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Shape optimization of a Dirichlet type energy for semilinear
elliptic partial differential equations

Antoine Henrot∗ Idriss Mazari† Yannick Privat‡

Abstract

Minimizing the so-called “Dirichlet energy” with respect to the domain under a volume
constraint is a standard problem in shape optimization which is now well understood. This
article is devoted to a prototypal non-linear version of the problem, where one aims at mini-
mizing a Dirichlet-type energy involving the solution to a semilinear elliptic PDE with respect
to the domain, under a volume constraint. One of the main differences with the standard
version of this problem rests upon the fact that the criterion to minimize does not write as
the minimum of an energy, and thus most of the usual tools to analyze this problem cannot
be used. By using a relaxed version of this problem, we first prove the existence of optimal
shapes under several assumptions on the problem parameters. We then analyze the stability
of the ball, expected to be a good candidate for solving the shape optimization problem, when
the coefficients of the involved PDE are radially symmetric.

Keywords: shape optimization, Dirichlet energy, existence/stability of optimal shapes.

AMS classification: 49J45, 49K20.

1 Introduction

1.1 Motivations and state of the art
Existence and characterization of domains minimizing or maximizing a given shape functional
under constraint is a long story. Such issues have been much studied over the last decades (see
e.g. [1, 6, 9, 15, 12]). Recent progress has been made in understanding such issues for problems
involving for instance spectral functionals (see e.g. [11]).

The issue of minimizing the Dirichlet energy (in the linear case) with respect to the domain is
a basic and academical shape optimization problem under PDE constraint, which is by now well
understood. This problem reads:

Let d ∈ N∗ and D be a smooth compact set of Rd. Given g ∈ H−1(D) and m 6 |D|,
minimize the Dirichlet energy

J(Ω) =
1

2

∫
Ω

|∇uΩ|2 − 〈g, uΩ〉H−1(Ω),W 1,2
0 (Ω),
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where uΩ is the unique solution of the Dirichlet problem1 on Ω associated to g, among
all open bounded sets Ω ⊂ D of Lebesgue measure |Ω| 6 m.

As such, this problem is not well-posed and it has been shown (see e.g. [8] or [12, Chap. 4] for
a survey of results about this problem) that optimal sets only exist within the class

Om = {Ω ∈ A(D), |Ω| 6 m}, (1)

where A(D) denotes the class of quasi-open sets2 of D.
This article is motivated by the observation that, in general, the techniques used to prove

existence, regularity and even characterization of optimal shapes for this problem rely on the fact
that the functional is "energetic", in other words that the PDE constraint can be handled by noting
that the full shape optimization problem rewrites

min
Ω∈A(D)
|Ω|6m

min
u∈W 1,2

0 (D)

{
1

2

∫
Ω

|∇u|2 − 〈g, u〉H−1(Ω),W 1,2
0 (Ω)

}
.

In this article, we introduce and investigate a prototypal problem close to the standard “Dirichlet
energy shape minimization”, involving a nonlinear differential operator. The questions we wish
to study here concern existence of optimal shapes and stability issues for “non energetic” models.
We note that the literature regarding existence and qualitative properties for non-energetic, non-
linear optimization problems is scarce. We nevertheless mention [16], where existence results are
established in certain asymptotic regimes for a shape optimization problem arising in population
dynamics.

Since our aim is to investigate the optimization problems in the broadest classes of measurable
domains, a volume constraint, known to lead to potential difficulties due to lack of compactness
for standard topologies, is considered.

In the close version of the Dirichlet problem we will deal with, the linear PDE solved by uΩ is
changed into a nonlinear one but the functional to minimize remains the same. Since, in such a
case, the problem is not "energetic" anymore (in the sense made precise above), the PDE constraint
cannot be incorporated into the shape functional. This calls for new tools to be developed in order
to overcome this difficulty. Among others, we are interested in the following issues:

• Existence: is the resulting shape optimization problem well-posed?

• Stability of optimal sets: given a minimizer Ω∗0 for the Dirichlet energy in the linear
case, is Ω∗0 still a minimizer when considering a “small enough” non-linear perturbation of
the problem?

This article is organized as follows: the main results, related to the existence of optimal shapes
for Problem (3) and the criticality/stability of the ball are gathered in Section 2. Section 3 is
dedicated to the proofs of the existence results whereas Section 4 is dedicated to the proofs of the
stability results.

1in other words

uΩ = argmax
u∈W1,2

0 (D)

{
1

2

∫
Ω
|∇u|2 − 〈g, u〉

H−1(Ω),W
1,2
0 (Ω)

}
.

2Recall that Ω ⊂ D is said quasi-open whenever there exists a non-increasing sequence (ωn)n∈N such that

∀n ∈ N, Ω ∪ ωn is open and lim
n→+∞

cap(ωn) = 0
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1.2 The shape optimization problem
In what follows, we consider a modified version of the problem described above, where the involved
PDE constraint is now nonlinear.

Let d ∈ N∗, D a compact set of Rd, g ∈ L2(D) and f ∈W 1,∞(R). For a small enough
positive parameter ρ, let uΩ ∈W 1,2

0 (Ω) be the unique solution of the problem{
−∆uρ,Ω + ρf(uρ,Ω) = g in Ω

uρ,Ω ∈W 1,2
0 (Ω).

(2)

For m 6 |D|, solve the problem:

inf
Ω∈Om

Jρ(Ω) where Jρ(Ω) =
1

2

∫
Ω

|∇uρ,Ω|2 −
∫

Ω

guρ,Ω, (3)

where Om is defined in (1).

In this problem, the smallness assumption on the parameter ρ guarantees the well-posedness of the
PDE problem (2) for generic choices of nonlinearities f .

Lemma 1. There exists ρ > 0 such that, for any Ω ∈ Om, for any ρ ∈ [0, ρ), Equation (2),
understood through its variational formulation, has a unique solution in W 1,2

0 (Ω).

This follows from a simple fixed-point argument: let λ1(Ω) be the first eigenvalue of the Dirichlet
Laplacian on Ω. We note that the operator

T : W 1,2
0 (Ω) −→ W 1,2

0 (Ω)
u 7−→ wΩ,

where wΩ is the unique solution of{
−∆w − g = −ρf(u) in Ω

w ∈W 1,2
0 (Ω),

is Lipschitz with Lipschitz constant CT (Ω) such that CT (Ω) 6 ρ 1
λ1(Ω)‖f‖W 1,∞ . By the monotony

of λ1 with respect to domain inclusion (see [10]), we have, for every Ω ∈ Om, λ1(D) 6 λ1(Ω), so
that CT (Ω) 6 ρ‖f‖W1,∞

λ1(D) .

2 Main results of the paper

2.1 Existence results
We state hereafter a partial existence result inherited from the linear case. Indeed, we will exploit
a monotonicity property of the shape functional Jρ together with its lower-semi continuity for
the γ-convergence to apply the classical theorem by Buttazzo-DalMaso (see Subsection 3.1). Our
approach takes advantage of the analysis of a relaxed formulation of Problem (3). To introduce it,
let us first consider a given box D ⊂ Rn (i.e a smooth, compact subset of Rn) such that |D| > V0.

In the minimization problem (3), let us identify a shape Ω with its characteristic function 1Ω.
This leads to introducing the “relaxation” set

Ôm =

{
a ∈ L∞(D, [0, 1]) such that

∫
D

a 6 m

}
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For a given positive relaxation parameter M , we define the (relaxed) functional ĴM,ρ by

ĴM,ρ(a) =
1

2

∫
D

|∇uM,ρ,a|2 +
M

2

∫
Ω

(1− a)u2
M,ρ,a −

∫
Ω

guρ,Ω, (4)

for every a ∈ Ôm, where uM,ρ,a ∈W 1,2
0 (D) denotes the unique solution of the non-linear problem{

−∆uM,ρ,a +M(1− a)uM,ρ,a + ρf(uM,ρ,a) = g in D
uM,ρ,a ∈W 1,2

0 (D).
(5)

Our existence result involves a careful asymptotic analysis of uM,ρ,a as ρ → 0 to derive a mono-
tonicity property.

Standard elliptic estimates entail that, for every M > 0 and a ∈ Ôm, one has uM,ρ,a ∈ C 0(Ω).

Remark 1. Such an approximation of uρ,Ω is rather standard in the framework of fictitious
domains. The introduction of the term M(1 − a) in the PDE has an interpretation in terms of
porous materials (see e.g. [7]) and it may be expected that uM,ρ,a converges in some sense to uρ,Ω
as M → +∞ and whenever a = 1Ω. This will be confirmed in the analysis to follow.

Roughly speaking, the existence result stated in what follows requires the right-hand side of
equation (2) to have a constant sign. To write the hypothesis down, we need a few notations
related to the relaxed problem (5), which is the purpose of the next lemma.

