the parameter
to maximize in order to define a cost function [11, 28, 29].
We inspired from this articles in order to build a cost func-
tion able to capture the damping related to the first 4 nat-
ural modes.

Maximizing the damping while keeping a reasonable
bending stiffness may be done by defining the following
optimization function:

� A cost function Fc is defined so as to maximize the
modal damping related to the first four modes:

Fc ¼
X

4

i¼1

gi � gCEi
gviscoi � gCEi

(11)

Where gi, gCEi, gviscoi are the modal damping values of
the ith mode of “bridged,” undamped and fully damped
plates respectively. The �3dB bandwidth method is consid-
ered to extract the damping value at each natural frequency.

� The optimization is performed under the constraint that
the stiffness of the “bridged” sandwich plate must be
higher of equal to half of the undamped carbon-
epoxy plate.

5.3. Set-up of a design of experiments

The approach to find the optimal configuration is based on
the construction of a design of experiments (DOE) [30]
which is an efficient approach for computational savings.
The parameters of a DOE are called “factors” and the results
are called “responses.” Based on a limited number of finite
element simulations (128 in our case), the DOE aims to
determine the contribution (the weight) of each factor, indi-
vidually, on the response. A second order polynomial func-
tion is thus built, its predictive nature is checked and finally
the function is used to approximate the response consider-
ing all the possible configurations.

As the plate includes between 0 and 9 bridges with 4 dif-
ferent diameters and different bridge locations, 2048 differ-
ent configurations should be analyzed to identify the
optimum one. Based on numerical simulations, such analysis
would require 2700 CPU-hours on a 16 core/3.2GHz com-
puter together with around 1000 hours to post-process the

Table 12. Values obtained for K/KCE.

Volume fraction (%)

Bridge position 0.75 1.5 3 6
1 0.15 0.32 0.40 0.47
2 0.15 0.28 0.35 0.42
3 0.15 0.15 0.24 0.27
4 0.15 0.15 0.15 0.16

Table 13. Values obtained for A/Avisco.

Volume fraction (%)

Bridge position 0.75 1.5 3 6
1 1 0.84 0.72 0.63
2 1 0.90 0.81 0.74
3 1 1 0.99 0.98
4 1 1 1 1

Figure 18. Spatial evolution of DYAD601’s transverse shear strain for different
bridge locations.

Figure 19. Plate dimensions and bridges location.
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results. The use of a DOE allows to significantly decrease

the optimization process.
The 128 configurations simulated numerically are chosen

to respect the orthogonality of the DOE, which allows to

vary the different factors simultaneously while defining inde-

pendently the influence of each factor on the response. A

second order polynomial form based on linear and quadratic

factors as well as interactions between them is built to esti-

mate the response. As the bridge diameter is the only par-

ameter that can take more than 2 different values, it is also

the only one related to a quadratic term. The polynomial

form may thus be written as:

y ¼ b0 þ
X

k

i¼1

bixi þ
X

k

i<j

bijxixj þ b11x
2
1 (12)

� y is the response,
� b0 is a constant,
� bi are the coefficients of the linear factors,
� bii are the coefficients of the quadratic factors,
� bij are the coefficient of the interactions,
� xi (A !K), x21 (AA) and xij (AB !JK) are the linear,

quadratic and interaction factors (see Tab.15 below for

the factors names).

The factors considered in the optimization of the “bridged”

sandwich plate together with their possible values are pre-

sented in Table 15.
The plate static deflection, modal damping values, and

cost function are investigated as DOE responses. This means

that six polynomial functions will be built, one for the static

deflection, one for the cost function and four for modal
damping values related to the first four natural modes. The
optimization process may thus be split into the follow-
ing steps:

� Plate deflection, modal damping values as well as cost
function are post-processed from the finite element sim-
ulations carried out on the 128 chosen configurations.

� A least-square linear regression is then realized on each
response and resulting second order polynomial func-
tions are set.

� A chart showing the polynomial vs residual values is
plotted to check both the maximum gap between numer-
ical and polynomial results and the randomness of the
error distribution.

