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On the λ-stability of p-class groups along cyclic p-towers of a number field

Georges Gras

Introduction

The behavior of p-class groups in a Z p -extension gives rise to many theoretical and computational results; a main observation is the unpredictability of these groups in the first layers of the Z p -extension, then their regularization from some not effective level, Iwasawa's theory giving the famous formula of the orders by means of the invariants λ, µ, ν; nevertheless, this algebraic context is not sufficient to estimate these parameters (e.g., Greenberg's conjecture [START_REF] Greenberg | On the Iwasawa invariants of totally real number fields[END_REF]). Our purpose is to see, more generally, what is the behavior of the p-class groups (and some other arithmetic invariants) in cyclic p-extensions in which one allows tame ramification.

Let k be a number field, p ≥ 2 a prime number and K a cyclic extension of degree p N of k, N ≥ 1, and let k n , n ∈ [0, N ], be the degree p n extension of k in K. We speak of cyclic p-towers K/k and put G = Gal(K/k). Let S be the set of places of k, ramified in K/k. We will assume S = ∅ and S totally ramified in K/k; in general, S contains tame places, except if K is contained in a Z p -extension of k, in which case S is a set of p-places of k. Due to the very nature of a tower, there will never be "complexification=ramification" of infinite real places.

Let m = 0 be an integer ideal of k, of support T disjoint from S; let C k,m and C kn,m , denoted simply C 0,m and C n,m , be the p-Sylow subgroups of the ray class groups modulo m, of k and k n , respectively (for n > 0, m is seen as extended ideal in k n ). The class of an ideal a of k n is denoted cℓ n,m (a).

Let N K/kn be the arithmetic norm in K/k n , defined on class groups from norms of ideals. Since m is prime to S = ∅ totally ramified, the corresponding p-Hilbert's ray class fields H n,m , of the k n 's are linearly disjoint from the relative p-towers K/k n ; since, by class field theory, N K/kn corresponds to the restriction of automorphisms Gal(H N,m /K) → Gal(H n,m /k n ), we get N K/kn (C N,m ) = C n,m , for all n ∈ [0, N ].

Let H N be a sub-Z p [G]-module of C N,m ; we may represent a minimal set of Z p [G]-generators of H N with prime ideals Q 1 , . . . , Q t / ∈ S ∪ T , Q i | q i in K/k. Let I N be the Z[G]-module generated by these ideals; thus I 0 := N K/k (I N ) is of minimal Z-rank t since N K/k (I N )⊗Q = q 1 , . . . , q t Z ⊗Q. We set, for all n ∈ [0, N ]:

(1.1)

I n := N K/kn (I N ), H n := N K/kn (H N ), X n,m := C n,m /H n .

This defines the family {X n,m } n∈[0,N ] ("generalized p-class groups") such that:

N K/kn (X N,m ) = X n,m , for all n ∈ [0, N ].

Any place Q of K, such that cℓ N,m (Q) ∈ H N , totally splits in the subfield of H N,m fixed by the image of H N in Gal(H N,m /K); so this general definition allows to enforce decomposition conditions in the ray class fields.

To simplify, we shall remove the indices m, except necessity. One speaks of "λ-stability" of these X n along the cyclic p-tower K/k when there exists λ ≥ 0 such that #X n = #X 0 • p λ•n , for all n ∈ [0, N ]. Of course, this is not a workable definition, both theoretically (classical context of Z p -extensions or less familiar case of p-towers with tame ramification) and computationally (inability to use PARI/GP [START_REF]PARI/GP, version 2.9[END_REF] beyond some level n = 3 or 4, and almost nothing for p > 5). So we intend to get an accessible criterion likely to give information in all the tower. Definition 1.1. Let Λ := {x ∈ k × , x ≡ 1 (mod m), (x) ∈ N K/k (I N )}. For instance, I N = 1 yields {X n } = {C n } and Λ = E, the group of units ε ≡ 1 (mod m) of k. We have the exact sequence 1 → Λ/E → I 0 → H 0 → 1. Since Λ/E is Z-free (of Z-rank t because H 0 is finite), one can write, with representatives α j of Λ/E:

Λ = tor Z (E) ε 1 , . . . , ε r ; α 1 , . . . , α t Z =: tor Z (E) X, ε i ∈ E, r := r 1 + r 2 -1
, where (r 1 , r 2 ) is the signature of k, and where X is Z-free of Z-rank ρ := r + t; we define the parameter λ := max (0, #S -1ρ).