Lemma 2. Let m ∈ [0, |D|], a ∈ Ôm and g ∈ L2(D) be nonnegative. There exists a positive
constant Nm,g such that

∀a ∈ Ôm, ∀M > 0, ∀ρ ∈ [0, ρ), ‖uM,ρ,a‖∞ 6 Nm,g, (6)

where ρ is defined in Lemma 1, uM,ρ,a denotes the unique solution to (5). In what follows, Nm,g
will denote the optimal constant in the inequality above, namely

Nm,g = sup{‖uM,ρ,a‖L∞(Ω), a ∈ Ôm,M > 0, ρ ∈ [0, ρ)}.

This follows from standard arguments postponed to Section A.
We now state the main results of this section. Let us introduce the assumptions we will consider

hereafter:

(H1) There exist two positive numbers g0, g1 such that g0 < g1 and g0 6 g(·) 6 g1 a.e. in D.

(H2) One has f ∈W 1,∞(R)∩D2, where D2 is the set of twice differentiable functions (with second
derivatives not necessarily continuous). Moreover, f(0) 6 0 and there exists δ > 0 such that
the mapping x 7→ xf(x) is non-decreasing on [0, Nm,g + δ] where Nm,g is given by Lemma 2.

Theorem 1. Let us assume that one of the following assumptions holds true:

• g or −g satisfies the assumption (H1);

• g is non-negative and the function f satisfies the assumption (H2) or g is non-positive and
the function −f satisfies the assumption (H2);

Then, there exists a positive constant ρ0 = ρ0(D, f(0), ‖f‖W 1,∞) such that the shape optimiza-
tion problem (3) has a solution Ω∗ for every ρ ∈ (0, ρ0).
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Remark 2. The proof of Theorem 1 rests upon a monotonicity property of the relaxed functional
ĴM,ρ given by (4). This is the first ingredient that subsequently allows the well-known existence
result of Buttazzo and Dal-Maso to be applied.

It is natural to wonder whether or not it would be possible to obtain this result in a more
direct way, for instance by using shape derivatives. We claim that such an approach would require
to consider domains Ω having a smooth boundary so that the shape derivative (in the sense of
Hadamard) of Jρ at Ω in direction V , where V denotes an adequate vector field, makes sense. This
relaxed version enables us to encompass less regular domains.

2.2 Stability results
In what follows, we will work in R2. B∗ denotes the centered ball with radius R > 0 such that
B∗ ∈ Om and we introduce S∗ = ∂B∗. The notation ν stands for the outward unit vector on S∗, in
other words ν(x) = x/|x| for all x ∈ S∗.

In this section, we will discuss the local optimality of the ball for small nonlinearities. We
will in particular highlight that the local optimality of the ball can be either preserved or lost
depending on the choice of the right-hand side g. Indeed, if ρ = 0 and if g is radially symmetric
and non-increasing, the Schwarz rearrangement3 ensures that, for any Ω ∈ Om, J0(Ω) > J0(B∗).
Without such assumptions, not much is known about the qualitative properties of the optimizers.

According to the considerations above, we will assume in the whole section that

(H3) g is a non-increasing, radially symmetric and non-negative function in L2(B∗) and f is a
given C 2 non-linearity.

Notice that the analysis to follow can be generalized to sign-changing g. Here, this assumption
allows us to avoid distinguishing between the cases where the signs of normal derivatives on S∗ are
positive or negative. For the sake of simplicity, for every ρ > 0, we will call uρ the solution of the
PDE {

−∆uρ + ρf(uρ) = g in B∗
uρ ∈W 1,2

0 (B∗) on ∂B∗ = S∗. (7)

Proving a full stationarity result4 is too intricate to tackle, since we do not know the minimizers
topology. Hereafter, we investigate the local stability of the ball B∗: we will prove that the ball
is always a critical point, and show that we obtain different stability results, related to the non-
negativity of the second shape derivative of the Lagrangian, depending on f and g.

To compute the first and second order shape derivatives, it is convenient to consider vector
fields V ∈ W 3,∞(R2) and to introduce, for a given admissible vector field V (i.e such that, for t
small enough, (Id +tV )B∗ ∈ Om), the mapping

fV : t 7→ Jρ ((Id +tV )B∗) .

The first (resp. second) order shape derivative of Jρ in the direction V is defined as

J ′ρ(B∗)[V ] := f ′V (0) , (resp. J ′′ρ (B∗)[V, V ] := f ′′V (0)).

To enforce the volume constraint |Ω| = m, we work with the unconstrained functional

LΛρ : Ω 7→ Jρ(Ω)− Λρ (Vol(Ω)−m) ,

3see e.g. [14] for an introduction to the Schwarz rearrangement.
4 in other words, proving that for any ρ 6 ρ∗ B∗ is the unique minimizer of Jρ in Om
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where Vol denotes the Lebesgue measure in R2 and Λρ denotes a Lagrange mulltiplier associated
with the volume constraint. Recall that, for every domain Ω with a C 2 boundary and every vector
field in W 3,∞(R2,R2), we have

Vol′(Ω)[V ] =

∫
∂Ω

V · ν and Vol′′(Ω)[V, V ] =

∫
∂Ω

H(V · ν)2,

whereH stands for the mean curvature of ∂Ω. The local first and second order optimality conditions
for Problem (3) read as follow:

L′Λρ(Ω)[V ] = 0

L′′Λρ(Ω)[V, V ] > 0

}
for every V ∈W 3,∞(R2,R2) such that

∫
S∗
V · ν = 0.

For further informations about shape derivatives, we refer for instance to [12, Chapitre 5]. Let us
state the main result of this section. In what follows, ρ is chosen small enough so that Equation
(2) has a unique solution.

Theorem 2. Let f and g satisfying the assumption (H3). Let V ∈W 3,∞(R2,R2) denote a vector
field such that

∫
S∗ V · ν = 0.

1. (Shape criticality) B∗ is a critical shape, in other words J ′ρ(B∗)[V ] = 0.

2. (Shape stability) Assume that

πR2g(R) 6
∫
B∗
g and 0 <

∫
B∗
g, (8)

where R denotes the radius of the ball B∗. Let Λρ be the Lagrange multiplier associated wit
the volume constraint. There exists ρ > 0 and C > 0 such that, for any ρ 6 ρ,

(Jρ − Λρ Vol)′′(B∗)[V, V ] > C‖V · ν‖2L2(Ω). (9)

3. (Shape instability) Assume that g is the constant function equal to 1 and that f is a C 1 non-
negative function such that f ′ < −1 on [0, 2‖u0‖L∞), where u0 is the solution of (2) with
ρ = 0 and Ω = B∗. Then, the second order optimality conditions are not fulfilled on B∗:
there exists ρ > 0 and V̂ ∈W 3,∞(R2,R2) such that

∫
S∗ V̂ · ν = 0 and, for any ρ 6 ρ,

(Jρ − Λρ Vol)′′(B∗)[V̂ , V̂ ] < 0.

Remark 3. Let us comment on the strategy of proof. It is known that estimates of the kind (9)
can lead to local quantitative inequalities [4]. We first establish (9) in the case ρ = 0, and then
extend it to small parameters ρ with the help of a perturbation argument. Assumptions of the
type (8) are fairly well-known, and amount to requiring that B∗ is a stable shape minimizer [5, 13].
Finally, the instability result rests upon the following observation: if g = 1 and if V1 is the vector
field given by V (r cos(θ), r sin(θ)) = cos(θ)(r cos(θ), r sin(θ)), then one has

(J ′′0 − Λ0 Vol)′′(B∗)[V, V ] = 0

while higher order modes are stable [5, 13]. It therefore seems natural to consider such perturbations
when dealing with for small parameters ρ.
It should also be noted that our proof uses a comparison principle, which shortens many otherwise
lengthy computations.
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3 Proof of Theorem 1

3.1 General outline of the proof
The proof of Theorem 1 rests upon an adaptation of the standard existence result by Buttazzo-
DalMaso (see either the original article [2] or [12, Thm 4.7.6] for a proof), based on the notion of
γ-convergence, that we recall below.

Definition 1. For any quasi-open set Ω ∈ Om, let RΩ be the resolvent of the Laplace operator on
Ω. We say that a sequence of quasi-open sets (Ωk)k∈N in Om γ-converges to Ω ∈ Om if, for any
` ∈ H−1(D), (RΩk(`))k∈N converges in W 1,2

0 (D) to RΩ(`).

The aforementioned existence theorem reads as follows.

Theorem (Buttazzo-DalMaso). Let J : Om → R be a shape functional satisfying the two following
assumptions:

1. (monotonicity) For every Ω1,Ω2 ∈ Om, Ω1 ⊆ Ω2 ⇒ J(Ω2) 6 J(Ω1).

2. (γ-continuity) J is lover semi-continuous for the γ-convergence.

Then the shape optimization problem
inf

Ω∈Om
J(Ω)

has a solution.

As is customary when using this result, the lower semi-continuity for the γ-convergence is valid
regardless of any sign assumptions on g or of any additional hypothesis on f . This is the content
of the next result, whose proof is standard and thus, postponed to Appendix B.

Proposition 1. Let f ∈W 1,∞(R) and ρ > 0. The functional Jρ is lower semi-continuous for the
γ-convergence.

