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Using atomistic calculations with a Finnis-Sinclair type potential and molecular statics and dynamics methods, we performed
a series of deformation tests on nanocrystallised tungsten samples presenting various microstructures; we calculated the elastic
constants of polycrystalline tungsten for average grain diameters ranging from 2.7 to 6.7 nm. The results show that both Young’s
and the shear moduli decrease by over 60% as the average grain diameter decreases below 3 nm. This diminution appears to be
highly correlated to the grain boundary volume fraction. The results are compared to conclusions from other authors.

1. Introduction

Mechanical properties of metals can dramatically change
when their size scale becomes nanometric, this scale being
the average grain diameter of a polycrystalline sample or the
thickness of a thin layer [1-4]. In fact, in bulk nanocrystalline
(nc) materials or in thin films, the volume fraction of
the interfaces or/and surfaces becomes comparable to the
volume fraction of the crystals. This relative microstructural
evolution combined with the intrinsic volume decrease of
crystalline parts can justify the significant changes observed
for the mechanical behaviour of nanocrystalline materials.
Concerning the elastic behaviour, experimental measure-
ments have shown that the elastic moduli of nanocrystalline
metallic materials are substantially lower than those of
their coarse-grained counterparts [5, 6]. The variation of
elastic moduli may be attributed both to the large volume
fraction of atoms that are located at interfaces and/or surfaces
in nanocrystalline materials and to porosity [6-8]. Those
authors have shown that small decrements from coarse-
grained values observed in Young’s modulus are caused
primarily by the slight amount of porosity in the samples.
The porosity found in most nanocrystalline materials, that
is, not only the “missing grain” pores but also vacancy-sized
pores detected by positron lifetime experiments, may be the
analogy of the free volume in the amorphous metals [8].

More recent experiments on nanocrystalline Ni-P alloys have
evidenced a grain size dependence of elastic moduli in fully
dense samples [9, 10]. Other experiments have found that
Young’s modulus of the nc-Fe was essentially the same as that
of coarse-grained Fe (8-33 nm) [11].

Since the 1990s, in addition to experimental measure-
ments, computer simulations on the same subject have
appeared in the literature. For example, in nc-Cu [12, 13], nc-
Fe [14], and nc-Ni [15], a significant decrease of elastic moduli
with decreasing grain size was reported.

However, most of these simulation studies are mainly
dealing with plasticity [1, 12, 13, 16-20]. In a few cases the
elastic domain is briefly mentioned before a detailed analysis
of plasticity. Moreover, many studies deal with face centred
cubic (fcc) metals such as nickel and copper, and only a few
ones concern body centred cubic (bcc) transition metals such
as a-iron [14, 21] and tantalum [22]. We believe that the
technological importance of many bcc metals and our current
poor knowledge of their elastic properties justify further
investigation. Among bcc transition metals, tungsten offers
particularly interesting applications in the microelectronic
domain and to our knowledge, the elastic constants of
nanocrystalline tungsten have not been studied yet. In a
previous study [23] we have shown that surface effects can
strongly influence the elastic properties of thin tungsten
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TABLE 1: Mean grain size, grain centre distribution, grain boundary atomic fraction #, bulk modulus B, shear modulus y, Young’s modulus E,
and Poisson’s ratio v, calculated from the above values of B and y, and average values of Young’s modulus resulting from uniaxial strain tests,
for each of the 8 samples studied in this paper. The bulk modulus for tungsten single crystal is 310 GPa with the potential used here, the shear

modulus value is 161 GPa, Young’s modulus value is 410 GPa, and Poisson’s ratio value is 0.28.