We shall see that the norm properties, in K/k, of tor Z (E) ⊗ Z p are specific and may give some obstructions that are elucidated by the following Lemma. Lemma 1.2. (Albert's Theorem for K/k; for a proof, see [START_REF] Gras | Class Field Theory: from theory to practice[END_REF]Exercise I.6.2.3]). If k contains the group µ p ǫ of p ǫ th roots of unity, then µ p ǫ ⊂ N K/k (K × ) if and only if there exists a degree p ǫ cyclic extension L/K such that L/k is cyclic.

Remark 1.3. We shall restrict ourselves to the case tor

Z (E) ⊗ Z p ⊂ N K/k (K × ).
If necessary, it suffices to restrict the tower K/k to the sub-tower K ′ /k such that [K : K ′ ] be the order of the group of pth roots of unity of k, or to notice that L/K/k does exist (recall that no arithmetic condition is required on L/K).

Thus, the norm properties of Λ are assigned to X.

We put to simplify C 0 =: C , H 0 =: H , I 0 =: I , X 0 =: X , and so on, m being implied; let p e be the exponent of X . Under the assumptions on S, T , we will prove the following result for the cyclic p-tower K/k of degree p N (see Theorem 3.1 and Corollary 3.2 for more complete statements):

Main Result. Assume that tor Z (E) ⊂ N K/k (K × ) (Remark 1.3). Let ρ ≥ 0 be the Z-rank of the Z-module X and let λ := max (0, #S -1 -ρ) (Definition 1.1). Then #X n = #X • p λ•n for all n ∈ [0, N ]), if and only if #X 1 = #X • p λ . If the criterion applies with λ = 0 (i.e., #X 1 = #X ) and if e ≤ N , then X capitulates in K. Remark 1.4. (a) If λ = max (0, #S -1 -ρ)
fulfills the criterion of λ-stability from the base field k, it fulfills the same λ-stability criterion in any relative p-tower K/k ′ ,

k ′ := k n0 , n 0 ∈ [0, N [, since (with X ′ n := X n0+n , n ≥ 0) we get #X ′ n = #X ′ • p λ•n since #X ′ n = #X n0+n = #X • p λ (n0+n) = (#X • p λ n0 ) • p λ n = #X ′ • p λ n . (b) If λ = max (0, #S -1 -ρ)
is not suitable for the criterion in k 1 /k (which shall be equivalent to #X 1 > #X • p λ due to Chevalley's formula), we can consider a relative tower K/k ′ ; then, in k ′ , #S ′ = #S, t ′ = t, and λ ′ := max (0

, #S -1 -ρ ′ ) is a strictly decreasing function of [k ′ : k] (indeed, from Definition 1.1, we compute that ρ ′ -ρ = r ′ -r = (r 1 + r 2 ) • ([k ′ : k] -1)
), so that two cases may arise:

(i) For some k ′ ⊂ K, we have #X ′ 1 = #X ′ • p λ ′ giving the λ ′ -stability in K/k ′ with regular linear increasing orders from k ′ . (ii) Whatever k ′ ⊂ K, λ ′ is not suitable (i.e., #X ′ 1 > #X ′ •p λ ′ ,
even if λ ′ = 0, which occurs rapidly for k ′ high enough in the tower), which means that #X n is strictly increasing from some level n 0 , which is illustrated by numerical examples and can define a non-linear increasing (in a Z p -extension k this means " µ = 0"). It is important to note that a λ-stability may exist from some level, with λ > λ ′ ; this is the case in a Z p -extension k with Iwasawa's invariants λ = 0 and µ = 0.

