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Q&A, review comments and final remarks to "Symmetry induced turbulent scaling laws for arbitrary moments and their validation with DNS and experimental data: A fact-check"

Comments, explanations and remarks

In the following all text that appears in quoted italics is the feedback or comments I received. The text in normal font is my response.

1.1. "An interesting point you make is this: 'Infinite things which do not converge, irrespective of their representation, cannot be considered as closed.' Here, I am not sure. It depends. Consider a standard Taylor expansion, for example 1/(1 + x 2 ) = 1 -x 2 + x 4 -x 6 + • • • . It diverges for x > 1. However, if all the terms in the expansion are known, and the function is known to be analytic, then the function is known. In this particular example it can even be calculated using this series in combination with the accelerating convergence trick dating back to Euler. Of course, e -1/x 2 + 1/(1 + x 2 ) has the same asymptotic expansion, which does not represent the exact function however many terms are known. Coming back to the point you are making, it is not impossible that moment expansions encode the full information about the statistics of a turbulent flow in spite of being divergent."

When I prepared the Fact-Check, I was aware of the problem that my statement 'Infinite things which do not converge, irrespective of their representation, cannot be considered as closed' could be interpreted differently than what I actually want to say with it. I know that such a strong statement should be accompanied with additional explanations and demonstrating examples, but the problem I had on the other hand was that I wanted to keep the Fact-Check concise and not lose focus on the more obvious problems the Webinar has.

Here are my arguments why I currently think that my statement is valid and why this statement applies to turbulence in particular. Crucial hereby is the part 'irrespective of their representation', which I highlighted in the Fact-Check. If we take your example, 1-x 2 +x 4 -x 6 +• • • , it can be seen as one particular representation of an abstract mathematical object that we want to consider, let's call it F (x), while 1/(1+x 2 ) is another, different representation of that same object F (x). However, what the entire object F exactly is, I can not tell you or write it down in any closed form. At this stage, I only know two different representations of this F .

The first (Taylor) representation has the problem that it does not converge for any real numbers |x| ≥ 1. This problem is fixed through the second representation 1/(1 + x 2 ), which is an analytic continuation of the first representation on its ill-defined domain of real numbers, which finally zips all infinite terms into a single expression. As a result, we now gained a special type of 'convergence' on this domain, in that we can identify, for example, for the specification x = 2, the divergent series 1-

2 2 +2 4 -2 6 +• • • as the closed term 1/(1+2 2 ) = 1/5, which is F (2).
And this identification can now be done for all numbers on the real line. We therefore can now say which finite values F will take on the real number line. Alternatively, one can say that the lower-level Taylor representation already encodes this information of F through its divergent series. One just has to change the representation to a higher algebraic level in order to get a finite and therefore measurable value.

The question now is, do we fully know what F is in its entirety? I don't think so, because the second, higher-level representation of F , namely 1/(1 + x 2 ), has a divergent problem too, namely for x = i and x = -i. So, maybe there exists a third representation on an even higher algebraic level, which can fix this problem and offers us a finite value, e.g., for

F (x = i), which is encoded in the divergent series 1 -(i) 2 + (i) 4 -(i) 6 + • • • = 1 + 1 + 1 + 1 + • • • of the first representation.
So, what I want to say here is that everything depends on the representation, whether an infinite process can be identified as something finite, which in the end can then be measured with a physical apparatus.

In Quantum Field Theory, for example, we deal with an infinite series S = S 1 + S 2 + • • • of Feynman diagrams S i , to determine a probability amplitude S. Some of these diagrams, i.e., some of the terms in the infinite series itself are divergent and need to be renormalized, which constitutes a first change in representation. Then, when all problematic diagrams have been renormalized, it leads to a new representation of S, call it S = T 1 + T 2 + T 3 + • • • , which still is an infinite series, but now consisting of finite terms, the renormalized diagrams T i . But in order to get a finite value of the probability amplitude S, the problem is still not solved yet, because the infinite series with the finite terms T i still diverges. Hence, one needs a second representation of S to get a finite value for it, e.g., through the method of Padé approximants, e.g. as explained in Bender & Orszag's book 'Advanced Mathematical Methods' .