Sample number 1 2 3 4 5 6 7 8
dg (nm) 2.7 2.7 3.0 3.0 4.0 4.0 6.7 6.7
Grain centre distribution BCC FCC BCC FCC BCC FCC BCC FCC
Grain boundary atomic fraction # (%) 84 86 78 79 63 675 40 42
B (GPa) 221 229 235 232 249 245 269 268
B (GPa) before relaxation 276 274 277 278 289 286 299 299
u (GPa) 61 58.5 65 63 75 74 100 106
u (GPa) before relaxation 139 138 141 139 144 144 153 158
vy from B and u 0.374 0.379 0.374 0.376 0.360 0.374 0.330 0.325
E (GPa) from B and p 167 161 178 173 204 202 267 281
E (GPa) from uniaxial tests 165 162 178 173 207 202 270 285.5

single crystal layers. The question of grain size effects still
remained; the present study aims to answer this question by
investigating bulk nanocrystalline tungsten of different grain
sizes. Tungsten single crystal is locally elastically isotropic; it
is then possible to distinguish size effects from any texture
effects in polycrystals.

2. Computational Details

2.1. Sample Preparation. As in our previous study [23],
we used a Finnis-Sinclair type potential parametrised for
tungsten by Ackland and Thetford [24, 25] that correctly
reproduces interactions with surfaces, even at a nanometre
scale. The simulation itself used cubic cells (referred below
as “samples”) divided by means of a Voronoi method and
repeated by periodic boundary conditions. In order to have
a consistent uncertainty on the computed elastic moduli, the
impact of sample elaboration on elastic moduli was examined
by testing two different grain distributions and three different
relaxation processes.

For each sample, the grain centres were uniformly placed
on the nodes of a bec lattice or a fec lattice, giving all the grains
ahomogenous shape and size. For a given grain size, these two
types of distribution were used in order to track any influence
of the microstructure on the elastic properties. For each grain,
the crystallographic orientation was randomly determined.
Actually we built height samples, containing 26000 to 234000
atoms with mean grain sizes (d,) ranging from 2.7 to 6.7 nm
(Table 1).

These samples were then relaxed by means of a molecular
dynamics method (XMD code [26]), composed of annealing
followed by quenching and a simple gradient relaxation
at 0K. The volume of each sample was then adjusted in
order to minimize the cohesion energy. Relaxation was
regarded as complete when the maximal residual force was
lower than 107 eV/A; the same criterion was used for all
further relaxations. Three annealing routes were used for each
sample, with temperatures ranging from 500 K to 2000 K. The
first one consisted of one single annealing of 160 picoseconds

at 500K (about 0.14 T,,, where T,, is the melting point of
tungsten), the second one was composed of 80 ps annealing
at 1000 K (0.27 T;,,) followed by 80 ps one at 500 K, and the
third process was composed of four 40 ps annealing stages at
the following temperatures: 2000 K (0.54 T,,), 1500 K, 1000 K,
and 500 K. Figure 1 displays the evolution of the potential
energy in sample number 3 (d,; = 3.0 nm) during the three
annealing routes. The inset shows that, at the end of the
final static relaxation, the three energies are very close to
each other but not exactly equal, denoting small microstruc-
ture differences between the three relaxed configurations.
Nevertheless, the annealing process turned out to have only
marginal influence on the calculated elastic moduli, within
the calculation uncertainties.

Figure 2 shows one of the relaxed samples; it was per-
formed by means of the AtomEye software [27]; atoms are
colourised according to the value of their coordination num-
ber taking into account the first and second neighbours. A
cut-off radius slightly above the 2nd neighbour distance in W
single crystal (0.322nm) was chosen to count these neigh-
bours.

Finally, we evaluated the influence of the grain size and
the annealing process on grain boundaries. The grain bound-
ary atomic fraction (1) was estimated by counting the over-
or undercoordinated atoms and calculating their proportion
regarding the total amount of atoms in the whole sample. 7
ranges from 40% for d; = 6.7 nm up to 85% for d, = 2.7 nm:
the lower the average grain diameter, the higher the # value.
Concerning the annealing process, we found that it only had
slight influence on #. Table 1 reports # averages on the three
annealing routes for each sample.