It remains hence to investigate the monotonicity of Jρ. Our approach uses a relaxed version
of Jρ, namely the functional ĴM,ρ defined by (4). More precisely, we will prove under suitable
assumptions that

∀M > 0 ,∀a1, a2 ∈ Ôm , a1 6 a2 =⇒ ĴM,ρ(a1) > ĴM,ρ(a2). (10)

The following result, whose proof is postponed to Appendix C for the sake of clarity, allows us to
make the link between ĴM,ρ and Jρ.

Lemma 3. Let Ω ∈ Om. There exists (Mn)n∈N such that

Mn → +∞ and lim
n→+∞

ĴMn,ρ(1Ω) = Jρ(Ω).

Setting then a1 = 1Ω1 , a2 = 1Ω2 , M = Mn, where Mn is chosen as in the statement of Lemma
3, and passing to the limit in (10) as n→∞ gives the monotonicity of Jρ.

In the next sections, we will concentrate on showing the monotonicity property (10). To this
aim, we will carefully analyze the so-called “switching function” (representing the gradient of the
functional ĴM,ρ) as the parameter M is large enough.

7



3.2 Structure of the switching function
It is notable that, in this section, we will not make any assumption on g or f . Let M > 0.
Considering the following relaxed version of Problem (3)

inf
a∈Ôm

ĴM,ρ(a), (11)

it is convenient to introduce the set of admissible perturbations in view of deriving first order
optimality conditions.

Definition 2 (tangent cone, see e.g. [3]). Let a∗ ∈M and Ta∗ be the tangent cone to the set Ôm
at a∗. The cone Ta∗ is the set of functions h ∈ L∞(D) such that, for any sequence of positive real
numbers εn decreasing to 0, there exists a sequence of functions hn ∈ L∞(D) converging to h as
n→ +∞, and a∗ + εnhn ∈ Om for every n ∈ N.

In what follows, for any a ∈ Ôm, any element h of the tangent cone Ta will be called an
admissible direction.

Lemma 4 (Differential of ĴM,ρ). Let a ∈ Ôm and h ∈ Ta. Let vM,ρ,a be the unique solution of{
−∆vM,ρ,a +M(1− a)vM,ρ,a + ρf ′(uM,ρ,a)vM,ρ,a = ρf(uM,a) in D
vM,ρ,a ∈W 1,2

0 (D).
(12)

Then, ĴM,ρ is differentiable in the sense of Fréchet at a in the direction h and its differential reads
〈dĴM,ρ(a), h〉 =

∫
D
hΨa, where Ψa is the so-called “switching function” defined by

Ψa = −M
(
vM,ρ,a +

uM,ρ,a

2

)
uM,ρ,a.

Proof of Lemma 4. The Fréchet-differentiability of ĴM,ρ and of the mapping Om 3 a 7→ uM,ρ,a ∈
W 1,2

0 (D) at m∗ is standard (see e.g. [12, Chap. 8]). Let us consider an admissible perturbation h
of a and let u̇M,ρ,a be the differential of uM,ρ,a at a in direction h. One has

〈dĴM,ρ(a), h〉 =

∫
D

∇uM,ρ,a · ∇u̇M,ρ,a +M

∫
D

(1− a)uM,ρ,au̇M,ρ,a −
M

2

∫
D

hu2
M,ρ,a

−〈g, u̇M,ρ,a〉H−1(Ω),W 1,2
0 (Ω),

where u̇M,ρ,a solves the system{
−∆u̇M,ρ,a +M(1− a)u̇+ ρf ′(uM,ρ,a)u̇M,ρ,a = MhuM,a in D
u̇M,ρ,a ∈W 1,2

0 (D).
(13)

Let us multiply the main equation of (5) by u̇M,ρ,a and then integrate by parts. We get∫
D

∇uM,ρ,a ·∇u̇M,ρ,a+M

∫
D

(1−a)uM,ρ,au̇M,ρ,a+ρ

∫
D

f(uM,ρ,a)u̇M,ρ,a = 〈g, u̇M,ρ,a〉H−1(Ω),W 1,2
0 (Ω)

and therefore,

〈dĴM,ρ(a), h〉 = −M
2

∫
D

hu2
M,ρ,a∗ − ρ

∫
D

f(uM,ρ,a∗)u̇M,ρ,a∗

Let us multiply the main equation of (13) by vM,ρ,a and then integrate by parts. We get∫
D

∇vM,ρ,a · ∇u̇M,ρ,a +M

∫
D

(1− a)vM,ρ,au̇M,ρ,a + ρ

∫
D

f ′(uM,a)u̇M,avM,ρ,a = M

∫
D

huM,avM,ρ,a.
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Similarly, multiplying the main equation of (12) by u̇M,ρ,a and then integrating by parts yields∫
D

∇vM,ρ,a·∇u̇M,ρ,a+M

∫
D

(1−a)vM,ρ,au̇M,ρ,a+ρ

∫
D

f ′(uM,ρ,a)u̇M,ρ,avM,ρ,a = ρ

∫
D

f(uM,ρ,a)u̇M,ρ,a.

Combining the two relations above leads to

ρ

∫
D

f(uM,ρ,a)u̇M,ρ,a = M

∫
D

huM,ρ,avM,ρ,a.

Plugging this relation into the expression of 〈dĴM,ρ(a), h〉 above yields the expected conclusion.

3.3 Proof that (10) holds true whenever ρ is small enough
Let us consider each set of assumptions separately.

Existence under the first assumption: g or −g satisfies the assumption (H1).

According to the discussion carried out in Section 3.1, proving Theorem 1 boils down to proving
monotonicity properties for the functional ĴM,ρ whenever ρ is small enough, which is the purpose
of the next result.

Lemma 5. Let a1 and a2 be two elements of Ôm such that a1 6 a2 a.e. in D. If g or −g satisfies
the assumption (H1), then there exists ρ1 = ρ1(D, g0, g1, ‖f‖W 1,∞) > 0 such that

ρ ∈ (0, ρ1)⇒ ĴM,ρ(a1) > ĴM,ρ(a2).

Proof of Lemma 5. Assume without loss of generality that g0 > 0, the case g1 < 0 being easily
inferred by modifying all the signs in the proof below. Then, one has

−∆uM,ρ,a +M(1− a)uM,ρ,a = g − ρf(uM,ρ,a) > 0 in D,

whenever ρ ∈ (0, g0/‖f‖∞), and therefore, one has uM,ρ,a > 0 by the comparison principle.
Similarly, notice that

−∆uM,ρ,a 6 g1 + ρ‖f‖∞ in D,

which implies that uM,ρ,a 6 (g1 + ρ‖f‖∞)wD were wD is the torsion function of D. By the

classical Talenti’s estimate of the torsion function [17], we have ‖wD‖∞ 6 1
2d

(
|D|
ωd

)2/d

(where ωd
is the volume of the unit ball). Thus

‖uM,ρ,a‖∞ 6 (g1 + ρ‖f‖∞)
1

2d

(
|D|
ωd

)2/d

:= C(g0, ρ, ‖f‖∞, D).

Setting UM,ρ,a = 1
2uM,ρ,a + vM,ρ,a, elementary computations show that UM,ρ,a solves the prob-

lem{
−∆UM,ρ,a + (M(1− a) + ρf ′(uM,ρ,a))UM,ρ,a = ρ

2 (f(uM,ρ,a) + uM,ρ,af
′(uM,ρ,a)) + g

2 in D,
UM,ρ,a = 0 on ∂D.

(14)

Lemma 6. Let us choose ρ1 in such a way that

ρ1(‖f‖∞ + C(g0,
1

2
, ‖f‖∞, D)‖f ′‖∞) < g0, and ρ1‖f ′‖∞ 6

λ1(D)

2
, (15)

where λ1(D) denotes the first eigenvalue of the Dirichlet-Laplacian operator on D. For every
ρ ∈ [0, ρ1), UM,ρ,a is non-negative in D.

9



Proof of Lemma 6. The result follows immediately from the generalized maximum principle which
claims that if a function v satisfies

−∆v + a(·)v > 0 with a(·) > −λ1(D) (16)

and v = 0 on ∂D, then v > 0 a.e. in D. Here we have chosen ρ1 in such a way that

M(1− a) + ρf ′(uM,ρ,a) > −λ1(D)

and the right-hand side of (14) is non-negative which yields the result.

Coming back to the proof of Lemma 5, consider h = a2 − a1. According to the mean value
theorem, there exists ε ∈ (0, 1) such that

ĴM,ρ(a2)− ĴM,ρ(a1) = 〈dĴM,ρ(a1 + εh), h〉 = −M
∫
D

huM,a1+εhUM,a1+εh 6 0,

according to the combination of the analysis above with Lemma 4. The expected conclusion
follows.

Existence under the second assumption: g is non-negative and the function f satisfies
the assumption (H2) or g is non-positive and the function −f satisfies the

assumption (H2).

The main difference with the previous case is that g might possibly be zero. Deriving the
conclusion is therefore trickier and relies on a careful asymptotic analysis of the solution uM,ρ,a as
ρ→ 0.