Back to my statement 'Infinite things which do not converge, irrespective of their representation, cannot be considered as closed': It's clear now that this statement should be understood in the above sense, namely that when no finite representation for an infinite process can be found, then one cannot consider it as closed. Now, the abstract mathematical object which is being considered in the Webinar, namely the statistical Navier-Stokes entity, which I will call N , is way more complicated than the F (your example) or the S (QFT) considered above. The big difference is that while each of the single terms in the lowest-level representation of F and S are already in a closed form themselves, this is not the case for the object N , because there the terms are not some 'simple algebraic' terms, but are partial differential equations, which are coupled from one order to the next.

Hence, this is uncomparably more difficult than the two examples F and S discussed before. Even if we would change the representation here, and go in N from the momentformulation to the higher-level PDF-formulation, the problem remains and nothing is gained.

Instead of partial differential equations, we then face an infinite hierarchy of coupled integrodifferential equations. Thus the infinity problem remains, even when changing the representation, and therefore such systems cannot be considered as closed.

Back to your statement that the 'moment expansions encode the full information about the statistics of a turbulent flow', I see it sceptical also from another viewpoint. It's known that from the knowledge of the moments alone, irrespective to which order but finite, it is a challenging inverse problem to construct the associated PDF, where in the end there is even no guarantee that if a particular PDF-solution is found that it will also be unique. Additional physical constraints, e.g. as the maximum entropy approach, has to be placed to satisfactorily solve such a problem.

The aim is clear here: To get the PDF is more essential than only to have the moments, if one pursues to extract more detailed statistical information from a dynamical system. In this sense, I do not concur that the moment expansions encode the full information about the statistics of a turbulent flow. Said differently, in the above context of representations: The moment expansion is only the lowest-level representation of the abstract 'statistical-Navier-Stokes-object'. To get more information one has to change the representation to a higher level, but since this change does not bring along any improvement to the infinity problem, I can only conclude the following:

While the infinite PDF hierarchy encodes more information about the statistics of a turbulent flow than the infinite moment hierarchy, they both are unclosed, despite their infinite length. A reason is that the change of representation from the lower-level momentformulation to the higher-level PDF-formulation does not fix or improve the infinity problem. Also when changing the representation to the Hopf or Liouville equation, which zips the infinite hierarchy of equations into one functional equation through a continuum limit, nothing is gained in my opinion. Because without some form of coarse-graining, the Hopf equation is not a true statistical equation. Only by coarse-graining, useful statistical information can be extracted from the Hopf equation. But when coarse-graining this equation, it will just throw us back again to the infinite PDF hierarchy where we started from. As Orszag correctly phrased the problem: "From a mathematical point of view, turbulence theory is embedded in the theory of approximation of functional-differential equations" [p.363 in 'Analytical theories of turbulence', S.A. Orszag, JFM 1970 ].

• "Overall, while I am not sure that the moment expansion does not really work, I think it is worth trying. As for it being a success, yes, I was not fully convinced, and your points clarify the situation. We will see."

"

To the point about dissipation anomaly: Of course, the 1/Re → 0 limit is singular, and this indeed can lead to the symmetries of the Euler equations being not applicable to finite Re even approximately for arbitrary large but finite Re. You have a point here, yes. Mathematically, what is shown in the Webinar is based on a critical assumption, which is not proven." 1.3. "I agree. Something is flawed with the derivation of the scaling law for H i {n} beyond first order n = 1. It has to be in the assumptions, having performed a symmetry analysis that most probably is not compatible to the shear flow conditions posed."

or: "The [scaling] constant implied by the i = 1 profiles does not match the constant implied by the i = 3 profiles, as they are of opposite sign (at least over the Re range covered by our experiments, up to Re τ = 14000). ... The proposed symmetry solution cannot describe both the i = 1 and i = 3 cases with the same constant for our Reynolds number range."

If the algebraic scaling law (L):

H + i {n} = c i {n} (x + 2 + A + ) α•n+β + b i {n} , n ≥ 2
, would have been declared as a phenomenological result for shear flows that can be well matched to data in the streamwise direction i = 1, there would be no objection.