Numerical experiments are out of reach as soon as n > 3 or 4, but a reasonable heuristic is a tendency to stabilization in totally real p-towers, by analogy with the study of Greenberg's conjecture carried out in [START_REF] Gras | Algorithmic complexity of Greenberg's conjecture[END_REF]. In a different framework, let k n be the nth layer of the cyclotomic Z p -extension k ∞ of k and let C n be the whole class group of k n ; then, for ℓ = p, #(C n ⊗ Z ℓ ) stabilizes in k ∞ (a deep result in the abelian case [33], extended in [START_REF] Friedman | On the ℓ-adic Iwasawa λ-invariant in a p-extension, with an Appendix by L.C. Washington[END_REF] to Iwasawa context in the Z p × Z ℓ -extension of k).

(c) For k fixed, λ is unbounded (which only depends on the tower via S) and the condition #C 1 = #C of the literature (λ = t = 0, thus #S ≤ r 1 + r 2 ) is empty as soon as λ ≥ 1, whence the interest of the factor p λ to get examples whatever S. For known results (all relative to λ = 0), one may cite Fukuda [START_REF] Fukuda | Remarks on Zp-extensions of number fields[END_REF] using Iwasawa's theory, Li-Ouyang-Xu-Zhang [25, § 3] working in a non-abelian Galois context, in Kummer towers, via the use of the fixed points formulas [6, 9], then Mizusawa [START_REF] Mizusawa | Tame pro-2 Galois groups and the basic Z 2 -extension[END_REF] above Z 2 -extensions, and Mizusawa-Yamamoto [START_REF] Mizusawa | On p-class groups of relative cyclic p-extensions[END_REF] for generalizations, including ramification and splitting conditions, via the Galois theory of pro-p-groups.

(d) If Lemma 1.2 does not apply, some counterexamples can arise. For instance,

let k = Q( √ -55), p = 2, K = k(µ 17 ) of degree 2 4 over k (-1 / ∈ N K/k (K × ), #S = 2, λ = 1)
; the successive 2-structures are [START_REF] Friedman | On the ℓ-adic Iwasawa λ-invariant in a p-extension, with an Appendix by L.C. Washington[END_REF], [START_REF] Gras | Class Field Theory: from theory to practice[END_REF], [16], [32], [32], for which

#C n = #C • 2 n holds for n ∈ [0, 3], since -1 is norm in k 3 /k, but not for n = 4.
To conclude, we will show that the behavior, in K/k, of the finite torsion groups T n of p-ramification theory (as "dual" invariants of p-class groups) gives much strongly increasing groups with possibly non-zero µ-invariants in Z p -extensions k/k.

Around Chevalley's ambiguous class number formula

The well-known Chevalley's formula [2, p. 402] is the pivotal element for a great lot of "fixed points formulas". For the ordinary sense, it takes into account the complexification of real infinite places, which does not occur for us as explained in the Introduction. Let L/F be a cyclic p-extension of Galois group G, S-ramified, non-complexified if p = 2, and let e v (L/F ) be the ramification index of v ∈ S; we

have #C G L = #C F • v∈S ev(L/F ) [L : F ] • (E F : E F ∩ N L/F (L × ))
, where C F , C L denote the p-class groups of F , L, respectively, and E F the group of units of F .

Various generalizations of this formula were given (Gras [6, Théorème 2.7, Corollaire 2.8], [9, Theorem 3.6, Corollaries 3.7, 3.9], Jaulent [16, 