Proposition 2. There exists C = C(D, ‖f‖L∞(Ω)) > 0 such that, for any M ∈ R+, any a ∈ Ôm
such that a > 0 a.e. in D, there holds

‖uM,ρ,a − uM,0,a‖L∞(D) 6 Cρ. (17)

Proof. Let us set zρ = uM,ρ,a − uM,0,a for any ρ > 0. A direct computation yields that zρ satisfies

−∆zρ +M(1− a)zρ = −ρf(uM,ρ,a).

By comparison with the torsion function wD of D, this implies

‖zρ‖∞ 6 ρ‖f‖∞‖wD‖∞

and the result follows, with a constant C explicit by Talenti’s Theorem like in the proof of Lemma 5.

Let us consider the switching function Ψ = −MUM,ρ,auM,ρ,a where uM,ρ,a and UM,ρ,a respec-
tively solve (5) and (14), and we will prove that both uM,ρ,a and UM,ρ,a are non-negative, so that
one can conclude similarly to the previous case.

Lemma 7. The functions uM,ρ,a and UM,ρ,a non-negative whenever ρ is small enough.

10



Proof. Let us choose ρ such that ρ‖f‖∞ < λ1(D). Since uM,ρ,a satisfies

−∆uM,ρ,a +M(1− a)uM,ρ,a + ρf(uM,ρ,a) > 0

the non-negativity of uM,ρ,a is a consequence of the generalized maximum principle (16). Indeed,
for ρ small enough, we have

M(1− a) + ρf(uM,ρ,a) > −λ1(D).

Since UM,ρ,a satisfies (14), the proof follows the same lines assuming the ρ‖f ′‖∞ < λ1(D)
and using the assumption (H2) to get non-negativity of the right-hand side. By mimicking the
reasoning done at the end of the first case, one gets that (10) is true if ρ is small enough.

Thus, in both cases, the monotonicity of the functional is established, so that the theorem of
Buttazzo and Dal Maso applies.

4 Proof of Theorem 2
Note first that the functional Jρ is shape differentiable, which follows from standard arguments,
see e.g. [12, Chapitre 5].
Our proof of Theorem 2 is divided into two steps: after proving the criticality of B∗ for ρ small
enough, we compute the second order shape derivative of the Lagrangian associated with the
problem at the ball. Next, we establish that, under Assumption (8), there exists a positive constant
C0 such that, for any admissible V , one has

(J0 − Λ0 Vol)′′(B∗)[V, V ] > C0‖V · ν‖2L2(Ω). (18)

Finally, we prove that, for any radially symmetric, non-increasing non-negative g, there exists
M ∈ R such that, for any admissible V , one has

(Jρ − Λρ Vol)′′(B∗)[V, V ] > (J0 − Λ0 Vol)′′(B∗)[V, V ]−Mρ‖V · ν‖2L2(Ω). (19)

Local shape minimality of B∗ for ρ small enough can then be inferred in a straightforward way.
If V is an admissible vector field, we will denote by u′ρ,V and u′′ρ,V the first and second order

(eulerian) shape derivatives of uρ at B∗ with respect to V .

4.1 Preliminary material
Lemma 8. Under the assumptions of Theorem 2, i.e when g is radially symmetric and non-
increasing function, for ρ small enough, the function uρ is radially symmetric nonincreasing. We
write it uρ = ϕρ (| · |). Furthermore, if ρ = 0, one has

−∂u0

∂ν
>
R

2
g(R).

Proof of Lemma 8. The fact that uρ is a radially symmetric nonincreasing function follows from a
simple application of the Schwarz rearrangement. Integrating the equation on the ball B∗ yields

−
∫
B∗

∆u0 = −
∫
∂B∗

∂u0

∂ν
= −2π

∂u0

∂ν

on the one-hand, while using the fact that g is decreasing:

−
∫
B∗

∆u0 =

∫
B∗
g > 2πg(R)

∫ R

0

rdr = πRg(R)

11



By differentiating the main equation and the boundary conditions (see e.g. [12, Chapitre 5]),
we get that the functions u′ρ,V and u′′ρ,V satisfy{ −∆u′ρ,V + ρf ′ (uρ)u

′
ρ,V = 0 in B∗

u′ρ,V = −∂uρ∂ν V · ν on ∂B∗ (20)

and {
−∆u′′ρ,V + ρf ′ (uρ)u

′′
ρ,V + ρf ′′(uρ)

(
u′ρ,V

)2
= 0 in B∗

u′′ρ,V = −2
∂u′ρ,V
∂ν V · ν − (V · ν)2 ∂

2uρ
∂ν2 on ∂B∗.

(21)

4.2 Proof of the shape criticality of the ball
Proving the shape criticality of the ball boils down to showing the existence of a Lagrange multiplier
Λρ ∈ R such that for every admissible vector field V ∈W 3,∞(R2,R2), one has

(Jρ − Λρ Vol)′(B∗)[V ] = 0 (22)

Standard computations (see e.g. [12, chapitre 5]) yield

J ′ρ(B∗)[V ] =

∫
B∗
〈∇uρ,∇u′ρ,V 〉 −

∫
B∗
gu′ρ,V +

∫
S∗

1

2
|∇uρ|2V · ν

=

∫
S∗
u′ρ,V

∂uρ
∂ν
− ρ

∫
B∗
u′ρ,V f(uρ) +

∫
S∗

1

2
|∇uρ|2V · ν

= −
∫
S∗

(
∂uρ
∂ν

)2

V · ν +

∫
S∗

1

2
|∇uρ|2V · ν − ρ

∫
B∗
u′ρ,V f(uρ)

= −1

2

∫
S∗
|∇uρ|2V · ν − ρ

∫
B∗
u′ρ,V f(uρ).

We introduce the adjoint state pρ as the unique solution of{
−∆pρ + ρpρf

′(uρ) + ρf(uρ) = 0 in B∗
pρ = 0 on S∗. (23)

Since uρ is radially symmetric, so is pρ. Multiplying the main equation of (23) by u′ρ,V and
integrating by parts yields

−ρ
∫
B∗
u′ρ,V f(uρ) =

∫
S∗

∂pρ
∂ν

∂uρ
∂ν

V · ν,

and finally

J ′ρ(B∗)[V ] =

∫
S∗

(
∂pρ
∂ν

∂uρ
∂ν
− 1

2

(
∂uρ
∂ν

)2
)
V · ν.

Observe that ∂pρ
∂ν and ∂uρ

∂ν are constant on S∗since uρ and pρ are radially symmetric. Introduce
the real number Λρ given by

Λρ =
∂pρ
∂ν

∂uρ
∂ν
− 1

2

(
∂uρ
∂ν

)2
∣∣∣∣∣
S∗
, (24)

we get that (22) is satisfied, whence the result.

In what follows, we will exploit the fact that the adjoint state is radially symmetric. In the
following definition, we sum-up the notations we will use in what follows.
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Definition 3. Recall that ϕρ (defined in Lemma 8) is such that

uρ(x) = ϕρ(|x|), ∀x ∈ B∗.

Since pρ is also radially symmetric, introduce φρ such that

pρ(x) = φρ(|x|), ∀x ∈ B∗.

4.3 Second order optimality conditions
Let us focus on the second and third points of Theorem 2, especially on (9). Since B∗ is a critical
shape, it is enough to work with normal vector fields, in other words vector fields V such that
V = (V · ν)ν on S∗. Consider such a vector field V . For the sake of notational simplicity, let us
set J ′′ρ = J ′′ρ (B∗)[V, V ], L′′Λρ = (Jρ − Λρ Vol)′′(B∗)[V, V ], u = uρ, u′ = u′ρ,V and u′′ = u′′ρ,V .

4.3.1 Computation of the second order derivative

To compute the second order derivative, we use the Hadamard second order formula [12, Chap. 5,
p. 227] for normal vector fields, namely

d2

dt2

∣∣∣∣
t=0

∫
(Id +tV )B∗

f(t) =

∫
B∗
f ′′(0) + 2

∫
S∗
f ′(0)V · ν +

∫
S∗

(
1

R
f(0) +

∂f(0)

∂ν

)
(V · ν)2,

applied to f(t) = 1
2 |∇ut|

2 − gut, where ut denotes the solution of (2) on (Id +tV )B∗.
The Hadamard formula along with the weak formulation of Equations (20)-(21) yields

