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Defocus-based Direct Visual Servoing

Guillaume Caron

Abstract— Direct Visual Servoing (DVS) considers pixel
brightness directly as input of robot control. Recent DVS
variants consider image processing as smoothing or frequency
domain transforms, resulting in large convergence domains.

This paper proposes to consider defocus to optically smooth
images without processing. The resulting Defocus-based DVS
shows convergence domains competing with the state-of-the-
art, larger in some challenging cases, for lower complexity.

I. INTRODUCTION

A. Motivation

Visual Servoing (VS) is the feedback control of robot
motion with images of a vision sensor [1]. This fundamental
framework designs the control law so that information carried
by the acquired image reach a desired value. The control
law may rely on the interaction matrix, linking the camera
velocity to the variation of visual information.

VS considers indirect or direct information. Indirect VS
(IVS) requires the extraction of geometric features from
images whereas Direct VS (DVS) does not. Instead, DVS
original version, i.e. Photometric DVS (PVS), directly con-
siders pixel brightness of the whole image as input of the
control law. This allows higher positioning precision for PVS
than any IVS but within a tighter convergence domain [2].

To enlarge the convergence domain of PVS, several
transforms of images were introduced : kernels [3], gradi-
ents [4], [5], Photometric Gaussian Mixtures (PGM) [6], sub-
spaces [7], [8], [9], photometric moments [10], frequency do-
main [11], [12]. Such image transforms-based DVS (t-DVS)
show a significantly larger convergence domain than PVS,
e.g. +25% in translation on real robot for PGM-based DVS
(PGM VS) thanks to an adaptive smoothing of images [6].
Intensity-based VS [13], in-between DVS and IVS, reaches
even larger convergence domains but requires the direct
tracking of an image region, as input of the control law.

t-DVS’ transforms increase the algorithmic complexity.
Indeed, considering an image of N ×M pixels, the algo-
rithmic complexity in computing the interaction matrix of
PGM VS is O((NM)2) against O(NM) for the seminal
PVS. So, this paper investigates a new DVS using smooth
images directly acquired thanks to defocus (Fig. 1). The goal
is to reach a large convergence domain as PGM VS but with
an algorithmic complexity as low as the one of PVS.

B. Related works

Defocus properties, also known as the “Bokeh effect”, are
well known since decades by photographers of art. They

Guillaume Caron is with CNRS-AIST JRL (Joint Robotics Laboratory),
IRL, AIST, Tsukuba, Japan and with Université de Picardie Jules Verne,
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Fig. 1: Defocus with respect to depth.

have been exploited both in computer graphics for realistic
rendering [14], [15], [16] and in computer vision for dense
depth computation [17], [18], [19]. In short, the amount of
defocus blur in the image depends on the depth difference
between scene points and the plane in focus (which depth is
set by the camera lens).

To date, the robotics research mainly considered defocus
by integrating computer vision works of depth estimation,
e.g. for mobile robot navigation [20], Simultaneous Local-
ization And Mapping [21] or micro-positionning [22], [23],
[5]. Micro-positionning works are closer to robot control than
others but exploit defocus to estimate the focus depth [22] or
virtually extend the depth-of-field to track a micropart [23].
Then, the outputs of the latter processes feed a control law
of one [22] or three [23] Degrees of Freedom (DoF).

Among micro-positionning works, only [5] belongs to
DVS, in a hybrid scheme. Indeed, five over six DoF are
controlled from image brightness with PVS [2]. The transla-
tion along the optical axis is controlled from image gradients
assuming their defocus vary proportionally to the variation
of the camera pose along its optical axis. The proportionality
assumption is made for small variations of that pose.

C. Contributions

This paper introduces the Defocus-based DVS (DDVS). Its
core idea is to model the closest link between brightness of
defocused images and six DoF robot control within the DVS
framework. DDVS builds on the full non-linear relationship
between defocus and camera pose with the goal of making
the defocus blur benefiting to the convergence domain of the
control law as PGM [6] did with Gaussian blurred images.
Main differences are related to blur characteristics and pro-
cessing times. Indeed, PGM features an isotropic Gaussian
blur whereas the blur related to defocus is anisotropic. Then,
as the defocused image is directly acquired and not the result
of processing a sharp one, processing times are shrinked.



The main contributions are:
• explicit formulation of the DDVS interaction matrix
• clear impact of defocus on the convergence domain of

the DDVS control law thanks to simulations
• extensive evaluation with respect to the state-of-the-art

on positionning tasks of a 6 DoF real robot arm
• description of the drawbacks of the new method.

D. Outline

Section II recalls related DVS, i.e PVS and PGM VS.
Section III models defocus in order to detail the interaction
matrix of DDVS (Sec. IV). Finally, Section V shows exper-
imental evaluation of DDVS, with a 6 DoF robot arm and
several scenes, with respect to baseline works.

II. DIRECT VISUAL SERVOING

A. Photometric DVS: PVS

PVS is the seminal Photometric Visual Servoing [2] where
all pixel brightness are used as input of the control law to
drive the camera from an initial pose to a desired pose. Here
is a recall of the control law together with notations.

Considering image I of size N × M pixels, its defini-
tion domain is U = [[0, N − 1]] × [[0,M − 1]], such that
I : u ∈ U 7−→ I(u) ∈ [[0, 255]]. Then, the input of the PVS
is the stacking of brightness1 I(u) of all pixels of I , acquired
at the current location p ∈ R6. The latter stacking leads to
vector I(p) ∈ [[0, 255]]|U|×1:

I(p) = [I1•, I2•, . . . , IN•]
>, (1)

where Ii• ∈ [[0, 255]]1×M is the i-th line of I . Vector
p = [t>, θw>]> represents the camera pose, i.e.
t = [tX , tY , tZ ]> ∈ R3 is the 3D translation and the
3D rotation is represented as axis-angle with axis
w = [wX , wY , wZ ]> ∈ R3 : ||w|| = 1 and angle θ ∈ R.