L := cℓ L (I L ), H F := N L/F (H L ) = cℓ F (N L/F (I L )), we have, with Λ L/F := {x ∈ F × , x ≡ 1 (mod m), (x) ∈ N L/F (I L )}: (2.1) #(C L /H L ) G = #(C F /H F ) × (#G) #S-1 (Λ L/F : Λ L/F ∩ N L/F (L × )) . Lemma 2.2. Let K/k be a cyclic p-tower of degree p N , of Galois group G =: σ . Let H N =: cℓ N (I N ) ⊆ C N and Λ := {x ∈ k × , x ≡ 1 (mod m), (x) ∈ N K/k (I N )} (see Definition 1.1): (i) Λ = {x ∈ k × , x ≡ 1 (mod m), (x) ∈ N kn/k (I n )} (i.e., Λ K/k = Λ kn/k ), (ii) Λ ⊆ Λ 1 := {x 1 ∈ k × 1 , x 1 ≡ 1 (mod m), (x 1 ) ∈ N K/k1 (I N )}. Proof. Point (i) comes from I n = N K/kn (I N ). Let x ∈ Λ seen in k 1 ; then (x) = N K/k (A) = N K/k1 (A Θ ), where Θ = 1 + σ + • • • + σ p-1 , and A Θ ∈ I N since I N is a Z[G]-module, whence (ii). Notice that (x) ∈ N K/k (I N ) expresses that x is local norm in K/k at every v / ∈ S; if moreover x is local norm at S it is a global one (Hasse norm theorem).
In what follows, throughout the article, only the invariant ρ = rk Z (X) is needed (Definition 1.1 giving λ := max (0, #S -1ρ)) and never I N , Λ, . . . However, ρ = r + t may be unknown because of the minimal number t of generators of the Z[G]-module I N (or the Z-module I ) if it is too general; but, in practice, ρ is known (e.g., ρ = r 1 + r 2 -1 for ray class groups modulo m) or ρ is large enough to get λ = 0.

Lemma 2.3. Let X = x 1 , . . . , x ρ Z be a free Z-module of Z-rank ρ ≥ 0, let Ω := (Z/p n Z) δ , n ≥ 1, δ ≥ 0, and let f : X → Ω be an homomorphism such that the image of X → Ω/Ω p is of F p -dimension min (ρ, δ). Then #f (X) = p min (ρ,δ)•n and for all m ∈ [0, n], #f p m (X) = p min (ρ,δ)•(n-m) (where f p m (x) := f (x) p m ). Proof. From f : X → Ω, let f : X/X p → Ω/Ω p ; by assumption, dim Fp (Im(f )) = min (ρ, δ). Let M = e 1 , . . . , e δ Zp be a free Z p -module of Z p -rank δ, and replace Ω by M/M p n . Let q : X → X/X p , π n : M → M/M p n , π : M/M p n → M/M p , and π 1 = π • π n : M → M/M p
, be the canonical maps. Then, let F : X → M be any map such that π n • F = f . We have, since n ≥ 1, the commutative diagram:

❅ ❅ ❅ ց f X≃ Z ρ X/X p M ≃ Z δ p Ω/Ω p ≃ M/M p Ω ≃ M/M p n F f π n π q π 1 (i) Case ρ ≥ δ (surjectivity of f ). Let y ∈ M ; there exists x ∈ X such that π 1 (y) = f (q(x)) = π 1 (F (x)), whence y = F (x) • y ′p , y ′ ∈ M ; so, by a finite induction, M = F (X) • M p n and π n (M ) = Ω = f (X) is of order p δ•n . (ii) Case ρ < δ (injectivity of f ). Let y ∈ M such that y p = F (x), x ∈ X; then 1 = π 1 (y p ) = π 1 (F (x)) = f (q(x)), whence q(x) = 1 and x = x ′p , x ′ ∈ X, giving y p = F (x ′ ) p in M thus y = F (x ′ ), proving that F (X) is direct factor in M ; thus f (X) = π n (F (X)) is a direct factor, in Ω, isomorphic to (Z/p n Z) ρ . Since f p m (X) = f (X) p m , this gives f (X) p m = Ω p m ≃ ((Z/p n Z) δ ) p m in case (i) and ((Z/p n Z) ρ ) p m in case (ii)
. Whence the orders.