� A normalized effect Pareto chart is plotted to analyze the
contribution of each factor and discard those having a
non-significant impact on the response.

� Once the non significant factors have been eliminated,
the predictive capacity of the new polynomial form is
calculated for each response in order to check its ability
to predict the remaining 2048 - 128¼ 1920
configurations.

� The configuration which maximizes the cost function
while complying with the stiffness constraint
is identified.

Figure 20. First four natural mode shapes.

Table 14. First four natural frequencies of the plates.

Mode 1 [Hz] Mode 2 [Hz] Mode 3 [Hz] Mode 4 [Hz]

Undamped plate 91 150 238 413
Fully damped plate 84 144 219 349

Table 15. DOE factors.

Factor Parameter Values

A Bridge diameter 30mm, 51mm, 66mm, 76mm
B bridge n8 1 Full (1) or Empty (0)
C bridge n8 2 Full (1) or Empty (0)
D bridge n8 3 Full (1) or Empty (0)
E bridge n8 4 Full (1) or Empty (0)
F bridge n8 5 Full (1) or Empty (0)
G bridge n8 6 Full (1) or Empty (0)
H bridge n8 7 Full (1) or Empty (0)
J bridge n8 8 Full (1) or Empty (0)
K bridge n8 9 Full (1) or Empty (0)
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5.4. Influence of the DOE factors on the plate stiffness

First of all, the deflection of a simply supported plate loaded

by a transverse force is investigated. The supports are

located at 5mm from the small edges of the plate and a unit

load is applied at its center. Starting from the deflections

retrieved from the 128 numerical simulations, a DOE is set-

up using Minitab software.
Figure 21 shows the polynomial vs residual value chart.

Residual value represents the discrepancy between the

deflection predicted by the polynomial function and the one

retrieved from the numerical simulation. The gap, deter-

mined as the ratio of the residual value to the associated

polynomial one, does not exceed 15% whatever the point

depicted on this graph. This result also means that the pre-

dictive polynomial form can be used in place of the numer-

ical model if the design tolerance is higher than 15%.
The chart displayed in Figure 21 may also be used to

check the randomness of the residual values. Here, it

appears clearly that the distribution is pseudo-randomised

around the 0-axis and may be considered as acceptable.
The Pareto normalized effect chart displayed in Figure 22

aims to measure the influence of both the factors and their

interactions over the response. It is obtained in the following

way. The probability of each factor to be retained without

having a real effect on the response is calculated. Then, to

distinguish significant from non significant factors, the

commonly used threshold value of 5% is considered. This
means that when the aforementioned probability is less than
5%, the factor is considered to be non-significant. Based on
the DOE used in this study, the threshold value of 5% is
obtained for a normalized effect of 2 (highlighted by the red
line in Figure 22). The significant factors are thus the ones
having a normalized effect higher than 2.

The Pareto chart shows that the quadratic factor does not
contribute significantly to the plate deflection. On contrary,
linear factors appear to have the highest probability to be
significant, even if the influence of factors B, D and J, which
correspond to bridges 1, 3 and 8 (surrounded by the red
line in Figure 23) is less. From a mechanical point of view,
this may be explained by the fact that the transverse shear
strain at mid-span is small, as already demonstrated for the
simply supported “quasi-2D” beam. The bridges located at
mid-span have a small effect on the elastomer transverse
shear strain and, as a consequence, do not affect signifi-
cantly the bending response of the plate.

A first estimation of the capacity of the polynomial to
predict the plate deflection is realized taking in account all
the factors. Then, two additional estimations are performed,
the first one keeping only the significant factors and the
second one keeping only the linear factors. The R2 is the cri-
terion commonly used to measure the capacity of the poly-
nomial function to predict the response. However, this
criterion is clearly questionable because adding new terms to
the polynomial always improves the R2 value, even though
such improvement may be coincidental. To overcome this
problem, two other criteria may be considered. The first one
is the so-called R2 adjusted criterion, which takes into
account the number of retained factors. As removing less
probable factors usually improves the R2 adjusted, a second
criterion called R2 expected is calculated by eliminating each
measurement from the data, one by one, then by recalculat-
ing the regression coefficients without the discarded meas-
urement. In fact, the R2 expected value measures the
capacity of the polynomial form to predict the response con-
sidering new observations. Table 16 gives the value of the R2

expected for the three aforementioned estimations.