Brightness vector I∗ is built at desired pose p∗ from the
desired image I∗, as I(p) is built with (1) from I . PVS is
designed to minimize the Sum of Squared Differences (SSD):

C (p) =
1

2
||I(p)− I∗||2, (2)

with the below control law [2]:

v = −µLI
+(I(p)− I∗). (3)

In (3), v ∈ Rn is the n DoF camera velocity (v ≈ ṗ,
if n = 6), µ ∈ R∗+ is a gain, and LI

+ is the pseudo-
inverse of the interaction matrix LI ∈ R|U|×n. LI links the
variations of image brightness I to the n considered camera
pose DoF, thanks to the Optical Flow Constraint Equation
(OFCE), valid in Lambertian scenes [24]. LI is the stacking
of interaction matrices LI(u) evaluated for all u ∈ U , each
composing image gradients ∇Iu ∈ [[−255, 255]]2 to the
geometric interaction matrix Lu ∈ R2×n:

LI(u) = −∇I>
uLu. (4)

1Pixel brightness coded with 8 bits are used, since very common, but any
other quantization could be considered.

The reader may refer to [1] for the details of Lu involving
the pinhole camera model and the motion of a 3D point.

PVS shows high precision at convergence, i.e. below one
tenth of millimeter [2], while avoiding feature detection and
matching. But its main drawback is its narrow convergence
domain compared to feature-based VS [12].

B. Photometric Gaussian Mixtures-based DVS: PGM VS

PGM VS [6] is the t-DVS reaching the widest convergence
domain of related works. To reach a larger convergence
domain than PVS, PGM VS [6] no longer considers directly
I as input. Instead, its input is G, the transform of image
I as a Photometric Gaussian Mixture. Before detailing G,
let us note that G mixes Photometric Gaussians (PG) of
every pixel I(u). Thus, a single PG is characterized by its
center u and its spread λ ∈ R∗+, i.e. its mean and standard
deviation in a statistical phrasing. Hence a PG is defined as
g : ug ∈ Ug 7−→ g(ug, I,u, λ):

g(ug, I,u, λ) = I(u) exp
(
−||ug − u||2/(2λ2)

)
. (5)

g models the power of attraction of the pixel at location u in
image I [6]. If the definition domain of the PG is the same
as the one of the image, then Ug = U .

After that, the PGM G is defined considering a single λ:

G(ug, I, λ) =
∑
u∈U

g(ug, I,u, λ). (6)

As U is a discrete set, the exponential in the expression (5)
of g is evaluated at discrete locations u ∈ U , thus sampled.
Hence, if λ tends to 0, then G(ug) (in short) shrinks to I(u).

The control law of PGM VS is designed to minimize the
SSD cost between current G, i.e. the PGM transform of I
with λ, and G∗, i.e. the PGM transform of I∗ with λ∗ ∈ R∗+.
PGM VS considers λ as an additionnal DoF to those of
camera pose p [6]. λ∗ is set constant so it can be different
than λ, both at initialization and while the control loop is
running. The evolution of λ while the camera is moving is
one of the PGM VS’s key of both wide convergence domain
(large λ) and precision at convergence (small λ).

To express the PGM SSD cost, elements of G are stacked
as vector G ∈ R|Ug|×1 and those of G∗ as G∗ ∈ R|Ug|×1:

CPGM (p, λ) =
1

2
||G(p, λ)−G∗||2. (7)

The control law minimizing CPGM is then expressed as:[
v

λ̇

]
= −µJG

+(G(p, λ)−G∗), (8)

where JG ∈ R|Ug|×n+1 juxtaposes LG ∈ R|Ug|×n,
i.e. the interaction matrix related to a PGM sample, and
Jλ ∈ R|Ug|×1, i.e. the Jacobian of the PGM sample with re-
spect to λ. One may refer to [6] for their detailed expressions
but may note that LG is function of geometric interaction
matrices involving the pinhole camera model, as LI (3), (4).
λ and λ∗ are critical for the ideal behavior of PGM VS,

i.e. large convergence domain and precision at convergence.
Thus, [6] reports a sequence of PGM VS: Step 1 with a



large λ∗ (exact value depends on experiments) and λ = 2λ∗

at initialization; Step 2 with constant λ = λ∗ = 1. Step
1 allows the large convergence domain and Step 2 allows
precision.

III. MODEL OF DEFOCUS

A. Overview

Defocus occurs in an acquired image when the scene
depth is not included in the depth-of-field, which is the
volume in the interval of scene depths that appear sharp in
the image [25]. The depth-of-field optically depends on the
camera aperture: narrow aperture leads to large depth-of-field
while large aperture leads to shallow depth-of-field. Defocus
pixels appear blurred. The defocus blur can be approximated
by a normal Gaussian kernel [26]. The amount of defocus
blur increases with the distance of scene depth to the volume
in focus. Thus, moving a camera of constant large aperture,
even in a static environment, makes the apparent blur vary
depending on the camera pose (Fig. 1).

Thinking about a planar scene fronto-parallel to the im-
age at the desired camera pose p∗, the defocus behavior
is intuitively similar to PGM VS’s control of λ, for for-
ward/backward motion along the camera optical axis (Fig. 1b
to 1e). Indeed, PGM VS’s control of λ is done to adapt
the smoothness of current G simultaneously to driving the
camera toward p∗, where G is expected as sharp as G∗

(Sec. II-B). However, smoothness characteristics of defocus
are different of those of PGM.

Indeed, in the PGM transform, (5) can be interpreted
more classically as the convolution of a Gaussian kernel g
with the image I , where g is isotropic (same λ for every
pixel of I , (6)). In general non-planar scenes, the normal
Gaussian kernel approximating the defocus is anisotropic as
the amount of blur depends on the distance of the scene
to the focused volume. Section III-C formally expresses the
anisotropic Gaussian kernel related to defocus. It relies on
the thin-lens camera model, shortly recalled in Section III-B.