The problem here, however, is that in the Webinar this scaling law (L) is claimed as a first-principle solution of the statistical Navier-Stokes equations, since the full infinite set of MPC equations was allegedly considered to derive it -see again the last point of the Webinar's conclusion at minute 46 , how the emphasise is put on the word 'solution'.

The problem is compounded further by the fact that this 'solution' was derived specifically for a shear-flow configuration to be valid for arbitrary velocity correlations, and not only for the streamwise direction i = 1. Despite this shear-flow setting, the symmetry-induced scaling law (L) nevertheless resulted in a scaling exponent that is isotropic, i.e., independent of the velocity direction i. The component dependence only enters in trivial normalization and shift constants (c and b), but not in the essential scaling exponent, which only depends (linearly) on n, the order of the correlation, but not on i, the direction of the correlation. It is more than clear that such a result (L) can not be a first-principle solution of the statistical Navier-Stokes equations for turbulent shear flows, as it falsely will predict that all directionally different velocity correlations, for a fixed correlation order n, will all universally scale the same (up to a normalization and shift constant). So, from a theoretical point of view something is seriously flawed here.

Here is the correct take of the scaling law (L): It is definitely not a first-principle solution of the Navier-Stokes equation, as falsely propagated. Although it was somehow 'analytically derived', it nevertheless is a result based on several severe assumptions, which unfortunately were not made explicit in the Webinar.

The scaling law (L) is as far from the Navier-Stokes equation as any other invariant scaling law obtained by the classical invariance method as first used by Kármán and Prandtl a century ago. That the scaling law (L) was derived by a Lie-group symmetry analysis is just eye-candy and of no theoretical use, because when applying the mathematical tool of Lie-groups in turbulence correctly and properly, any thinkable invariant scaling law can be derived. Simply said, the closure problem of turbulence cannot be bypassed when using this method. It only shifts the closure problem of equations to a closure problem of symmetries. Without prior modelling or physical assumptions in the analysis, the Lie-group method alone does not give any information as how turbulence should scale.

Briefly summarized, the bigger picture for this failure is that the Lie-group symmetry method in turbulence is not free of assumptions. It is an ad-hoc method too, not in the same but in a similar way as the classical self-similarity method as first used by Kármán and Prandtl: Instead of using an a priori set of scales, the Lie-group method has to make use of an a priori set of symmetries, namely to select the correct relevant symmetries from an infinite (unclosed) set. Even when including all unclosed higher order correlation equations, one still gets an infinite and therefore unclosed set of functionally independent invariances if the analysis is properly performed, and not only those few as always reported. In other words, the Lie-group method in turbulence is effectively no different to the classical invariance method of Kármán and Prandtl.

Hence, the scaling law (L) is definitely not a result that directly follows from theory and is therefore also nothing special. Instead it's based on trial-and-error assumptions in choosing the 'correct symmetries' from an infinite (unclosed) set of invariant possibilities that the infinite (unclosed) MPC hierarchy is admitting. Important to note here is the fact that due to the arbitrariness involved when making a particular choice from an infinite (unclosed) set of possible symmetries, there is a high chance that one will select a nonphysical symmetry which is not reflected by experiment or numerical simulation. This clearly is the case for (L), since it is based on two nonphysical symmetries, as revealed and explained in the Fact-Check.

And therefore, it's not surprising why the scaling law (L) is not working for different velocity components 'i': Simply the wrong symmetries have been chosen for shear flow. For the quest to get better symmetry-induced results, different and especially physical symmetries have to be found by trial and error from the infinite (unclosed) set of invariant possibilities.

Finally, to counter the argument that no one is claiming a result as 'first principle solutions' when applying the method of Lie-group symmetry analysis to turbulence, here a few links to corroborate my claim about misleading statements made so far, e.g., as claiming to have derived "first principle solutions", "solutions without any assumptions", or that "no intuition is needed to find self-similar solutions", or even that with Lie-groups "the closure problem is somewhat bypassed" , etc.: JFM, 2001 : "The theory is fully algorithmic and no intuition is needed to find a selfsimilar mean velocity profile." [p.321],