Introduction of Hasse's norm symbols -Main theorem

Let K/k be a S-ramified cyclic p-tower of degree p N , N ≥ 1. Let ω kn/k be the map which associates with x ∈ Λ the family of Hasse's norm symbols

x , kn/k v ∈ I v (k n /k) (inertia groups of v ∈ S), where Λ := {x ∈ k × , x ≡ 1 (mod m), (x) ∈ N K/k (I N )}. Since x is local norm at the places v / ∈ S, the image of ω kn/k is contained in Ω kn/k := (τ v ) v∈S ∈ v∈S I v (k n /k), v∈S τ v = 1 (from the product formula); then Ker(ω kn/k ) = Λ ∩ N kn/k (k × n ). Assume S = ∅ totally ramified; so, fixing any v 0 ∈ S, Ω kn/k ≃ v =v0 G n , with G n := Gal(k n /k). We consider formula (2.1) in k n /k, using Lemma 2.2 (i): (3.1) #X Gn n = #X • p n (#S-1) (Λ : Λ ∩ N kn/k (k × n )) = #X • p n (#S-1) #ω kn/k (Λ)
, where X n := C n /H n for the family {H n } (cf. (1.1) with a prime-to-S modulus m).

Theorem 3.1. Set Λ =: tor Z (E) X, with X = x 1 , . . . , x ρ Z free of Z-rank ρ, and let λ := max (0, #S -1-ρ). Assume that tor Z (E) ⊂ N K/k (K × ) (see Lemma 1.2 and Remark 1.3). We then have the following properties of λ-stability:

(i) If #X 1 = #X •p λ , then #X n = #X •p λ•n and X Gn n = X n , for all n ∈ [0, N ]. (ii) If #X 1 = #X •p λ , then J kn/k (X ) = X p n n and Ker(J kn/k ) = N kn/k (X n [p n ]), for all n ∈ [0, N ], where the J kn/k 's are the transfer maps in k n /k and X n [p n ] := {x ∈ X n , x p n = 1}. If moreover, λ = 0, the norm maps N kn/k : X n → → X are isomorphisms. Proof. Put N n := N kn/k , J n := J kn/k , G n =: σ n , Ω n := Ω kn/k , ω n := ω kn/k , s := #S. By assumption, ω n (Λ) = ω n (X) for all n ∈ [1, N ]. From (3.1), #X G1 1 = #X • p s-1 #ω 1 (X) ≥ #X • p λ since #ω 1 (X) ≤ p min (ρ,s-1) ; thus, with #X 1 = #X • p λ , we obtain X G1 1 = X 1 , whence #X G1 1 = #X • p λ and #ω 1 (X) = p min (ρ,s-1) .
By restriction of Hasse's symbols,

ω 1 = π • ω n , with π : Ω n → Ω n /Ω p n ≃ G s-1 1 . Since we have proven that dim Fp (ω 1 (X)) = min (ρ, s -1), Lemma 2.3 applies to X = x 1 , . . . , x ρ Z , δ = s -1, f = ω n ; so, #ω n (X) = p min (ρ,s-1) n and, from (3.1): (3.2) #X Gn n = #X • p λ•n , for all n ∈ [0, N ].
Consider the extension k n /k 1 , of Galois group G p n = σ p n , and the corresponding map

ω ′ n on k × 1 with values in Ω kn/k1 ≃ Ω p n ; then #X G p n n = #X 1 • p (n-1) (s-1) #ω ′ n (Λ 1 )
,

Λ 1 := {x ∈ k × 1 , x ≡ 1 (mod m), (x) ∈ N K/k1 (I N )}. Since Λ ⊆ Λ 1 (Lemma 2.2 (ii))
, the functorial properties of Hasse's symbols on X imply (where