J ′′ρ =

∫
B∗
〈∇u,∇u′′〉 −

∫
B∗
gu′′ +

∫
B∗
|∇u′|2 + 2

∫
S∗

∂u

∂ν

∂u′

∂ν
V · ν − 2

∫
S∗
gu′V · ν

+

∫
S∗

(
1

2R
|∇u|2 +

∂u

∂ν

∂2u

∂ν2
− g ∂u

∂ν

)
(V · ν)2

= −ρ
∫
B∗
f(u)u′′ − ρ

∫
B∗

(u′)2f ′(u) +

∫
S∗
u′′
∂u

∂ν
+

∫
S∗
u′
∂u′

∂ν

+ 2

∫
S∗

∂u

∂ν

∂u′

∂ν
V · ν − 2

∫
S∗
gu′V · ν +

∫
S∗

(
1

2R
|∇u|2 +

∂u

∂ν

∂2u

∂ν2
− g ∂u

∂ν

)
(V · ν)2

= −ρ
∫
B∗
f(u)u′′ − ρ

∫
B∗

(u′)2f ′(u) +

∫
S∗

(
−2

∂u′

∂ν
V · ν − ∂2u

∂ν2
(V · ν)2

)
∂u

∂ν

−
∫
S∗

∂u

∂ν

∂u′

∂ν
V · ν + 2

∫
S∗

(
∂u

∂ν

∂u′

∂ν
− gu′

)
V · ν +

∫
S∗

(
1

2R
|∇u|2 +

∂u

∂ν

∂2u

∂ν2
− g ∂u

∂ν

)
(V · ν)2

= −ρ
∫
B∗
f(u)u′′ − ρ

∫
B∗

(u′)2f ′(u)−
∫
S∗

∂u

∂ν

∂2u

∂ν2
(V · ν)2 −

∫
S∗

∂u

∂ν

∂u′

∂ν
(V · ν)

+ 2

∫
S∗
g
∂u

∂ν
(V · ν)2 +

∫
S∗

(
1

2R
|∇u|2 +

∂u

∂ν

∂2u

∂ν2
− g ∂u

∂ν

)
(V · ν)2

= −ρ
∫
B∗
f(u)u′′ − ρ

∫
B∗

(u′)2f ′(u) +

∫
S∗

(
1

2R

(
∂u

∂ν

)2

+ g
∂u

∂ν

)
(V · ν)2 −

∫
S∗

∂u

∂ν

∂u′

∂ν
V · ν.

As such, the two first terms of the sum in the expression above are not tractable. Let us rewrite
them. Multiplying the main equation of (23) by u′′ and integrating two times by parts yields

−ρ
∫
B∗
f(u)u′′ =

∫
S∗
u′′
∂pρ
∂ν
− ρ

∫
B∗

(u′)2pρf
′′(u).
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To handle the last term of the right-hand side, let us introduce the function λρ defined as the
solution of {

−∆λρ + ρλρf
′(u) + ρu′pρf

′′(u) = 0 in B∗
λρ = 0 on S∗. (25)

Multiplying this equation by u′ and integrating by parts gives

−ρ
∫
B∗
f ′′(u)(u′)2 =

∫
S∗
u′
∂λρ
∂ν

.

To handle the term −ρ
∫
B∗(u

′)2f ′(u) of J ′′ρ , we introduce the function ηρ, defined as the only
solution to {

−∆ηρ + ρηρf
′(u) + ρu′f ′(u) = 0 in B∗

ηρ = 0 on S∗. (26)

Multiplying this equation by u′ and integrating by parts gives

−ρ
∫
B∗

(u′)2f ′(u) =

∫
S∗
u′
∂ηρ
∂ν

= −
∫
S∗
V · ν ∂ηρ

∂ν

∂u

∂ν
.

Gathering these terms, we have

J ′′ρ =

∫
S∗
u′′
∂pρ
∂ν

+

∫
S∗
u′
∂λρ
∂ν
−
∫
S∗

∂ηρ
∂ν

∂u

∂ν
V · ν −

∫
S∗

∂u

∂ν

∂u′

∂ν
V · ν

+

∫
S∗

(
1

2R

(
∂u

∂ν

)2

+ g
∂u

∂ν

)
(V · ν)2.

Using that

Λρ =
∂pρ
∂ν

∂uρ
∂ν
− 1

2

(
∂uρ
∂ν

)2
∣∣∣∣∣
S∗

and Vol′′(B∗) =

∫
S∗

1

R
(V · ν)2,

one computes

L′′Λρ =

∫
S∗
u′′
∂pρ
∂ν

+

∫
S∗
u′
∂λρ
∂ν
−
∫
S∗

∂ηρ
∂ν

∂u

∂ν
V · ν −

∫
S∗

∂u

∂ν

∂u′

∂ν
V · ν

+

∫
S∗

(
−Λρ
R

+
1

2R

(
∂u

∂ν

)2

+ g
∂u

∂ν

)
(V · ν)2

(27)

4.3.2 Expansion in Fourier Series

In this section, we recast the expression of L′′Λρ in a more tractable form, by using the method
introduced by Lord Rayleigh: since we are dealing with vector fields normal to S∗, we expand
V · ν as a Fourier series. This leads to introduce the sequences of Fourier coefficients (αk)k∈N∗ and
(βk)k∈N∗ defined by:

V · ν =
∑
k∈N∗

(
αk cos(k·) + βk sin(k·)

)
,

the equality above being understood in a L2(S∗) sense.
Let vk,ρ (resp. wk,ρ) denote the function u′ associated to the perturbation choice Vk given by

Vk = V ck := cos(k·)ν (resp. Vk = V sk := sin(k·)ν), in other words, vk,ρ = u′ρ,V ck
(resp. wk,ρ = u′ρ,V sk

).
Then, one shows easily (by uniqueness of the solutions of the considered PDEs) that for every k ∈ N,
there holds

vk,ρ(r, θ) = ψk,ρ(r) cos(kθ) (resp. wk,ρ(r, θ) = ψk,ρ(r) sin(kθ)),
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where (r, θ) denote the polar coordinates in R2, where ψk,ρ solves{
− 1
r (rψ′k,ρ)

′ = −
(
k2

r2 + ρf ′(u)
)
ψk,ρ in (0, R)

ψk,ρ(R) = −ϕ′ρ(R).
(28)

By linearity, we infer that
u′ =

∑
k∈N∗

αkvk,ρ + βkwk,ρ.

For every k ∈ N∗, let us introduce ηk,ρ as the solution of (26) associated with vk,ρ. One shows
that ηk,ρ satisfies {

−∆ηk,ρ + ρf ′(u)ηk,ρ + ρf ′(u)vk,ρ = 0 in B∗
ηk,ρ = 0 on S∗. (29)

Similarly, one shows easily that

ηk,ρ(r, θ) = ξk,ρ(r) cos(kθ),

where ξk,ρ satisfies {
− 1
r (rξ′k,ρ)

′ = −
(
k2

r2 + ρf ′(u)
)
ξk,ρ − ρψk,ρ in (0, R)

ξk,ρ(R) = 0.
(30)

Notice that one has ξk,ρ = 0 whenever ρ = 0, which can be derived obviously from (26).
Since uρ is radially symmetric we denote by r 7→ ϕρ(r) this radial function.
Finally, we introduce a last set of equations related to λρ. Let us define ζk,ρ as the solution of{

−(rζ ′k,ρ)
′ = −k

2

r2 ζk,ρ − rρζk,ρf
′(u)− ρrψk,ρφρf ′′(u) in (0, R)

ζk,ρ(R) = 0.
(31)

and verify that λρ = ζk,ρ(r) cos(kθ) whenever V = Vk.

Proposition 3. The quadratic form L′′Λρ expands as

L′′Λρ =

∞∑
k=1

ωk,ρ
(
α2
k + β2

k

)
, (32)

where, for any k ∈ N∗,

ωk,ρ = πR
(
− 2ψ′k,ρ(R)φ′ρ(R)− ϕ′ρ(R)ζ ′k,ρ(R)− ϕ′′ρ(R)φ′ρ(R)

− ξ′k,ρ(R)ϕ′ρ(R)− Λρ
R

+
1

2R
(ϕ′ρ)

2 + g(R)ϕ′ρ(R)− ϕ′ρ(R)ψ′k,ρ(R)
)
, (33)

the functions ψk,ρ, ξk,ρ, ζk,ρ being respectively defined by (28), (30), (31), and Λρ is given by (24).

Proof of Proposition 3. Let us first deal with the particular case V · ν = cos(k·). According to
(20), (21) and (27), one has

L′′Λρ =

∫
S∗
u′′
∂pρ
∂ν

+

∫
S∗
u′
∂λρ
∂ν
−
∫
S∗

∂ηρ
∂ν

∂u

∂ν
V · ν −

∫
S∗

∂u

∂ν

∂u′

∂ν
V · ν

+

∫
S∗

(
−Λρ
R

+
1

2R

(
∂u

∂ν

)2

+ g
∂u

∂ν

)
(V · ν)2
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= R

∫ 2π

0

(
−2 cos(kθ)2ψ′k,ρ(R)− cos(kθ)2ϕ′′ρ(R)

)
φ′ρ(R)dθ −R

∫ 2π

0

cos(kθ)2ϕ′ρ(R)ζ ′k,ρ(R)dθ

−R
∫ 2π

0

cos(kθ)2ξ′k,ρ(R)ϕ′ρ(R)dθ +R

∫ 2π

0

cos(kθ)2

(
−Λρ
R

+
1

2R
(ϕ′ρ)

2 + g(R)ϕ′ρ(R)

)
dθ

−R
∫ 2π

0

cos(kθ)2ϕ′ρ(R)ψ′k,ρ(R)dθ

and therefore

L′′Λρ
πR

= −2ψ′k,ρ(R)φ′ρ(R)− ϕ′ρ(R)ζ ′k,ρ(R)− ϕ′′ρ(R)φ′ρ(R)− ξ′k,ρ(R)ϕ′ρ(R)

−Λρ
R

+
1

2R
(ϕ′ρ)

2 + g(R)ϕ′ρ(R)− ϕ′ρ(R)ψ′k,ρ(R)

We have then obtained the expected expression for this particular choice of vector field V . Similar
computations enable us to recover the formula when dealing with the vector field V given by
V · ν = sin(k·). Finally, for general V , one has to expand the square (V · ν)2, and the computation
follows exactly the same lines as before. Note that all the crossed terms of the sum (i.e. the term
that do not write as squares of real numbers) vanish, by using the L2(S) orthogonality properties
of the families (cos(k·), sin(k·))k∈N.