or: "In the case of the logarithmic law of the wall, the scaling with the distance from the wall arises as a result of the analysis and has not been assumed in the derivation." [p.299] JFM, 2014 : "It was shown that they are exact solutions of symmetry invariant type of the infinite-dimensional series of MPC equations. They [Oberlack et al.] have shown that turbulent scaling laws may be generated from first principle and that most of the classical and new symmetry invariant solutions are based on one or several of the newly discovered statistical symmetry groups." [p.102] Mech. Eng. Rev., 2015 : "In fact, it was demonstrated that it is exactly these symmetries which are essentially needed to validate certain classical scaling laws such as the log-law from first principles and also to derive a large set of new scaling laws." [p.68] JFM, 2020 : "As noted earlier, this is particularly important in fluid mechanics and turbulence studies, as we can construct invariant solutions from first principles through symmetry." [p.5] 1.4. Is it a surprising result, that for the full-field correlations H i {n} the power-law matching of (L) to channel and pipe flow data works so well in the streamwise direction (i = 1)?

No, it is not a surprising result. In fact, it is a trivial result, because it's a direct consequence of the fact that for channel and pipe flow we approximately have H 1 {n} := U n 1 ≈ U 1 n , due to a strong mean field that washes out all streamwise fluctuations. Once the lowest-order cases n = 1 and n = 2 are matched, all higher orders will follow suit, because in the end it's just the exponentiated mean velocity U 1 n that is being matched. Said differently, if the matching to n = {1, 2} turns out to be good, then, automatically, the matching for all higher orders will be good too (relative to the matching error of n ≤ 2). Therefore, it is no surprise that the power law slope is linearly proportional to 'n' as shown in the Webinar, for both channel and pipe flow, simply because by definition the exponent of the exponentiated mean velocity U 1 n is linear in 'n', too. The interesting and difficult physics lies in the fluctuation correlations and not in the full field correlations, which in strong channel or pipe flow are trivial to predict once the mean field is known or has been matched to data. Also, in my opinion, I do not see a physical motivation why to consider the full-field correlations in the first place. As a theorist, I'm only used to work with correlations where the background or the bulk motion has been subtracted, as is also usual practice in statistical physics in general. If possible, one should always co-move with the phenomenon being considered. Because in statistical physics the finding insight or the gain in knowledge lies in the fluctuation correlations.

1.5. "Regarding determining the fluctuation correlations (R) based on the fits to the full-field correlations (H): This process is essentially ill-conditioned. Any degree of uncertainty in the measured values of U will dramatically alter the resulting predicted values of R. With perfect data, it should of course be possible to compute R from the fits of H profiles, but this is well beyond the reach of our experimental data.

In the Fact-Check it was tested with 'perfect data', namely with DNS data, and it's not working! As explained therein, this is a clear indication that the symmetry-induced transition from H to R, as put forward in the Webinar, is nonphysical. The finding is that the higher the order, the greater the error, which in turn grows exponentially with the order.

However, the strongest argument of all that we are dealing with a nonphysical invariance transformation, is the fact that (i) the scaling error will be of the exact same (exponential) order of magnitude when matching the fluctuation correlations R also directly (!) to the data, and (ii) if we would remove all nonphysical invariances or put them to zero, then the scaling theory proposed in the Webinar just reduces back to the classical dimensional scaling method, with the result that the matching process for R then improves by several orders of magnitude again. These two facts alone are already clear proof that the symmetry-based scaling method as presented in the Webinar is flawed (for more details, see e.g. the extensive discussion in Sec.5 in arXiv:1412.3061 ).

1.6. The bottom line is that the Webinar makes use of two nonphysical invariants, which not only generate the scalings in the wrong way, but also give a false picture of the intermittency and the non-Gaussian behavior in turbulence.

Q&A

Also worth taking a look is at the Q&A round of the Webinar, where the participants asked some important questions. Here are the correct answers to their questions: Q1: How to translate from the H-moments to the physically interesting R-moments? A1: Although there exists an analytical bijective mapping between H and R, this mapping leads to poor results when constructing R from a best-fit of H, where the results get more worse (exponentially worse) the higher the order of the moments are. The reason for this failure is that a best-fit for H does not imply a best-fit for R when using this map.