Figure 21. Residual value vs polynomial values.

Figure 22. Pareto normalized effect.

Figure 23. Location of non significant bridges and interactions between neigh-
boring and distant bridges.
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Table 16 clearly shows that the model prediction capacity

is higher when only the significant factors including the

interaction terms are considered. As the number of factors

is less, the risk of error due to non significant factors is

decreased. Finally, the best polynomial function obtained for

the prediction of the “bridged” damped plate deflection is

the following one:

wmax ¼ 369:51� 0:7222 � A� 6:59 � B� 23:94 � C

�12:88 � D� 19:56 � E� 51:97 � F

�50:38 � G� 18:75 �H þ 5:75 � J � 21:75 � K

�0:270 � AJ þ 10:38 � CDþ 17:81 � CE

þ21:06 � CF � 31:69 � CH � 23:62 � CK þ 20:81 � EG

�27:31 � EH � 27:00 � EK

þ21:81 � FH þ 20:38 � GK þ 20:75 �HK

(13)

A thorough analysis of Eq. (13) allows to better under-

stand the interactions between the different bridges. Each

linear factor (each bridge) is associated with a negative coef-

ficient, which means, as expected, that every bridge contrib-

utes to decrease the deflection, i.e. to increase the

plate stiffness.
It is also observed that interactions between 2 neighbor-

ing bridges are associated with positive coefficients, meaning

that the deflection is less decreased compared to what would

be obtained by adding the influence of the bridges taken

one by one. This may be explained physically as follows. A

bridge modifies the shear behavior of the mid-layer within a

certain area. When two bridges are in close proximity, their

respective area of influence overlap and, as a consequence,

their stiffening effect are less than additive.On contrary,

interaction coefficients related to distant bridges are nega-

tive, showing the favorable effect of distant bridges over the

plate stiffness. Physically, the stiffening effect of distant

bridges is more efficient because the overlap of stiffened

areas is smaller or even null. Figure 23 illustrates the inter-
actions between neighboring and distant bridges.

Finally, it is worth noting that among the 128 numerical
simulations used to set the DOE, only 43 led to a stiffness
higher than half the stiffness of the carbon-epoxy plate.

5.5. Influence of the DOE factors on the plate damping

In a second part, modal damping values calculated for the
first 4 modes are considered and new DOE are built. As for
the plate deflection, Pareto and polynomial vs residual value
charts are analyzed and a polynomial function is derived to
predict the modal damping values. For each mode, the cap-
acity of prediction characterized by the R2 expected value is
given in Table 17.

The coefficients of the resulting polynomial functions are
listed in Table 18. It may be observed that interactions
between neighboring and distant bridges are not significant.
Only the interactions involving the bridge diameter and the
bridges themselves have an influence on the plate damping.
As expected, linear and interaction coefficients are all nega-
tive, which means that every bridge contributes to reduce
the modal damping.

In Figure 24, the bridges having any or few influence on
the modal damping values are highlighted. To explain this
physically, let us choose a configuration involving 2 neigh-
boring bridges, one located in the plate diagonal and one
located at mid-width. Figure 25 presents the transverse shear
strain distribution post-processed in the viscoelastic layer
when the plate is excited at the first 4 natural frequencies.
The location of the bridges is flagged by the red circles. It is
then interesting to compare the right hand side of the plate
(without bridge) with the left hand side (with 2 bridges).

It appears clearly that the bridges affect locally the elasto-
mer shear deformation. When a bridge is located in a zone
of small deformation, its influence on modal damping
remains small. In other words, a bridge located in an area
where the elastomer is subjected to small shear deformation
(blue areas in Figure 25) corresponds to a non signifi-
cant factor.