4.3.3 Comparison principle on the family {ωk,ρ}k∈N∗

The next result allows us to recast the ball stability issue in terms of the sign of ω1,ρ.

Proposition 4. There exists M > 0 such that, for any ρ small enough,

∀k ∈ N∗, ωk,ρ − ω1,ρ > −Mρ and |ω1,ρ − ω1,0| 6Mρ.

Proof of Proposition 4. Fix k ∈ N and introduce ω̃k,ρ = ωk,ρ/(πR). Using (33), one computes

ω̃k,ρ − ω̃1,ρ =
(
−ϕ′ρ(R)− 2φ′ρ(R)

)
(ψ′k,ρ(R)− ψ′1,ρ(R))

−ϕ′ρ(R)
(
ξ′k,ρ(R)− ξ′1,ρ(R) + ζ ′k,ρ(R)− ζ ′1,ρ(R)

)
.

We need to control each term of the expression above, which is the goal of the next results, whose
proofs are postponed at the end of this section.

Lemma 9. There exists M > 0 and ρ̄ > 0 such that for ρ ∈ [0, ρ̄], one has

max
{
‖ϕ′ρ − ϕ′0‖L∞(0,R), ‖φ′ρ‖L∞(0,R), ‖ξ′k,ρ‖L∞

}
6Mρ and ‖ζ ′k,ρ‖L∞ 6Mρ2.

According to Lemma 8, one has in particular ϕ′0(R) < 0. We thus infer from Lemma 9 the
existence of δ > 0 such that

min{−ϕ′ρ(R)− 2φ′ρ(R),−ϕ′ρ(R)} > δ > 0.

for ρ small enough. Furthermore, Lemma 9 also yields easily the estimate

|ζ ′k,ρ(R)− ζ ′1,ρ(R)| 6Mρ2

Hence, we are done by applying the following result.

Lemma 10. There exists M̂ > 0 and ρ̄ > 0 such that for ρ ∈ [0, ρ̄], one has

ψ′k,ρ(R)− ψ′1,ρ(R) > 0 and
∣∣ξ′k,ρ(R)− ξ′1,ρ

∣∣ (R) 6 M̂ρ. (34)
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Indeed, the results above lead to

ωk,ρ − ω1,ρ > δ(ψ′k(R)− ψ′k,ρ(R) + ξ′k,ρ(R)− ξ′k,ρ(R)) > 0

for every k > 1 and ρ small enough.
Finally, the proof of the second inequality follows the same lines and are left to the reader.

Proof of Lemma 9. These convergence rates are simple consequences of elliptic regularity theory.
Since the reasonings for each terms are similar, we only focus on the estimate of ‖φ′ρ‖L∞(Ω). Recall
that pρ solves the equation (23). Multiplying this equation by pρ, integrating by parts and using
the Poincaré inequality yield the existence of C > 0 such that(

1− ρC‖f ′‖L∞(B∗)
)
‖∇pρ‖2L2(B∗) 6 ρ‖f‖L∞(B∗)‖pρ‖L2(B∗),

so that ‖pρ‖W 1,2
0 (B∗) is uniformly bounded for ρ small enough. Hence, the elliptic regularity the-

ory yields that pρ is in fact uniformly bounded in W 2,2(B∗), and there exists M̂ > 0 such that
‖pρ‖W 2,2

0 (B∗) 6 M̂ρ and, since B∗ ⊂ R2, we get

‖pρ‖L∞(B∗) 6Mρ.

Since ∆pρ = ρpρf
′(uρ)+ρf(uρ) and the right-hand side belongs to Lp0(B∗) for all p > 1, the elliptic

regularity theory yields the existence of C > 0 such that

‖pρ‖W 2,p
0 (Ω) 6 C (ρ‖pρ‖L∞‖f ′‖L∞ + ρ‖f‖L∞) 6Mρ

and using the embedding W 2,p ↪→ C 1,α for p large enough, one finally gets

‖∇pρ‖L∞(B∗) 6Mρ.

Proof of Lemma 10. The two estimates are proved using the maximum principle. Let us first prove
that, for any k and any ρ small enough, ψk,ρ is non-negative on (0, R). Since, for ρ small enough,
−ϕ′ρ(R) is positive, and therefore ψk,ρ(R) > 0. Since vk belongs to W 1,2

0 , one has necessarily
ψk,ρ(0) = 0. Furthermore, according to (28), by considering ρ > 0 small enough so that

− 1

r2
+ ρ‖f ′‖L∞ 6 − 1

2r2

it follows that

−1

r
(rψ′k,ρ)

′ = ck,ρ(r)ψk,ρ with ck,ρ = −k
2

r2
− ρf ′(u0) < 0.

Let us argue by contradiction, assuming that ψk,ρ reaches a negative minimum at a point r1.
Because of the boundary condition, r1 is necessarily an interior point of (0, R). Then, from the
equation,

0 > −ψ′′k,ρ(r1) = ck,ρ(r1)ψk,ρ(r1) > 0,

which is a contradiction. Thus there exists ρ > 0 small enough such that, for any ρ 6 ρ and every
k ∈ N∗, ψk,ρ is non-negative on (0, R).

Now, introduce zk = ψk,ρ − ψ1,ρ for every k > 1 and notice that it satisfies

−1

r
(rz′k)′ =

1

r2
ψ1,ρ −

k2

r2
ψk,ρ − ρf ′(u0)zk.

17



Since ψk,ρ is non-negative, it implies

−1

r
(rz′k)′ 6

(
−k

2

r2
− ρf ′(u0)

)
zk, and zk(R) = zk(0) = 0.

Up to decreasing ρ̄, one may assume that for ρ 6 ρ, −k
2

r2 − ρf
′(u0) < 0 in (0, R). If zk reached a

positive maximum, it would be at an interior point r1, but we would have

0 6 −z′′k (r1) <

(
−k

2

r2
− ρf ′(u0)

)
zk(r1) < 0.

Hence, one has necessarily zk 6 0 in (0, R) and zk reaches a maximum at R, which means in
particular that z′k(R) = ψ′k,ρ(R)− ψ′1,ρ(R) > 0.

4.4 Shape (in)stability of B∗

4.4.1 Under Assumption (8)

Stability under Assumption (8) is well known (see [5]) in the case where ρ = 0. Hereafter, we recall
the proof, showing by the same a stability result for ρ > 0.

Lemma 11. Under assumption (8), one has ω1,0 > 0.

This Lemma concludes the proof of the second part of Theorem 2. Indeed, according to Propo-
sitions 3 and 4, there holds

L′′Λρ(B
∗)[V, V ] >

(ω1,0

2
+ O(ρ)

) ∞∑
k=1

(
α2
k + β2

k

)
=

(ω1,0

2
+ O(ρ)

)
‖V · ν‖2L2

for ρ small enough.

Proof of Lemma 11. To compute ω1,0, recall that, for ρ = 0, the function ψ1,0 solves

−1

r
(rψ′1,0)′ = − 1

r2
ψ1,0 and ψ1,0(R) = −ϕ′0(R),

and therefore, ψ1,0(r) = − r
Rϕ
′
0(R) for all r ∈ [0, R], so that

ω1,0

πR
= −Λ0

R
+

1

2R
(ϕ′0(R))2 + g(R)ϕ′0(R)− ϕ′0(R)ψ′1,0(R)

=
1

R
(ϕ′0(R))2 + g(R)ϕ′0(R) +

1

R
(ϕ′0(R))2

=
2

R
(ϕ′0(R))2 + g(R)ϕ′0(R)

= −ϕ′0(R)

(
− 2

R
ϕ′0(R)− g(R)

)
where the expression of Λ0 is given by (24). Since −Rϕ′0(R) =

∫ R
0
tg(t)dt = 1

2π

∫
B∗ g, and ϕ

′
0(R) <

0, we infer that the sign of ω1,0 is the sign of

− 2

R
ϕ′0(R)− g(R) =

1

πR2

∫
B∗
g − g(R),

and the positivity of this last quantity is exactly Assumption (8). The conclusion follows.
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4.4.2 An example of instability

In this part, we will assume that g is the constant function equal to 1, i.e. g = 1. Even if the
ball B∗ is known to be a minimizer in the case ρ = 0, it is a degenerate one in the sense that
ω1,0 = 0 coming from the invariance by translations of the problem. In what follows, we exploit
this fact and will construct a suitable nonlinearity f such that B∗ is not a local minimizer for ρ
small enough, in other words such that ω1,ρ < 0.