v 1 | v in k 1 ): ω ′ n (x i ) = x i , kn/k 1 v 1 v = N 1 (x i ), kn/k v v = x p i , kn/k v v = x i , kn/k v p v , giving ω ′ n = ω p n on X. Then, ω ′ n (X) ⊆ ω ′ n (Λ 1 ) yields: #X G p n n = #X 1 • p (n-1) (s-1) #ω ′ n (Λ 1 ) ≤ #X 1 • p (n-1) (s-1) #ω ′ n (X) = #X 1 • p (n-1) (s-1) #ω p n (X) ; Lemma 2.3, for ω p n , gives #ω p n (X) = p (n-1) min (ρ,s-1) , then, with #X 1 = #X • p λ : #X G p n n ≤ #X 1 • p (n-1) (s-1) p (n-1) min (ρ,s-1) = #X 1 •p λ•(n-1) = #X •p λ•n . Since X G p n n ⊇ X Gn n and #X Gn n = #X • p λ•n from (3.2), we get X Gn n = X G p n n , equivalent to X 1-σn n = X 1-σ p n n = X (1-σn) • θ n , where θ = 1 + σ n + • • • + σ p-1 n ∈ (p, 1 -σ n ), a maximal ideal of Z p [G n ] since Z p [G n ]/(p, 1 -σ n ) ≃ F p ; so X 1-σn n = 1, thus X n = X Gn n . Whence (i). From N n (X n ) = X , X n = X Gn n (from (i)) and J n • N n = ν n (the algebraic norm), one obtains J n (X ) = J n (N n (X n )) = X νn n = X p n n . Let x ∈ Ker(J n ) and put x = N n (y), y ∈ X n ; then 1 = J n (x) = J n (N n (y)) = y p n , so Ker(J n ) ⊆ N n (X n [p n ]) and if x = N n (y), y p n = 1, then J n (x) = J n (N n (y)) = y p n = 1. Whence (ii).
Corollary 3.2. Let p e be the exponent of X in k fixed, and let K be a totally S-ramified cyclic p-tower of degree p N , with N ≥ e, such that λ = 0 (namely 1 ≤ #S ≤ r 1 + r 2 for the family {C n } of p-class groups). If #X 1 = #X , then X capitulates in k e . In particular, this applies in a Z p -extension k/k with λ = 0, #X 1 = #X and S (set of p-places) totally ramified.

Proof. Since λ = 0, X e ≃ X from the isomorphism induced by N e : X e → → X , whence Ker(J e ) = N e (X e [p e ]) ≃ X [p e ] = X . Example 3.3. Put p ǫ := #tor Zp (E). For a prime ℓ ≡ 1 (mod p N +ǫ ), let S ℓ be the set of prime ideals l of k dividing ℓ and let K ⊆ k(µ ℓ ) be the subfield of degree p N Totally real fields k give λ = 0 whatever S = S ℓ , but some non-totally real fields may give λ = 0; for instance, let P = x 6 + x 5 -5x 4 -4x 3 + 6x 2 + 2x + 7 defining k, of signature (0, 3), of Galois group S 6 and discriminant -11

• 31 • 971 • 2801; so λ = max(0, #S -1 -(r 1 + r 2 -1)) = max(0, #S -3). For p = 3, C ≃ Z/3Z
capitulates in k 1 for ℓ = 37, 61, 67, 73, 97, 103, 109, . . . for which #S ℓ ∈ {1, 2, 3}, giving λ = 0 as expected. We have verified the capitulation of C in k 1 for ℓ = 37 (for this and other complements see [START_REF] Gras | Numerical data verifying capitulations of C[END_REF]).

On the existence of capitulation fields for real class groups

A totally real field k been given, a problem is the existence of cyclic p-towers K/k such that C , of exponent p e , capitulates in K. We do not intend to establish again the "abelian capitulation" proved in the literature (Gras [7] (1997), Kurihara [START_REF] Kurihara | On the ideal class group of the maximal real subfields of number fields with all roots of unity[END_REF] (1999), Bosca [1] (2009), Jaulent [18,[START_REF] Jaulent | Principalisation abélienne des groupes de classes logarithmiques[END_REF] (2019, 2020)), but we will examine this possibility in a simpler way using Theorem 3.1. We may assume that k is Galois real and we shall make some heuristics using only cyclic p-towers totally S-ramified with S = S ℓ , the set of places of k above ℓ; this is an important difference compared to the previous references.