5.6. Identification of the optimal configuration

Once the polynomial functions able to predict both the plate
deflection and modal damping values have been derived, the
cost function is studied as the response of the DOE. The
same approach is adopted and a polynomial model is
derived from finite element results to predict the cost

Table 16. Capacity of the polynomial function to predict the static deflection.

All factors Significant factors Linear factors

R2 expected 88% 92% 77%

Table 17. Capacity of the polynomial forms to predict the modal damp-
ing values.

Mode 1 Mode 2 Mode 3 Mode 4

R2 expected 96% 96% 97% 93%

Table 18. Coefficients of the 4 polynomial forms derived to predict modal damping values.

Factor A B C D E F G H J K

Mode 1 �2.45 �0.69 �1.04 �3.87 �0.83 �0.31 �0.53 �0.72 �4.73 �1.66
Mode 2 �5.49 0 �4.63 0 �5.9 �5.9 �6.42 �6.23 0 �6.2
Mode 3 �5.23 �0.18 �6.34 0 �7.71 0 �0.44 �7.66 0 �6.51
Mode 4 �8.3 �22.68 �3.73 �0.61 �9.22 �0.07 �4.11 �11.37 �18.6 �0.76
Factor AA AB AC AD AE AF AG AH AJ AK
Mode 1 0.578 0 �1.29 �2.36 �1.58 0 0 �1.48 �2.6 �1.16
Mode 2 1.28 0 �2.04 0 �1.49 �1.45 �1.14 �1.7 0 �1.51
Mode 3 1.5 �1 �4 �0.73 �3.4 0 0 �3.3 �0.95 �3.7
Mode 4 3 �6.48 0 0 0 �3.54 0 0 �11.46 �3.23
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function. Related coefficients are also listed in Table 18.
Keeping only the significant factors allows to obtain a pre-
diction capacity of 97%. The quality of the prediction is also

illustrated by the residual vs polynomial value chart dis-
played in Figure 26. Resulting gaps between polynomial and
numerical values do not exceed 8%. It is worth to note that
we could have used the values given by the modal damping
predictive polynomials to estimate the cost function but
doing this would have accumulate prediction uncertainties
and lead to a worse prediction.

To identify the optimal bridge configuration, the predict-
ive polynomial model is then used to calculate the cost func-
tion value related to the 2048 configurations. In the same
way, the predictive model of the plate deflection (Eq. (13))
is run to identify the configurations that satisfy the stiffness
constrain. Considering that for the plate deflection the max-
imum gap between predicted and explicitly calculated results
is equal to 15%, the stiffness ratio to be raised for satisfying
the constrain becomes 50%� 1, 15 ¼ 57:5%: The 257 con-
figurations that satisfy this criterion are surrounded by a red

Figure 24. Non significant bridges location regarding the modal damping.

Figure 25. Shear strain for the first 4 studied modes.

Figure 26. DOE for the cost function: residual vs polynomial values.
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line in the Figure 27. It is also observed on this figure that
the cost function values calculated for 57.5% stiffness ratio
configurations vary between 1.7 and 3, which demonstrates
the high sensitivity of the modal damping even for configu-
rations with the same stiffness ratio.

Among the 257 configurations satisfying the stiffness cri-
terion, the one with the highest cost function value is con-
sidered as the optimal configuration and is flagged by a red
circle in Figure 27. It includes 6 bridges with a diameter of
30mm and is displayed in Figure 28. Its cost function value
and stiffness ratio are given in Table 19, together with those
obtained from numerical simulations. A discrepancy of 4%
is observed between predicted and numerical results for the
plate deflection and 2% for the cost function value, which
confirms the accuracy of the DOE’s prediction.

As Figure 28 bears out, the optimal configuration does
not contain any bridge at mid-span. This result was
expected regarding the plate stiffness as it has been demon-
strated for a beam that a bridge located at mid-span has a
small influence on both the stiffness and the damping.
However, such result was not so obvious regarding the

modal damping associated with the first 4 natural mode

shapes. Note that the volume of bridge of this configuration

represents 3.3% of the optimal plate volume, which is in

accordance with the results obtained by Robinson et al.