B. Thin lens camera model

The pinhole camera model describes the ideal
stenope [27], to which a conventional camera gets close
only for pixels in focus or when its aperture is narrow. The
thin lens camera model [27] allows describing any aperture
setting, including large open, thus defocus characteristics.

A camera following the pinhole model images a 3D point
X = [X,Y, Z]> ∈ R3 as a single 2D point on the actual
image plane. Instead, a camera following the thin lens model
maps X to a surface named the Circle of Confusion (CoC).
The diameter of the CoC tends to zero when X is in focus
and increases as X gets away the focused depth. The CoC
also depends on several optical parameters of the camera:
focal length f ∈ R∗+, aperture diameter D ∈ R∗+, focus depth
Zf ∈ R∗+. Then, the CoC diameter d(Z) ∈ R∗+ of scene point
X, expressed in the camera lens frame, is expressed as [14]:

d(Z) =
Df

Zf − f

(
1− Zf

Z

)
. (9)

If d(Z) is lower than the side ku ∈ R∗+ of a photodiode
of the camera sensor, then the corresponding pixel is sharp.
Otherwise the image locally features defocus blur.

Recall that the aperture diameter D is usually described
as the unitless F-Number quantity for most camera lenses.
The F-Number is commonly written “F-φ”, with φ ∈ R∗+,
to indicate how closed the aperture is. Then, D is expressed
from the F-Number value φ and the focal length f as [27]:

D = f/φ. (10)

C. Anisotropic Gaussian kernel related to CoC

Defocus blur is approximated by anisotropic filtering with
normal Gaussian kernels depending on the CoC of the thin
lens camera model (Sec. III-B). Every CoC depends on the
same camera parameters but each CoC depends on the Z
coordinate of the 3D point X it images (9). Hence, the
normal Gaussian kernel related to the CoC of X in image I
possibly has its own unique spread λ(Z) ∈ R∗+.

In order to match the CoC with a normal Gaussian kernel,
we express the extension λ(Z) of the latter depending on
the diameter d(Z) of the former (9). Assuming 99.7% of the
normal Gaussian is included in the CoC, we get:

λ(Z) = d(Z)/(6 ku), (11)

where ku, the physical size of a pixel, converts actual image
plane units, i.e. meter, to the digital image ones.

Then, we make the approximation that X projects at the
center of the CoC following the pinhole camera model2

pr : X ∈ R3 7−→ x ∈ [0, N − 1]× [0,M − 1]:

x =

f/ku 0 u0
0 f/ku v0
0 0 1

X/ZY/Z
1

 = pr(X), (12)

where X is expressed in the camera frame and u0 ∈ R and
v0 ∈ R are the coordinates of the principal point in the
digital image. x is expressed in the digital image plane as u
but with real coordinates. Hence, the intrinsic parameters of
the thin-lens camera model are: γ = {f, ku, u0, v0, φ, Zf}.

Using (11) and (12), the anisotropic normal Gaussian
kernel g̃ related to defocus is expressed as:

g̃(u,X) =
1

2πλ(Z)2
exp

(
−||u− pr(X)||2

2 λ(Z)2

)
. (13)

If λ(Z) tends to 0, then g̃ tends to a Dirac impulse.
Finally, the scene radiance L(X) ∈ R+ of X is assumed

equally mapped to brightness I(pr(X)), when X is in focus3,
i.e. I(pr(X)) = L(X). Then, considering the scene is a
continuous set X of 3D points X ∈ X , the defocus image
Id writes as:

Id(u) =

∫
X
I(pr(X)) g̃(u,X) dX. (14)

2As the CoC is geometrically the intersection of the cone of light
emanating from X with the actual image plane, X exactly projects at the
center of its CoC, if and only if X is aligned with the optical axis.

3This equal mapping is voluntarily a huge simplification of the imaging
process to make clear expressions. Rigorously, other transformations as
vignetting, camera response function, quantization can be considered [28].



A first look at (14) shows high similarity with the PGM
transform (5), (6). Actually, in the particular case of a
scene fronto-parallel to the camera and only tZ motion is
considered, the anisotropic filtering shrinks to isotropic as
PGM does (though the spread of the Gaussian kernel is set
differently). More deeply, there are fundamental differences.
First, the most obvious, Id(u) may directly be acquired
blurred in (14) contrary to G(ug, I, λ) in (6), thus saving
digital processing time. Second, the kernel spread λ(Z)
of (13) is strongly linked to the camera pose p, contrary to
the kernel spread λ of the PGM (5). The main consequence
is: one no longer needs to find an evolution law of the kernel
spread during the VS. Thus, DDVS exploiting (14) needs to
consider only the camera pose DoF, as Section IV shows.

IV. DEFOCUS-BASED DIRECT VISUAL SERVOING

As PVS (Sec. II-A) and PGM VS (Sec. II-B), we design
the control law of DDVS to minimize the SSD of the current
Id and desired I∗d images, both acquired with the camera of
constant large aperture. Hence, pixel brightness of acquired
images are stacked as current Id(p) ∈ [[0, 255]]|U|×1 and
desired Id

∗ ∈ [[0, 255]]|U|×1 brightness vectors.
Then, the defocus SSD cost is expressed as:

Cd(p) =
1

2
||Id(p)− Id

∗||2, (15)

to be minimized by the control law:

v = −µLId
+(Id(p)− Id

∗), (16)

very similar to (3) and (8), since Id
∗ is constant as previ-

ously recalled DVS (Sec. II). In (16), the interaction matrix
LId ∈ R|U|×n is nothing but the stacking of interaction
matrices LId(u) ∈ R1×n computed for each Id(u),∀u ∈ U .