2.2. Elastic Constant Calculation. Deformation tests were
performed at 0 K by imposing a linear or affine transforma-
tion to all the atom positions, followed by a simple gradient
relaxation. First, the samples were submitted to isotropic
compression and dilatation tests to determine the bulk mod-
ulus B. They were then tested with shear strain along three
different directions in order to evaluate their shear modulus y
and to verify the macroscopic sample isotropy. Using the
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FIGURE I: Evolution of the potential energy in sample number 3 (d,, = 3.0 nm) as a function of time during the three annealing routes. The

inset displays the final static relaxation at 0 K.

FIGURE 2: Relaxed sample with 16 grains of average grain diameter
d, = 6.7nm. Atoms are colourised according to the value of their
coordination number taking into account the first and second
neighbours (white: bulk atoms with coordination number = 14; other
colours: intercrystalline atoms).

relationships between the elastic moduli for an isotropic
material, we deduced Young’s modulus E = 9B/(3B + p)
and Poissons ratio v = (3B — 2u)/(6B + 2u). Young’s
modulus was also calculated directly from uniaxial tensile
and compressive tests. The applied main strains were taken
between —1% and +1% with a deformation step of 0.1%.
Values of B, u, and E were calculated for each sample by
performing a second-order polynomial fit on the (energy,
strain) plots. Since the three relaxation process gave similar
values for the elastic moduli, only average values for each
sample are displayed in Table 1. We also derived values of B
and p for each considered polycrystalline sample just after
having applied the initial homogeneous deformation, before
relaxation. These values do not reflect the real nanocrystalline
material behaviour as it is believed that deformation should
not remain homogeneously distributed in samples but they

help us to gain more insight in the behaviour of grain
boundaries under strain. Finally, for each elastic constant,
uncertainties were evaluated by computing the standard
deviation (o) of all values obtained for a given grain size with
all samples and strain directions. Error bars were then fixed
to 20, that is, a relative uncertainty of 2% for B and 10% for u
and E.

3. Results and Discussion

3.1. Elastic Constant Variations. The results displayed in
Table 1 show that the bulk modulus decreases from 13% up to
28% in comparison with the single crystal, for grain diameter
ranging, respectively, from 6.7 down to 2.7 nm. The shear
modulus decreases by up to 62% in comparison with the
single crystal, as the average grain diameter decreases down
to 2.7 nm. One can note that the higher the grain boundary
atomic fraction, the lower the shear modulus. Furthermore,
the decrease of the shear modulus is more important than
the one of the bulk modulus. If we consider the “nonrelaxed”
values, variations with the grain size are much smaller. The
“nonrelaxed” shear modulus decreases by only 14% in com-
parison with the single crystal, for the smallest grain size, and
is almost equal to the single crystal one for the 6.7 nm grain
diameter. The variations relative to the single crystal value
are virtually the same for the “nonrelaxed” bulk modulus.
In addition, differences between “relaxed” and “nonrelaxed”
values are larger for p than for B. Values of Poisson’s ratio
and Young’s modulus deduced from the average values of
B and u are given in Table 1 together with the values of E
resulting from uniaxial strain tests. The results from both
methods are totally consistent and clearly demonstrate that
Young’s modulus of polycrystalline tungsten, like its shear
modulus, decreases strongly as the average grain diameter
decreases. The E/E, ratio, where E is the average value for
each sample and E, the single crystal Young’s modulus, is
plotted in Figure 3 as a function of d ;. We can also notice that,
on the opposite, Poisson’s ratio increases as the average grain
diameter decreases.
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FIGURE 3: Ratio between Youngs moduli in bcec nanocrystalline
metals and the one of the corresponding single crystal as a function
of grain size for calculated values in tungsten (A), calculated (@)
values in a-iron [14], calculated (m) values in Ta [22], and rules of
mixture in W (black plain lines) and Fe [14] (grey dashed lines).
Rules of mixture were calculated with E-/E; = 0.35 for W, E/E, =
0.45, and Eq/E, = 0.50 for Fe.