But, as was explained and discussed in the Fact-Check, and again in Sec.1.5 above, the actual problem is bigger than that, because at a certain order, the R cannot even be matched directly to the data anymore. For ZPG-boundary-layer flow, for example, this failure already starts at the third moment -for details see Sec.5 in arXiv:1412.3061 ). This shows that the underlying invariances are indeed nonphysical. Therein we even show that if these nonphysical invariances are removed or put to zero, then the proposed scaling theory just reduces back to the classical dimensional scaling method, with the result that the matching process for R then improves by several orders of magnitude again. A clear proof that the proposed scaling method in the Webinar is flawed.

Q2: What about the scaling factor of the intermittency invariance, and the subsequent discussion on the intermittency invariance itself ? A2: First of all, this in the Webinar so-called 'intermittency invariance' is nonphysical in that it violates several physical principles -see the explanations to statements #9 and #8 in the Fact-Check. Even if we would assume for a minute that this invariance is physical, then such an invariance surely cannot and does not reflect intermittency in turbulence. Besides of not knowing which kind of intermittency this invariance actually should describe (transitional large-scale, or fully-developed small-scale), it is an isotropic, global and for all orders of the moments universal invariance, which surely is not a characteristic of intermittency, irrespective of whether large-scale or small-scale. Hence the intermittency interpretation of this invariance is highly misleading -see also the explanation to statement #10.

Also from a pure phenomenological viewpoint, it's abundantly clear that intermittency is a symmetry breaking phenomenon and not a symmetry-existing or symmetry-preserving one (Frisch, 1996 ). Even if we would wrongly assume this to be the case, intermittency is definitely not described or featured by any global scaling symmetry, particularly not by the one given in the Webinar, which, on top of that, is a symmetry that also violates the classical principle of cause and effect. In fact, spatial-global symmetries, i.e., symmetries with constant group parameters, as all those shown in the Webinar, are not able to describe intermittent phenomena; at most, these can only be described by local space-dependent symmetries whose group parameters depend on the space coordinates. In order to describe intermittent phenomena, regardless of whether they are on a small or large scale, multifractal scaling approaches are necessary (see e.g. Frisch, 1996 ). A global and universal scaling ansatz, as presented in the Webinar, is therefore definitely not sufficient.

Q3: How to connect the symmetry-induced scaling theory to turbulence modelling? A3: There is no doubt that in order to improve the predictive quality of a turbulence model for a particular flow configuration, it should reflect as many symmetries as the statistical Navier-Stokes equations for that flow configuration can physically admit. All nonphysical symmetries which potentially can also be admitted by this system should, of course, not be included. The presented paper in the Webinar (Phys. Fluids, 2020: "Symmetries and turbulence modeling" ), however, builds up a model that is based on two nonphysical symmetries. The consequence: The model is not self-consistent and leads to contradictive and conflicting results, as can be analytically shown, for example, in the proof-of-concept case of a turbulent planar jet flow. For all details, see arXiv:2008.08580 , or follow this link , which also provides a summarized short version of this discussion.

What every turbulence modeler also should keep in mind when making use of the symmetry method is that although a symmetry can be physical, it can nevertheless be broken in the process considered. Turbulence is the result of successive symmetry break-downs, dynamical as well as static ones, where in the end, in the fully developed regime, some may, but also some may not be restored statistically. An eminent example is, e.g., the anomalous scaling behaviour of a fully developed turbulent flow, which significantly deviates from the statistical scaling symmetry of the governing Navier-Stokes equation. In general, noncompact groups as that of scale invariance are more prone to be broken statistically than compact groups as that of rotation invariance. For example, in flows which were initially prepared and held under isotropic conditions, global statistical isotropy may also break, however then in a more weaker sense. It are these statistical symmetry break-downs what ultimately produces complexity and diversity in nature.

Q4: Has the proposed scaling method anything in common with the operator expansion method, e.g., as in conformal field theory? A4: No, there is no common ground at all and also no connection can be established. Regardless this fact, the central claim is rather made that with the tools of a plain Lie-group invariance analysis alone, it has been analytically proven that the 2D inviscid Navier-Stokes equations admit conformal invariance. But this claim we already clearly refuted three years ago in arXiv:1802.02490 , which recently was confirmed again by the responsible journal J. Phys. A.

Anonymity is preserved throughout, because it's only about the scientific content here, and not about who gave feedback or who made a comment.