A. DDVS interaction matrix

As the defocus of Id may evolve with respect to p, the
expression of LId(u) must rely on the focal flow constraint
equation [18] (FFCE). It is more general than the OFCE [24]
since the FFCE models the brightness inconsistency due to
defocus on time t ∈ R+ and δt ∈ R+ later as:

Id(u + δx, t+ δt) = g̃(u, δX) ∗ Id(u, t), (17)

where δx ∈ R2 is the motion in the image plane,
δX = [0, 0, δZ]> ∈ R3 represents the change of camera
Z coordinate during δt and the operator ∗ denotes the
convolution product. In (17), if δZ = 0 or if the CoC tends
to a point (9), (17) falls back to the brightness consistency
equation exploited for PVS.

A first order Taylor expansion of (17) leads to the FFCE:

∇uI
>
d u̇+

d Id(u, t)

d t
≈ −∆uId

(
λ(Z)

Z
+
∂λ(Z)

∂Z

)
Ż, (18)

where the equality is approximate since high order terms
of the expansion are dropped and ∆uId ∈ [[−512, 512]] is
the Laplacian of Id. If there is no motion along the camera

optical axis, i.e. Ż is null, or if the CoC tends to a point, i.e.
λ(Z) tends to zero and its derivative with respect to Z:

∂λ(Z)

∂Z
=

DZff

6ku(Zf − f)Z2
, (19)

too, then the right side of (18) tends to zero and the FFCE
falls back to the OFCE.

Finally, as u̇ and Ż can be expressed in terms of their
partial derivatives with respect to the camera pose [1], one
deduces from (18) the expression of the interaction matrix
LId(u) related to brightness with defocus as:

LId(u) =

[
−∇uI

>
d

−∆uId

] [
Lu

Df
6ku(Zf−f)ZLZ

]
, (20)

with, as a recall [1]:

LZ =
[
0 0 −1 −Y X 0

]
. (21)

As most previous DVS, since |U| >> n, only local stability
can be ensured. The convergence domain can be rather large
in practice [1], which is evaluated in the rest of the article.

B. DDVS simulation

In order to clearly highlight the contribution of considering
defocus for DVS, simulation results are reported. Simulations
consider a synthetic scene with a single bright 3D point
X = [0, 0, 0]> in order to understand the DDVS behavior re-
garding defocus only. The radiance of X is set to L(X) = 1.
Then, we consider a linear camera of intrinsic parameters γ
(Sec. III-C) which pose is restricted to 2 DoF: tZ and tX .

1) Realistic camera aperture: First, we consider camera
aperture F-φ settings with φ = 8 and φ = 0.95. The latter φ
denotes wide aperture, actually the widest on the market of
compact machine vision camera lenses of C/CS mount (Note
that the IB-E Optics company provides a lens with φ = 0.85
but for photographer cameras with E, X, SL and M mounts).
With φ = 8, we simulate a large depth-of-field, in which
the pinhole assumption of PVS is met, still being capable of
acquiring 30 images per second without motion blur (at low
speed) on most machine vision cameras.

Intrinsic parameters are set as in experiments of Section V,
i.e. γ = {17 mm, 5.3 µm, 320 pixels, 256 pixels, φ,
25 cm}, in order to anticipate practical behaviors of DDVS.
Zf = 25 cm is the smallest possible focus depth of the lens
used in experiments (Sec. V). This setting allows observing
variations of defocus even for small variations of tZ .

The desired camera pose is p∗ = [t∗X , 0, t
∗
Z , 0, 0, 0]>.

t∗X = −tX(0)/2 such that tX(0) is the horizontal translation
in space that VS must correct. By doing so, the initial and
desired pr(X) (see (12)) are symmetric with respect to the
image center of coordinate u0. Then, t∗Z is set such that the
desired brightness I∗d (u) is equal to 1, following the image
formation model (14). Finally, initial tZ is set to tZ(0) = t∗Z .

With a single non null pixel at both initial and desired
poses, PVS is expected to only control tX . Conversely, as
DDVS considers explicitely defocus, it is expected to control
tZ as well. Table I reports DDVS parameters and maximum
initial distances that allow convergence, both in space with



TABLE I: Simulation results of DDVS: maximum errors in
space and in pixels corrected for various apertures.

φ t∗Z (mm) tX(0) (mm) δx (pixel) iter.
8 289.0000 0.4 2.1 36

0.95 253.6000 5 31.7 71
0.1 250.04841 75 480.1 98

tX(0) and in the image (distance δx in pixel unit), for
various apertures. µ, the control law gain (16), is set the
highest without making oscillations around the optimum,
whatever the φ considered, i.e. µ = 0.08. Finally, iterations
are counted until convergence of the control law, i.e. when
the Cd cost (15) falls below 0.01.

With aperture φ = 8, DDVS only corrects an error of a few
pixels as PVS (not shown for conciseness and well known).
Indeed, the large depth-of-field due to φ = 8 prevents
observations of defocus variations for small variations of tZ .

The large aperture φ = 0.95 leads DDVS to correct much
larger δx errors than when φ = 8: 13 times more. DDVS first
controls the camera backward (Fig. 2) to increase defocus
such that image signals at current and desired poses overlap
enough. Then, DDVS moves the camera to correct tX and
tZ to get closer to X such that the Cd cost (15) is minimized.

Surprisingly, when PVS considering tZ and tX is basically
applied to defocused images, it moves the camera backward
very similarly to first iterations of DDVS, even if defocus
is not taken into account in the control law (3). But once
reached a depth big enough to make current and desired
images overlap, the motion is much slower than DDVS, then
not stable near the optimum. Thus, final δx does not fall
below 2.9 pixels (4 mm in space) whereas, DDVS features
a final δx of 0.1 pixel (0.5 mm in space, Fig. 2).

All above mentioned results are with known Z whereas,
in practice, no depth measure is available with a color or
grayscale camera. Then, simulations with the same parame-
ters than those reported in Table I are led, but with constant
Z = Z∗. Same observations as when Z is known are made.
The main difference for DDVS is an increase of iterations to
converge: +15 with F-8, +17 with F-0.95, +20 with F-0.1.