3.2. Comparison with Literature and Interpretation. The grain
size dependence of Young’s modulus and the bulk modulus
observed here in the case of a bcc metal (tungsten) can
be related to studies that have given similar results for
nanocrystalline fcc metals. Based on molecular dynamics
simulations on polycrystalline Cu with a grain size of 4.3 nm,
Phillpot et al. [12] obtained a Youngs modulus decrease
equal to 27% of the coarse-grained material value while the
decrease of the bulk modulus was only equal to 8% of the
polycrystalline average value. Schiotz et al. [13] reported a
Young’s modulus decrease of about 30% for nc-copper at 0 K
with mean grain sizes down to 3.3 nm. Zhao et al. [15] have
studied more precisely the grain size dependence of the bulk
modulus of nc nickel. They observed a small reduction of
B (up to 7%) when the grain size decreases from 40 down
to 3nm. In the case of bcc metals, Latapie and Farkas [14]
studied nc a-iron with grain size ranging from 6 to 12nm
and observed a decrease of Young’s modulus attaining 30%
(compared to the bulk value) for dg = 6nm. But, more
recently, Pan et al. [22] reported a much smaller dependence
of Young’s modulus, that is, a decrease of only 10% for 3.25 nm
grain size in nc-Ta.

Thus our study confirms qualitatively the decrease of
elastic moduli with the reduction of grain size down to a
few nanometers. Furthermore we observed that while the
decrease of Young’s modulus is very large, the decrease of B
is moderate, similarly to Phillpot et al. [12] in nc-copper. As
already noticed by Zhao et al. [15], it should be noted that
the initial grain size distribution has no obvious influence on
elastic constants; these ones rather seem to depend mainly
on the grain boundary atomic fraction. This point suggests
that the elastic modulus variations observed here are mainly
due to the grain boundary contribution. Density or porosity
effects are also often invoked to account for the softening
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FIGURE 4: Ratio between Young’s moduli in bce nanocrystalline
metals and the one of the corresponding single crystal as a function
of the relative density, for calculated values in tungsten (A) and
calculated (m) values in Ta [22].

observed in nc materials [7, 8, 22]. However in our case,
density is almost constant and very close to the bulk one
(between 98.9% and 99.5%). The E/E, ratio, where E is the
calculated value for each tungsten sample and each deforma-
tion test and E,, the single crystal Young’s modulus, is plotted
in Figure 4 as a function of the density of the sample (in
percentage of the bulk one). The values for tantalum [22] are
also reported in this figure. In the case of tungsten, contrary to
the case of tantalum, no clear correlation can be established
between the density and E so that no porosity effect can be
involved. Consequently, the tungsten softening observed in
our study should be essentially accounted for by the high
fraction of grain boundary regions and their particular defor-
mation behaviour, as also suggested by Latapie and Farkas
[14] for nc iron and Schietz et al. [13] for nc-copper. The
comparison between the “relaxed” and “nonrelaxed” values
of B and u suggests that nonaffine deformation takes place
in grain boundary regions, leading to an additional decrease
of the elastic constants. The bulk modulus appears to be less
sensitive than the shear modulus to the relaxation that occurs
after the application of the homogeneous strain. This can be
explained by the fact that a shear strain is more likely to desta-
bilize the atomic arrangement and induce nonaffine and/or
plastic deformation at grain boundaries than an isotropic
strain. Moreover, because nonaffine motion of atoms at grain
boundaries is probably thermally activated, it is believed that
the grain size effect on the shear modulus (and thus Young’s
modulus) should be larger at finite temperature than at
OK.

The main role played by the grain boundary regions can
be confirmed by considering that a polycrystalline material is
composed of an intercrystalline “phase” (i.e., grain bound-
aries, triple junctions, and quadruple nodes) and a crystal
“phase” (i.e., grain interior) [6, 14, 28-30]. In such a rule of
mixture model, the in-grain regions present a Young’s mod-
ulus similar to the bulk material while the intercrystalline
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(IC) regions present a smaller one. This was, for instance,
confirmed by the molecular dynamics simulations performed
recently by Lian et al. on bulk nanocrystalline nickel [31].