(fraction � 5%) [3] and Pan et al. (fraction � 7%) [4].
Let us now consider the second configuration flagged by

a red circle in Figure 27. This so-called minimal configur-

ation has the same stiffness ratio than the optimal one

(K=KCE ¼ 59:2%) but the lowest cost function value

(FC ¼ 2:2:). In Figure 29, its dynamic response is compared

to the optimal one in frequency ranges that include the first

4 natural frequencies. It is observed that the plate stiffness

being the same, an optimized position of the bridges allows

to decrease the level of accelerance at the resonance by up

to 7 dB. It is thus concluded that the bridge volume fraction

alone is not a relevant basis of comparison as the location of

the bridges is also a of crucial importance in the process of

optimization.

6. Conclusion

In this study, static and dynamic bending responses of small

carbon-epoxy plates including one frequency-dependent

interleaved viscoelastic layer have been investigated both

experimentally and numerically.
Different types of plates have been manufactured and

tested and the main findings of this experimental work may

be summarized as follows:

� Inserting a 1mm thick rubber-like film into the laminate

has allowed to attenuate by around 21 dB the plate

response amplitude at the resonance but, at the same

time, its bending stiffness has been reduced by 65%.
� To mitigate the loss of stiffness, holes have been cut in

the viscoelastic layer so as to facilitate the resin through

layer penetration during the co-curing process. Resulting

bridges created between the carbon-epoxy skins have

Figure 27. Analysis of the 2048 configurations: cost function vs stiffness ratio.

Figure 28. “Bridged” damped plate optimal configuration.

Table 19. Optimal configuration.

Cost function Stiffness ratio

Predicted 3.2 59.2%
Simulated 3.16 61%
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allowed to limit the loss of bending stiffness to 54%

while attenuating by around 19 dB the response

peak amplitude.
� It has been observed that the shape of the created bridges

was not as expected. In particular, a micro-graphic ana-

lysis has shown that a manual carbon-epoxy prepreg lay-

up does not allow for a satisfactory filling of the holes.

In parallel to this experimental work, finite element mod-

els have been developed to simulate the static and dynamic

responses of the manufactured plates. While the upper and

lower carbon-epoxy skins have been represented by 2D shell

elements, the rubber-like layer has been meshed using 3D

solid elements and a visco-hyper-elastic behavior law has

been defined. Based on DMA tests performed on the elasto-

mer constituting the viscoelastic layer, frequency dependent

shear modulus and damping loss factors have been consid-

ered in the simulation of the damped plate forced response.
Finite element models of increasing complexity have thus

been set-up and systematically confronted to experimental

tests. It has been demonstrated that numerical simulation is

able to capture quite accurately the dynamic response of the

“bridged” damped plates, given that some uncertainties exist

regarding material properties, assembly of the viscoelastic

layer with composite skins and fill rate of the holes.
Numerical simulation has then been advantageously used

to investigate the influence of the position and volume frac-

tion of one bridge on both the static deflection and dynamic

response of a “quasi-2D” simply supported beam. It has

been shown that when the bridge comes near a support

where the shear deformation of the viscoelastic layer is max-

imum, the plate bending stiffness increases but, at the same

time, the damping is reduced. The main challenge thus con-

sists in finding a good/best compromise between stiffness

and damping.
The last part of this work is devoted to the optimization

of a “bridged” damped plate. Based on a limited number of

numerical simulations, a design of experiments has been

developed to optimize the number, the location and the

diameter of the bridges with the objective to maximize the

modal damping for the 4 first natural modes while keeping

a plate stiffness at least equal to half the stiffness of the

undamped carbon-epoxy plate. Polynomial functions have

been derived to predict both the static plate deflection and a

cost function based on the modal damping values related to

the first 4 modes. The quality of prediction of these polyno-

mial forms has been checked and all possible bridge config-

urations have been analyzed to find the optimal one.
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