2) Very large camera aperture: The bottom of Table I
reports simulations with the very large camera aperture
φ = 0.1. With this aperture, DDVS shows a huge conver-
gence domain: 75% of the entire field-of-view (5% when
φ = 0.95). In that case, t∗X and tX(0) are set as far as
possible. Figure 3 shows the behavior of DDVS with the
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Fig. 2: DDVS simulation: 2 DoF, F-0.95. (a) From left to
right: evolution along iterations of the cost, DoF in m (tZ in
green with t∗Z dashed green; tX in red with t∗X dashed red),
defocus spread (11), location (blue) in the image (pixel units)
of current pr(X) (see (12)) and the desired one (dashed red).
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Fig. 3: DDVS maximum initial error allowing convergence
with F-0.1 (same legends of plots as for Figure 2 ).

latter settings and with constant Z = Z∗ (DDVS behaves
very similarly when knowing Z but with 20% less iterations).

Although such φ = 0.1 aperture is not yet available
among lenses of machine vision cameras, DDVS results with
such setting may open future investigations on the digital
processing side, e.g. a new PGM VS with λ depending on
p. This idea is left as future works.

To conclude the simulations, one must note DDVS
achieves significant motion along the Z axis in order to
increase enough the defocus to converge. This is interesting
to allow convergence where it was not possible with PVS
but the resulting camera trajectory is not straight. PGM VS
is expected to achieve straighter trajectories, however at the
price of well setting the initial value of the extra DoF λ
(Sec. II-B) as real experiments show (Sec. V).

V. EXPERIMENTAL RESULTS

Experimental results of DDVS, PVS and the state-of-the-
art PGM VS [6] with a camera embedded on a robot arm
(Fig. 1a) are reported. Four, then six, DoF are controlled in
planar and non-static 3D scenes (background change).

A. Experimental setup

Experiments use a 6 DoF Universal Robot 10 arm with
a Flir FL-U3-13E4C camera on its end-effector (Fig. 1a).
A Yakumo lens (17 mm focal length; maximum aperture F-
0.95) equips the camera, set to acquire 30 images per second.
It is connected to a laptop (Intel Core i7-7700HQ Central
Processing Unit, CPU). The Graphics Processing Unit (GPU)
is not used. Velocities computed with control laws (3), (8),
(16) are sent to the robot through wired network. Camera
intrinsic parameters are got from datasheets: γ = {17 mm,
5.3 µm, 320 pixels, 256 pixels, φ, Zf}.

Four scenes are considered, two with the photograph of
Bacall, Monroe and Bogart (Fig. 1a, 1b and 8a) used in every
DVS paper. The third is textureless, only featuring a black
hex key on a uniform clear background (Fig. 4a). Finally,
the fourth scene is 3D and made of food boxes and drinks
(Fig. 1a on the red table: Fig. 5a) at various depths.

PVS implementation is the one of the ViSP
(https://visp.inria.fr) C++ library. The same is
applied whatever the camera aperture setting.

Then, we reimplemented PGM VS on CPU only and
reached similar processing time performances than [6] did
on GPU (about 10 Hz with 100× 100 pixels images) thanks
to the most precomputations that we could do, requiring λ
to be constant within PGM VS’ Step 1. As acquired images
are of 512×640 pixels, they are resized by a factor α ∈ N+

https://visp.inria.fr


used to update camera intrinsic parameters ku, u0 and v0.
Contrary to [6], the switch from Step 1 to Step 2 (Sec. II-B)
occurs when the residual is stable enough. In all experiments
considering 4 DoF, the residual stability threshold is set to
10−3, and 5 · 10−4 when 6 DoF are controlled. These slight
changes with respect to the original implementation of PGM
VS allow converging from farther poses than those reported
in [6] (see Sec. V-C and V-E).

Finally, DDVS is implemented extending the ViSP lumi-
nance feature of PVS with image Laplacian and rewriting
the interaction matrix as (20).

B. Lateral initial error

This set of experiments controls 4 DoF of the robot arm in
order to highlight the behavior of DDVS and PVS (basically
applied to defocused images) without DoF coupling issues
(discussed in Sec. V-E). Similarly to simulations (Sec. IV-B),
only the initial tX(0) is different from the desired pose p∗.

We report experiments with aperture φ = 0.95, focus
distance is Zf = 25 cm and Z = Z∗ = Zf constantly, i.e.
the desired image is acquired fronto-parallel to the almost
flat scene featuring a hex key (Fig. 4a) and focused. Setting
tX(0) = 10 mm leads to a lateral shift of about 40 pixels
in the image (Fig. 4b). Gains µ of control laws (3), (16) are
set the highest avoiding oscillations at convergence.

First, contrary to simulations, PVS converges (Fig. 4c)
precisely as DDVS (below 0.1 mm of 3D residual error).
This is obviously due to the fact that simulations considered
a scene of a single 3D point whereas real scenes are dense.

DDVS converges faster (609 iterations) than PVS (809 it-
erations) and, comparing the evolution of their DoF (Fig. 4d),
it is clear PVS deviates more than DDVS on every DoF.
Quantitatively, intervals of camera position and orientation
are [40.1 mm, 17.1 mm, 225.0 mm, 44.4 degrees] for PVS
and [27.8 mm, 8.4 mm, 192.8 mm, 24.6 degrees] for DDVS.
Thus, DDVS deviation is about half the PVS one, except
along the Z axis as sufficient motion must be done on that
axis in order to defocus enough images to converge. But
DDVS, by explicitly considering the defocus term in its
interaction matrix, needs less backward motion (-183.5 mm)
than PVS (-205.2 mm) to get in the convergence domain.