Thus an upper (E,,,) and a lower (E.;,) limit for
Young’s modulus may be calculated by means of the following
equations:

E Eg Ey
? = (1-Vgg = Viy) + VGBE_B + VTIE_
0 0 0
¢Y)
E Vg Vi
E0 =(1-Vos = V) + ¢ BE+E E,
min GB/ 0 T]/ 0

where Vi and Vyy are the volume fractions of the grain
boundaries and triple junctions, respectively, Egp and Ery are
Young’s moduli of the grain boundary and triple junction
components, respectively, and E, is Young’s modulus of the
perfect crystal lattice [6, 14]. In our case, as the sample
density is constant and very close to the bulk one, the atomic
volume is assumed to be the same in grain interior and
intercrystalline phases. It comes then that 5 = Vgp + V.
Moreover no distinction is made between grain boundary
and triple junction elastic moduli so that Eqp = Eqy = Ejc.
Given these assumptions, (1) may be rewritten as

E, . E
i =(1—11)+WE¢C )
0 0
EO EO
=(1-n)+n—. 3)
Emin EIC

Figure 3 shows the results on a-iron extracted from [14]
and the ones on tantalum extracted from [22], together with
the present results on tungsten. The first striking point is
that the relative values (E/E,) of tungsten Young’s modulus
are consistent with those of iron for d, =~ 6 nm while they
are completely different from those of tantalum for similar
grain sizes. Softening appears to be far much smaller in
tantalum than in iron or tungsten. Concerning the upper and
lower limits for the elastic modulus values, it is important
to note that these analytical models include two parameters
to determine # and E-/E,. The value of E;-/E, cannot be
extracted directly from our simulation technique since this
one gives only an average value of E for the polycrystal. In
literature, some authors like Shen et al. [6] chose to adopt
the value of the amorphous counterpart material whereas
other authors like Zhao et al. [15] evidenced that the grain
boundary phase was elastically different from the amorphous
state. The intercrystalline volume # may be evaluated either by
an analytical model such as Palumbo’s [28] or Kim’s ones [30]
wherein the grain boundary thickness A needs to be known
or by a microstructural analysis of the computed samples. As
already mentioned, we adopted the latter method. The choice
of the cut-off radius for counting atomic neighbours results
in a large uncertainty on the 7 parameter. Fitting our # values
on Palumbo’s equation for the total IC-volume gives a grain
boundary thickness A of about 1.2 nm. This A value is similar
to the ones used by Latapie and Farkas for «-iron (1.3 nm)
[14], Zhao et al. for nickel (*1nm) [15], or Palumbo et al.
themselves (1.0 nm) [28].

Assuming a GB thickness of 1.3nm and Egp/E, and
Eqy/E, values equal to 0.45 and 0.50, respectively, Latapie and
Farkas [14] determined an upper and a lower limit for E/E,
in a-iron. Their curves are reported in Figure 3 (grey dashed
lines). It clearly appears that these limits cannot include
tungsten values for the smaller grain sizes. Thus we fitted all
tungsten and iron E/E, values on both (2) and (3). The upper
and lower limits for the best fit value (i.e., E;-/E, = 0.35) are
also displayed in Figure 3 (black plain lines). Consequently,
this simple rule of mixture analytical model leads to assume
a 65% reduction of intercrystalline grain boundary Young’s
modulus. To our knowledge, such a decrease has never been
observed in other metals so far.

4, Conclusion

To summarise, we have shown by means of atomistic sim-
ulations that Young’s and shear moduli of nanocrystallised
tungsten strongly decrease (by over 60%) when the average
grain diameter decreases down to 2.7 nm. This large decrease
cannot be explained by a porosity effect, but rather by the high
grain boundary volume fraction in nanocrystallised samples,
with grain boundary regions having a smaller modulus than
in-grain parts of the crystal. The global elastic modulus
evolution can be correctly described by a rule of mixture
between the in-grain modulus and the intercrystalline modu-
lus. The present results denote very low elastic moduli of grain
boundary regions.
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