We assume without loss of generality that R = 1 for the sake of simplicity.

Lemma 12. There holds
ω1,ρ =

ρ

4
(w1 + w′1)(1) + O(ρ2)

where w1 solves {
−(rw′1)′ = − 1

rw1 − r2

2 f
′(ϕ0)− r2

2 in (0, 1)

w1(1) = −
∫ 1

0
tf(ϕ0) dt.

(35)

Proof of Lemma 12. The techniques to derive estimates follow exactly the same lines as in Lemma
9. First, we claim that

ϕρ = ϕ0 + ρϕ1 + O(ρ2) in C 1, (36)

where ϕ1 satisfies {
− 1
r (rϕ′1)′ = −f(ϕ0) in (0, 1)

ϕ1(1) = 0.
(37)

Indeed, considering the function δ = ϕρ − ϕ0 − ρϕ1, one shows easily that it satisfies{
− 1
r (rδ′)′ = ρ(f(ϕ0)− f(ϕρ)) in (0, 1)

δ(1) = 0.

Therefore, by mimicking the reasonings done in the proof of Lemma 9, involving the elliptic regu-
larity theory, and the fact that ‖ϕρ − ϕ0‖W 1,∞ = O(ρ), we infer that ‖δ‖C 1 = O(ρ2), whence the
result.

Using that ϕρ satisfies − 1
r (rϕ′ρ)

′ + ρf(ϕρ) = g and integrating this equation yields

− ϕ′ρ(1) =
1

2
− ρ

∫ 1

0

tf(ϕρ) dt =
1

2
− ρ

∫ 1

0

tf(ϕ0(t)) dt+ O(ρ2). (38)

The Equation on φρ reads{
−(rφ′ρ)

′ = r
(
− ρφρf ′(ϕρ)− ρf(ϕρ)

)
in (0, 1)

φρ(0) = 0.

and according to Lemma 9, there holds ‖φρ‖L∞ = O(ρ). We thus infer that

− φ′ρ(1) = −ρ
∫ 1

0

tf(ϕ0) dt+ O(ρ2). (39)

From (38) and (39),we infer that

Λρ =
1

2
(
(
ϕ′ρ(1)

)2 − φ′ρ(1)ϕ′ρ(1) =
1

2
ϕ′0(1)2 − ρϕ′0(1)

∫ 1

0

tf(ϕ0) dt+ ρϕ′0(1)

∫ 1

0

tf(ϕ0) dt+ O(ρ2)

=
1

2
ϕ′0(1)2 + O(ρ2). (40)

19



Regarding ψ1,ρ and using that it satisfies (28), we get

ψ1,ρ(1) = −ϕ′ρ(1) =
1

2
− ρ

∫ 1

0

tf(ϕ0) dt.

We then infer that ‖ψ1,ρ + rϕ′0,ρ(1)‖C 1 = O(ρ). Plugging this estimate in (28) allows us to show
that

ψ1,ρ(r) = −ϕ′0(1)r + ρy1(r) + O(ρ2) in C 1(0, 1), (41)

where y1 solves {
− (ry′1)

′
= − 1

ry1 + r2ϕ′0(1)f ′(ϕ0) in (0, 1)

y1(1) = −
∫ 1

0
tf(ϕ0) dt.

(42)

Regarding ξ1,ρ and using that it satisfies (30), we easily get that ‖ξ1,ρ‖W 1,∞ = O(ρ), according
to Lemma 9. This allows us to write

ξ1,ρ = ρz1 + O(ρ2) in C 1(0, 1) (43)

where z1 satisfies {
−(rz′1)′ = − 1

r z1 + r2ϕ′0(1) in (0, 1)
z1(1) = 0.

(44)

Let us now expand ω1,ρ with respect to the parameter ρ. Recall that

ω1,ρ =
1

2

(
−2ψ′1,ρ(1)φ′1,ρ(1)− ϕ′′ρ(1)φ′1,ρ(1)− ϕ′ρ(R)ζ ′1,ρ(R)

−ξ′1,ρ(1)ϕ′ρ(1) + Λρ +
1

2
(ϕ′ρ)

2 + ϕ′ρ(1)− ϕ′ρ(1)ψ′1,ρ(1)

)
.

Regarding the term ϕ′0,ρ(R)ζ ′1,ρ(R), we know from Lemma 9 that ‖ζ ′1,ρ(R)‖L∞ = O(ρ2).
Using this estimate and plugging the expansions (36)-(40)-(41)-(43) in the expression above

yields successively

−2ψ′1,ρ(1)φ′ρ(1) = 2ρϕ′0(1)

∫ 1

0

tf(ϕ0) dt+ O(ρ2) = −ρ
∫ 1

0

tf(ϕ0) dt+ O(ρ2).

−ϕ′′ρ(1)φ′ρ(1) = −ϕ′′0(1)φ′ρ(1) + O(ρ2) =
ρ

2

∫ 1

0

tf(ϕ0) dt+ O(ρ2).

−ξ′1,ρ(1)ϕ′ρ(1) = −ϕ′0(1)ξ′1,ρ(1) + O(ρ2) =
ρ

2
z′1(1)

Λρ +
1

2
(ϕ′ρ)

2 = ϕ′0(1)2 − ρ

2

∫ 1

0

tf(ϕ0) dt+ O(ρ2) =
1

4
− ρ

2

∫ 1

0

tf(ϕ0) dt+ O(ρ2)

ϕ′ρ(1) = −1

2
+ ρ

∫ 1

0

tf(ϕ0) dt+ O(ρ2)

−ϕ′ρ(1)ψ′1,ρ(1) = ϕ′0(1)2 − ρϕ′0(1)y′1(1) + ρϕ′0(1)

∫ 1

0

tf(ϕ0) dt+ O(ρ2)

=
1

4
+
ρ

2
y′1(1)− ρ

2

∫ 1

0

tf(ϕ0) dt,

by using that ‖φρ‖W 1,∞ = O(ρ) and ‖ξ1,ρ‖W 1,∞ = O(ρ). This gives

ω1,ρ = −ρ
∫ 1

0

tf(ϕ0) dt+
ρ

2

∫ 1

0

tf(ϕ0) dt+
ρ

2
z′1(1)
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+
1

4
− ρ

2

∫ 1

0

tf(ϕ0) dt− 1

2
+ ρ

∫ 1

0

tf(ϕ0) dt+
1

4
+
ρ

2
y′1(1)− ρ

2

∫ 1

0

tf(ϕ0) dt+ O(ρ2).

As expected, the zero order terms cancel each other out and we get

ω1,ρ = −ρ
2

∫ 1

0

tf(ϕ0) dt+
ρ

2
z′1(1) +

ρ

2
y′1(1) + O(ρ2),

which concludes the proof by setting w1 = y1 + z1.

Construction of the non-linearity. Recall that we are looking for a non-linearity f such that
ω1,ρ < 0, in other words such that (w1 + w′1)(1) < 0 according to Lemma 12. To this aim, let us
consider the function w1 solving (35). Let us consider a non-negative function f such that

f ′(·) < −1 on [0, ‖ϕ0‖L∞ ]. (45)

It follows that

w1(1) = −
∫ 1

0

tf(ϕ0) dt < 0.

Besides,

−(rw′1)′ = −1

r
w1 −

r2

2
(f ′(ϕ0) + 1) > −1

r
w1

by using(45). Thus w1 cannot reach a local negative minimum in (0, 1). Moreover, by using that
w1 is regular (w1 is the sum of two functions at least C 1 according to the proof of Lemma 12) and
integrating the equation above yields

−rw′1(r) +
1

2

∫ r

0

s2 (f((ϕ0(s)) + 1) ds = −
∫ r

0

w1(s)

s
ds

for r > 0. The left-hand side is well-defined and it follows that so is the right-hand side, which
implies that necessarily w1(0) = 0 (else, we would immediately reach a contradiction).

Since w1 cannot reach a local minimum on (0, 1) and since 0 = w1(0) > w1(1), we get that w1

is decreasing on (1− δ, 1) for some δ > 0, ensuring that w′1(1) < 0. The conclusion follows.

Appendix

A Proof of Lemma 2
Recall that we want to establish a uniform (with respect to a and M) L∞ bound on the solutions
of {

−∆uM,ρ,a +M(1− a)uM,ρ,a + ρf(uM,ρ,a) = g, in D,
uM,ρ,a ∈W 1,2

0 (Ω).
(46)

Here, it is assumed that g is non-negative.
Define φg as the solution of {

−∆φg + ρf(φg) = g, in D,
φg ∈W 1,2

0 (Ω).
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Standard Lp estimates show that φg is continuous and that

‖φg‖L∞(Ω) < +∞.