(a) Hex key (b) First Id − I∗d (c) Last Id − I∗d
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(d) Positions (Left: PVS; center: DDVS): red, X; green,
Y ; blue, Z. Right: DDVS (dashed) and PVS orientations.

Fig. 4: (a) Desired image. (b) initial and (c) final images of
differences surrounding (d) the DoF evolution over iterations.

C. Convergence domain extents

With same settings as in Section V-B, but looking at
Monroe’s face (Fig. 1b) PVS with φ = 8 and φ = 0.95, PGM
VS with φ = 8 and DDVS with φ = 0.95 are run from a set
of initial tZ(0) ranging from 3 cm to 45 cm. Control law
gains µ are set to avoid oscillations around the optimum. µ is
set once per VS method from tZ(0) = 3 cm. Then, for other
tZ(0), µ is unchanged. This is the only setting for PVS and
DDVS, whereas PGM VS had to be run several times to find
the ideal value of λ for the Step 1 of PGM VS (Sec. II-B).

Table II shows the maximum tZ(0) for which each con-
sidered VS converged to the desired pose as well as the
number of iterations, i.e. the number of images acquired until
convergence. In a few words, thanks to its two steps, PGM
VS performs the best in terms of maximum initial error and
absolute number of iterations, at the price of longer setting
time to find the ideal λ = λ∗ = 12. Such value requires
an image resize parameter α = 8 (so 80 × 64 pixels are
considered) to keep the control loop rate above 10 Hz.

Then, as expected from the litterature, PVS features the
weakest convergence domain for a lot of iterations (12
minutes to correct 27 cm). Interestingly, its rough application
to defocused images increases 22% its convergence domain
to reach 78.5% of the PGM VS one (in similar durations).

Finally, DDVS is ranked second, PGM VS convergence
domain still being 15% larger. This second place must be
balanced by the fact that no extra parameter needs to be set
for DDVS, contrary to the λ of PGM VS.

D. Robustness to non-static 3D scene

Still controlling 4 DoF, the scene of 3D objects is consid-
ered (Fig. 1a, background: Fig. 5a). As Section V-C shows
PGM VS and DDVS are the two best DVS among those
evaluated, this section considers them only.

This set of experiments shows that some content of a 3D
scene impacts more PGM VS than DDVS. If the background
is dark, both PGM VS and DDVS converge from tZ(0) =
10 cm (the initial values of the 5 other DoF are not changed
with respect to the desired ones). DDVS takes 155 iterations
to converge while PGM VS takes 120 (λ = 2 for Step
1). However, with a bright background, PGM VS converges
from tZ(0) = 5 cm at most, for λ = 2 or other values,
whereas DDVS still converges from tZ(0) = 10 cm. Figure 5
shows the desired and initial images for tZ(0) = 10 cm along
with initial PGM error and the one when PGM VS is stuck
in a local minimum (about 45 degrees of rotation error).

This surprising poor behavior of PGM VS regarding bright
backgrounds is confirmed when the background is changed
from dark to bright, between the acquisition of desired and

TABLE II: Comparison of the 4 DoF convergence domain
extents with only tZ 6= t∗Z for the considered DVS.

φ DVS µ tZ(0) max iterations
8 PVS 4 27 cm 21711
8 PGM VS 1 42 cm 759

0.95 PVS 4 33 cm 809
0.95 DDVS (ours) 4 36 cm 1096



(a) Initial I (b) I∗ (c) First G−G∗ (d) Last G−G∗

Fig. 5: PGM VS in a scene of white background. (d) means
the PGM error when PGM VS is stuck in a local minimum.

current images (Fig. 6). Indeed, PGM VS (Fig. 6a to 6d)
stops in a local minimum. Inversely, DDVS (Fig. 6e to 6h)
reaches the global minimum. Figure 6h allows seeing the
background differences (left and top right). Recall the image
of differences almost uniformly features the median gray
level when the scene does not change (e.g. Fig. 4c). Changing
the background from bright to dark is better dealt by PGM
VS but still perturbs its precision at convergence: 10 mm of
translation residual error (slightly less than 1 mm for DDVS).

Other DDVS experiments were done from tZ(0) = 10 cm,
changing the bottle and one food box between acquisitions of
desired and current images. Trajectories are slightly different
but precision at convergence are as with constant scene,
confirming DDVS’ robustness to scene content changes.

E. Experiments with 6 DoF

The last set of experiments considers the control of the
robot arm 6 DoF. Two desired poses are considered in front
of the same planar scene: 1) Z∗ = 25 cm to frame Monroe’s
face only (Fig. 1b); 2) Z∗ = 50 cm (Fig. 8a).

In either case, PGM VS and DDVS first show a much
tighter convergence domain than with 4 DoF. Indeed, even
if initial and desired poses are solely separated by tZ 6= 0,
starting beyond tZ(0) = 2.5 cm makes PGM VS to fail and
DDVS fails when tZ(0) > 1.5 cm. With tZ(0) ≤ 1.5 cm,
trajectories of DDVS are very far from the straight line
while those of PGM VS are much closer, but less precise at
convergence (1.2 mm of final error) than DDVS (0.2 mm).
With tZ(0) = 2.5 cm, PGM VS trajectory keeps almost
straight (tX and tY stay in a square of 3 mm side) with a
final error of 1.2 mm.

It turns out that these DVS are badly conditioned as the
conditioning of interaction matrices, when tZ(0) = 1.5 cm,
varies from 137.9 to 146.7 for PGM VS and from 2162.5 to
2308.7 for DDVS. As this appears when activating rotations

(a) Initial I (b) I∗ (c) First G−G∗ (d) Last G−G∗

(e) Initial Id (f) I∗d (g) First Id − I∗d (h) Last Id − I∗d

Fig. 6: Moving a chair changes the background from dark,
in the desired image, to white, in current images. PGM VS:
local minimum (d). DDVS: global minimum (h).

around X and Y axes of the camera, it is obvious that it is
related to the well known strong coupling between rotation
around X and translation along Y and inversely. To our
knowledge, such poor conditioning was never mentioned
in previous DVS works. One of the reasons this work
observes it might be the use of a rather long focal length.
Unfortunately [2], [6] do not provide such detail to confirm.

The long focal length leads to a narrow field of view.
It prevents distinguishing coupled camera motions in the
image [29, Ch. 15]. This problem is linked to motion
perceptibility [30] that, when poor, makes the condition
number of the interaction matrix large. To solve this issue,
inspiration comes from the camera motion estimation from
image points in two views [31, Ch. 4.4.4]. To pre-condition
the estimation, one first translates image points to put their
centroid at the origin of the image frame. Then, a scaling
makes “the average distance of an image point from the
origin equal to

√
2” [31, p. 107]. As a DVS considers every

pixel, their centroid is already the image center. Scaling the
coordinates of every pixel without extra processing can be
done by artificially scaling f (focal length).

By doing so with a factor of 0.1, experimentally found but
unique, mean condition numbers are divided by 15 for PGM
VS and 97 for DDVS. Maximum tZ(0) allowing convergence
become 31 cm for PGM VS and 21 cm for DDVS. From
tZ(0) = 21 cm, trajectories deviate from the straight line by
15 mm for PGM VS and 75 mm for DDVS, on average.

Then, the largest initial errors with coupled DoF were
looked for, considering Z∗ = Zf = 50 cm (Fig. 8a).
Figure 7a shows trajectories where PGM VS took 33 s
to converge from the initial error δpG =[0 cm, -30 cm,
30 cm, -20 degrees, 0 degrees, 0 degrees] (visual error in
Fig. 8g), setting its new record in translation with 42.4 cm
(compared to 30.3 cm in [6]). On its side, DDVS succeeded
with even larger initial errors such as δpD =[0 cm, -40 cm,
40 cm, 27 degrees, 0 degrees, 0 degrees] (in 88 s, initial
visual error in Fig. 8h), δp′D =[-64 cm, -45 cm, 45 cm,
32 degrees, -32 degrees, -25 degrees] (in 184 s, largest
initial translation magnitude coupled with full 3D rotation:
90.2 cm) and δp′′D =[-64 cm, -45 cm, 25 cm, 37 degrees,
-37 degrees, -25 degrees] (in 202 s, largest initial rotation
magnitude coupled with full 3D translation: 58.0 degrees).
DDVS results from δp′D (initial image on Fig. 8c and DoF
evolution on Fig. 7b) and δp′′D (initial image on Fig. 8d)

(a) Initial δpD for DDVS (pink)
and PVS (blue), δpG for PGM
VS (black) and PVS (dashed).
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(b) Left: tX , red; tY , green;
tZ , blue. Right: θwX , blue;
θwY , green; θwZ , red.

Fig. 7: (a) Trajectories (desired pose: 0), (b) 6 DoF over time
for DDVS with initial error δp′D.



(a) I∗d = I∗ (b) Id(δpD) (c) Id(δp′D) (d) Id(δp′′D)

(e) I(δpG) (f) I(δpG)− I∗ (g) G(δpG)−G∗ (h) Id(δpD)−I∗d

Fig. 8: Desired (a) and initial images for which (b-d) only
DDVS succeeds, (e) DDVS and PGM VS succeed with some
initial differences for PVS (f), PGM VS (g), DDVS (h).

are shown in the accompanying video4. PGM VS diverges
from δpD and beyond where the initial image captures the
bright scene around the photograph of the actors (e.g. Fig. 8b,
top). This, and an extensive study [32] with large, randomly
drawn, initial errors on all 6 DoF confirm the trend about the
sensitivity of PGM VS to a bright background (Sec. V-D).
PVS (pre-conditioned) was applied from both δpG and δpD
but stops on local minima, far from desired poses (Fig. 7a).

DDVS converges from larger initial errors than those
reported for best DVS on this criterion [10], [6], [12]: up
to 3 times the translation magnitude of [6] and 1.7 times
the rotation magnitude of [12]. DDVS converges also from
1.7 times larger initial translation errors than intensity-based
VS [13], for a slightly larger rotation magnitude (58 degrees
versus 57 [13]). However, DDVS trajectories are curvier and
its time duration to converge is longer than those of [13].

Finally, as in this last experiment Z∗ = Zf = 50 cm,
it also shows that exploiting defocus extends a lot the DVS
convergence domains for other focus depths than the shortest.

VI. CONCLUSION AND FUTURE WORKS
This paper introduced the new Direct Visual Servoing

exploiting defocus. As Photometric Visual Servoing, submil-
limetric precision is reached. Its convergence domains are
competing and can significantly overperform those of the
state-of-the-art Photometric Gaussian Mixtures-based Visual
Servoing. This is obtained for a much lower processing time,
i.e. 70 ms per image of 80 × 64 pixels for the latter versus
52 ms per image of 320 × 256 pixels for the new DVS.
However, as a counterpart, trajectories are curvier.

Future works will target the control of focus depth in order
to perform straight trajectories, faster. Investigations will also
strike a general solution to DVS pre-conditioning.
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visual servoing scheme using defocus information for 6-DoF micropo-
sitioning,” in IEEE Int. C. on Rob. and Autom., 2015, pp. 6025–6030.

[6] N. Crombez, E. Mouaddib, G. Caron, and F. Chaumette, “Visual
servoing with photometric gaussian mixtures as dense features,” IEEE
T. on Rob., vol. 35, no. 1, pp. 49–63, 2019.

[7] S. K. Nayar, S. A. Nene, and H. Murase, “Subspace methods for robot
vision,” IEEE T. on Rob. and Autom., vol. 12, no. 5, pp. 750–758, 1996.