Define z := φg − uM,ρ,a ∈W 1,2
0 (Ω). We can write

−∆z + ρ
f(φg)− f(uM,ρ,a)

φg − uM,ρ,a
z = M(1− a)uM,ρ,a > 0

The generalized maximum principle, and the fact that f is Lipschitz entails that z reaches its
minimum on the boundary ∂D, so that z is non-negative. Thus

0 6 uM,ρ,a 6 φg 6 ‖φg‖L∞(Ω) < +∞

and we conclude by noting that the quantity in the right-hand side is uniformly bounded with
respect to ρ ∈ [0, ρ).

B Proof of Proposition 1
We recall that we want to establish that if (Ωk)k∈N ∈ ON

m γ-converges to Ω, then

Jρ(Ω) 6 lim inf
k→∞

Jρ(Ωk).

Fix such a sequence (Ωk)k∈N that γ-converges to Ω. For the sake of clarity, we drop the subscript
ρ, f and g and define, for every k ∈ N, uk ∈W 1,2

0 (D) the unique solution to
−∆uk + ρf(uk) = g in Ωk,

uk ∈W 1,2
0 (Ωk),

uk is extended by continuity as a function in W 1,2
0 (D).

First note that, for any k ∈ N, multiplying the equation by uk and integrating by parts immediately
yields

λ1(D)

∫
D

u2
k = λ1(D)

∫
Ωk

u2
k 6 λ1(Ωk)

∫
Ωk

u2
k 6

∫
Ωk

|∇uk|2

6 ‖g‖L2(Ωk)||u||L2(Ωk) + ρ‖f‖L∞(R)|Ωk|
1
2 ‖uk‖L2(Ωk).

The sequence (uk)k∈N is thus uniformly bounded inW 1,2
0 (D). By the Rellich-Kondrachov Theorem,

(uk)k∈N converges (up to a subsequence, strongly in L2(D) and weakly in W 1,2
0 (D)) to a function

u ∈W 1,2
0 (D).

The dominated convergence theorem then yields that the sequence (f(uk))k∈N converges strongly
in W−1,2

0 (D), to f(u). Thus, the sequence (g − f(uk))k∈N converges strongly in W−1,2
0 (D) to

g − f(u). Since by assumption (Ωk)k∈N γ-converges to Ω and since the right hand term converges
strongly to g−ρf(u) in W−1,2

0 (D), it follows that (uk)k∈N converges strongly in W 1,2
0 (D) to u and

that u solves {
−∆u+ ρf(u) = g in Ω,

u ∈W 1,2
0 (Ω),

This strong convergence immediately implies that

J(Ω) 6 lim inf
k→∞

J(Ωk),

thus concluding the proof of Proposition 1.
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C Proof of Lemma 3
Let us first prove that (uM,ρ,a)M>0 is uniformly bounded in W 1,2

0 (D) with respect to M and ρ.
To this aim, let us multiply (2) by uM,ρ,a and integrate by parts. One gets∫

D

|∇uM,ρ,a|2 6
∫
D

|∇uM,ρ,a|2 +M(1− a)u2
M,ρ,a

6 ‖g‖H−1(D)‖uM,ρ,a‖L2(D) + ρ (f(0) + ‖f‖W 1,∞) ‖uM,ρ,a‖L2(D).

By using the Poincaré inequality, we infer an uniform estimate of uM,ρ,a in W 1,2
0 (D). According

to the Rellich-Kondrachov Theorem, there exists u∗ ∈ W 1,2
0 (D) such that, up to a subfamily,

(uM,ρ,a)M>0 converges to u∗ weakly in H1(D) and strongly in L2(D). As a consequence, up
to a subsequence, (f(uM,ρ,a))M>0 converges to f(u∗) in L2(D) by using that f is Lipschitz and
(〈g, uM,an〉H−1,H1

0
)M>0 converges to 〈g, u∗〉H−1,H1

0
. By rewriting (5) under variational form with

u = uM,ρ,a, and passing to the limit as M → +∞ after having adequately extracted subsequences,
we infer that u∗ is the unique solution of (5). By using the previous convergence results and the
fact that

ĴM,ρ(a) = −ρ
2

∫
D

uM,ρ,af(uM,ρ,a)− 1

2
〈g, uM,ρ,a〉H−1(D),W 1,2

0 (D)

we have
ĴM,ρ(a)→ −ρ

2

∫
D

u∗f(u∗)− 1

2
〈g, u∗〉H−1(D),W 1,2

0 (D) as M → +∞.

Finally, if a = 1Ω, by multiplying (5) by uM,ρ,a and integrating by parts, one gets∫
D

|∇uM,ρ,a|2 +M

∫
D\Ω

u2
M,ρ,a =

∫
D

(g − ρf(uM,ρ,a))uM,ρ,a,

and since the right-hand side is uniformly bounded with respect to M , we infer that
√
MuM,ρ,a is

bounded in L2(D\Ω) so that u∗ ∈W 1,2
0 (Ω).

The conclusion follows.

References
[1] D. Bucur and G. Buttazzo. Variational methods in shape optimization problems, volume 65 of

Progress in Nonlinear Differential Equations and their Applications. Birkhäuser Boston, Inc.,
Boston, MA, 2005.

[2] G. Buttazzo and G. Dal Maso. An existence result for a class of shape optimization problems.
Archive for Rational Mechanics and Analysis, 122(2):183–195, Jun 1993.

[3] R. Cominetti and J.-P. Penot. Tangent sets to unilateral convex sets. C. R. Acad. Sci. Paris
Sér. I Math., 321(12):1631–1636, 1995.

[4] M. Dambrine and J. Lamboley. Stability in shape optimization with second variation. J. Diff.
Equations, Feb. 2018. yo appear in J. Diff. Equations.

[5] M. Dambrine and M. Pierre. About stability of equilibrium shapes. ESAIM: Mathematical
Modelling and Numerical Analysis, 34(4):811–834, July 2000.

[6] M. C. Delfour and J.-P. Zolésio. Shapes and geometries, volume 22 of Advances in Design and
Control. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, second
edition, 2011. Metrics, analysis, differential calculus, and optimization.

23



[7] A. Evgrafov. The limits of porous materials in the topology optimization of Stokes flows.
Appl. Math. Optim., 52(3):263–277, 2005.

[8] M. Hayouni. Lipschitz continuity of the state function in a shape optimization problem. J.
Convex Anal., 6(1):71–90, 1999.

[9] A. Henrot. Extremum problems for eigenvalues of elliptic operators. Frontiers in Mathematics.
Birkhäuser Verlag, Basel, 2006.

[10] A. Henrot. Extremum problems for eigenvalues of elliptic operators. Frontiers in Mathematics.
Birkhäuser Verlag, Basel, 2006.

[11] A. Henrot, editor. Shape optimization and spectral theory. De Gruyter Open, Warsaw, 2017.

[12] A. Henrot and M. Pierre. Variation et optimisation de formes: une analyse géométrique,
volume 48. Springer Science & Business Media, 2006.

[13] A. Henrot, M. Pierre, and M. Rihani. Positivity of the shape Hessian and instability of some
equilibrium shapes. Mediterr. J. Math., 1(2):195–214, 2004.

[14] B. Kawohl. Rearrangements and convexity of level sets in PDE, volume 1150 of Lecture Notes
in Mathematics. Springer-Verlag, Berlin, 1985.

[15] B. Kawohl, O. Pironneau, L. Tartar, and J.-P. Zolésio. Optimal shape design, volume 1740
of Lecture Notes in Mathematics. Springer-Verlag, Berlin; Centro Internazionale Matematico
Estivo (C.I.M.E.), Florence, 2000. Lectures given at the Joint C.I.M./C.I.M.E. Summer School
held in Tróia, June 1–6, 1998, Edited by A. Cellina and A. Ornelas, Fondazione CIME/CIME
Foundation Subseries.

[16] I. Mazari, G. Nadin, and Y. Privat. Optimal location of resources maximizing the total
population size in logistic models. Journal de mathématiques pures et appliquées, 2019.

[17] G. Talenti. Nonlinear elliptic equations, rearrangements of functions and orlicz spaces. Annali
di Matematica Pura ed Applicata, 120(1):159–184, Dec 1979.

Acknowledgment. Y. Privat and I. Mazari were partially supported by the Project ”Analysis
and simulation of optimal shapes - application to lifesciences” of the Paris City Hall. A. Henrot, I.
Mazari and Y. Privat were partially supported by the ANR Project ANR-18-CE40-0013 - SHAPO
on Shape Optimization.

24


	Introduction
	Motivations and state of the art
	The shape optimization problem

	Main results of the paper
	Existence results
	Stability results

	Proof of Theorem 1
	General outline of the proof
	Structure of the switching function
	Proof that (10) holds true whenever  is small enough

	Proof of Theorem 2
	Preliminary material
	Proof of the shape criticality of the ball
	Second order optimality conditions
	Computation of the second order derivative
	Expansion in Fourier Series
	Comparison principle on the family {k,}kN*

	Shape (in)stability of B*
	Under Assumption (8)
	An example of instability


	Proof of Lemma 2
	Proof of Proposition 1
	Proof of Lemma 3