[8] K. Deguchi, “A direct interpretation of dynamic images and camera
motion for vision guided rob.” in IEEE/SICE/RSJ Int. C. on Multisen-
sor Fusion and Integr. for Intel. Systems, 1996, pp. 313–320.

[9] E. Marchand, “Subspace-based direct visual servoing,” IEEE Rob. and
Autom. Letters, vol. 4, no. 3, pp. 2699–2706, 2019.

[10] M. Bakthavatchalam, O. Tahri, and F. Chaumette, “A Direct Dense
Visual Servoing Approach using Photometric Moments,” IEEE T. on
Rob., vol. 34, no. 5, pp. 1226–1239, 2018.

[11] L.-A. Duflot, R. Reisenhofer, B. Tamadazte, N. Andreff, and A. Krupa,
“Wavelet and Shearlet-based Image Representations for Visual Servo-
ing,” The Int. J. of Rob. Research, vol. 38, no. 4, pp. 422–450, 2019.

[12] E. Marchand, “Direct visual servoing in the frequency domain,” IEEE
Rob. and Autom. Letters, vol. 5, no. 2, pp. 620–627, 2020.

[13] G. Silveira, L. Mirisola, and P. Morin, “Decoupled intensity-based
nonmetric visual servo control,” IEEE T. on Control Syst. Tech.,
vol. 28, no. 2, pp. 566–573, 2020.

[14] H.-Y. Lin and K.-D. Gu, “Photo-realistic depth-of-field effects syn-
thesis based on real camera parameters,” in Advances in Visual
Computing, 2007, pp. 298–309.

[15] T. Hach, J. Steurer, A. Amruth, and A. Pappenheim, “Cinematic bokeh
rendering for real scenes,” in ACM Eur. C. on Visual Media Prod.,
2015, pp. 1–10.

[16] B. Zhang, B. Sheng, P. Li, and T. Lee, “Depth of field rendering using
multilayer-neighborhood optimization,” IEEE T. on Visualization and
Computer Graphics, vol. 26, no. 8, pp. 2546–2559, 2020.

[17] M. Subbarao and G. Surya, “Depth from defocus: A spatial domain
approach,” Int J Comput Vision, vol. 13, pp. 271–294, 1994.

[18] E. Alexander, Q. Guo, S. Koppal, S. Gortler, and T. Zickler, “Focal
flow: Velocity and depth from differential defocus through motion,”
Int. J. of Computer Vision, vol. 126, pp. 1062–1083, 2018.

[19] M. Maximov, K. Galim, and L. Leal-Taixe, “Focus on defocus:
Bridging the synthetic to real domain gap for depth estimation,” in
IEEE/CVF C. on Computer Vision and Pattern Recogn., 2020.

[20] I. R. Nourbakhsh, D. Andre, C. Tomasi, and M. R. Genesereth,
“Mobile robot obstacle avoidance via depth from focus,” Rob. and
Autonomous Systems, vol. 22, no. 2, pp. 151 – 158, 1997.

[21] T. Shiozaki and G. Dissanayake, “Eliminating scale drift in monocular
slam using depth from defocus,” IEEE Rob. and Autom. Letters, vol. 3,
no. 1, pp. 581–587, 2018.

[22] M. Wang, X. Lv, and X. Huang, “Self-optimizing visual servoing con-
trol for microassembly robotic depth motion,” in Int. C. on Information
Acquisition, 2007, pp. 482–486.

[23] D. Hong, F. Janabi-Sharifi, and H. Cho, “An adaptive depth of field
imaging system for visual servoing,” in IFAC World Congress, vol. 41,
no. 2, 2008, pp. 5405–5410.

[24] B. K. Horn and B. G. Schunck, “Determining optical flow,” Artif.
Intell., vol. 17, no. 1, pp. 185 – 203, 1981.

[25] N. Salvaggio, Basic Photographic Materials and Processes, 3rd Edi-
tion, L. Stroebel and R. Zakia, Eds. Focal Press, 2013.

[26] T. Iijima, “Theory of pattern recognition,” Electronics and Communi-
cations in Japan, pp. 123–134, Nov. 1963.

[27] D. Forsyth and J. Ponce, Computer Vision: A Modern Approach, 2nd
Edition. Pearson, 2012.

[28] P. Bergmann, R. Wang, and D. Cremers, “Online photometric calibra-
tion of auto exposure video for realtime visual odometry and SLAM,”
IEEE Rob. and Autom. Letters, vol. 3, pp. 627–634, 2018.

[29] P. Corke, Robotics, Vision and Control: Fundamental Algorithms In
MATLAB, 2nd ed. Springer, 2017.

[30] R. Sharma and S. Hutchinson, “Motion perceptibility and its applica-
tion to active vision-based servo control,” IEEE T. on Robotics and
Automation, vol. 13, no. 4, pp. 607–617, 1997.

[31] R. I. Hartley and A. Zisserman, Multiple View Geometry in Computer
Vision, 2nd ed. Cambridge University Press, 2004.

[32] G. Caron, “Defocus-based direct visual servoing - addendum,”
https://hal.archives-ouvertes.fr/hal-03161692/document, Mar. 2021.

http://mis.u-picardie.fr/~g-caron/videos/ds.mp4

	INTRODUCTION
	Motivation
	Related works
	Contributions
	Outline

	DIRECT VISUAL SERVOING
	Photometric DVS: PVS
	Photometric Gaussian Mixtures-based DVS: PGM VS

	MODEL OF DEFOCUS
	Overview
	Thin lens camera model
	Anisotropic Gaussian kernel related to CoC

	DEFOCUS-BASED DIRECT VISUAL SERVOING
	DDVS interaction matrix
	DDVS simulation
	Realistic camera aperture
	Very large camera aperture


	EXPERIMENTAL RESULTS
	Experimental setup
	Lateral initial error
	Convergence domain extents
	Robustness to non-static 3D scene
	Experiments with 6 DoF

	CONCLUSION AND FUTURE WORKS
	References