4.1. Monogenic class groups and K ⊂ k(µ ℓ ). We assume, at first, that C is monogenic, that is to say that there exists a prime ideal q such that C is generated by the classes of the conjugates of q. Let K ⊆ k(µ ℓ ), ℓ ≡ 1 (mod 2p N ), N ≫ 0, be a cyclic p-tower of degree p N and let S = S ℓ . We assume ℓ totally split in k, whence 

Q]-1) (Λ ′ : Λ ′ ∩ N e (k × e ))
= 1, for some Λ ′ ⊇ E so that the second factor is trivial. Since N e ( S e ) = S , For ℓ = 593 (resp. ℓ = 1217) the stability holds from n 0 = 2 with N = 3 (resp.

#C #N e (C Ge e ) = #C #cℓ( S ) • #C p e = #C #cℓ( S ) = 1 if
N = 5); thus C 2 [2] capitulates in k ′ 1 = k 3 , whence C [2] = C capitulates in k 3
. For ℓ = 4289, a stabilization seems possible from n 0 = 3, but C 4 is not computable.

Concerning capitulation of C in towers K ⊂ k(µ ℓ ), we have the following experiments, showing that it can happen even if no stabilization is obtained; the notation Cn = [A, . . . , Z] means C n ≃ Z/AZ × . . . × Z/ZZ in k n and a box [a, . . . , z] means that the generators of C extended in k n are, respectively, the ath, . . ., zth powers of suitable generators of C n computed by PARI/GP (a, . . . , z, being integers modulo A, . . . , Z, respectively); so that [0, . . . , 0] is equivalent to the capitulation of C . For the program, one must precise p the minimal p-rank of C required rpmin, the length N of the tower and the interval for m: {p=2;rpmin=3;N=3;bm=2;Bm=10^6;for(m=bm,Bm,if(core(m)!=m,next); P=x^2-m;k=bnfinit(P,1);Ck=k.clgp;r=matsize(Ck [2]) [2];\\Ck=class group of k L=List;for(i=1,r,listput(L,0,i));rp=0;for(i=1,r,ei=Ck [2][i];v=valuation(ei,p); if(v>0,rp=rp+1));if(rp<rpmin,next);\\computation and test of the p-rank rp h=k.no;u=h/p^valuation(h,p);Ckp=List;for(i=1,r,ai=idealpow(k,Ck [3][i],u); listput(Ckp,ai,i));\\representatives ai of the p-class group Ckp forprime(ell=5,200,if(Mod(ell-1,2*p^N)!=0||Mod(m,ell)==0,next);Lq=List; \\the program computes prime representatives qi, inert in K/k, split in k: for(i=1,r,ai=Ckp[i];forprime(q=2,10^4,if(q==ell || kronecker(m,q)!=1,next); o=znorder(Mod(q,ell));if(valuation(o,p)!=valuation(ell-1,p),next);\\inertia f=idealfactor(k,q);qi=component(f,1) [1];cij=ai;for(j=1,p-1,cij=idealmul(k,cij,qi); if(List(bnfisprincipal(k,cij) [1])==L,listput(Lq,q,i);break(2))))); print("m=",m," Lq=",Lq);\\Lq = list of primes qi generating the p-class group for(n=0,N,R=polcompositum(P,polsubcyclo(ell,p^n)) [1];K=bnfinit(R,1);H=K.no; U=H/p^valuation(H,p);print();print("ell=",ell," n=",n," CK",n,"=",K.cyc); for(i=1,r,Fi=idealfactor(K,Lq[i]);Qi=idealpow(K,component(Fi,1) [

1],U); print(bnfisprincipal(K,Qi)[1])))))} p = 2
In the non-monogenic case, we observe many capitulations (or partial ones), in cyclic p-tower contained in k(µ ℓ ) (possibly, the capitulation holds in larger layers but this would require several days of computer); so we propose the following conjecture: Examples of non-totally real fields (case of the degree 6 example and non-Galois cubic fields, as illustrated in [START_REF] Gras | Numerical data verifying capitulations of C[END_REF]) show that the property can be enlarged to some non-totally real fields, with some conditions on the infinite places since it is obvious that capitulation in k(µ ℓ ) does not hold for an imaginary quadratic field. Since the structures of these p-class groups depend on norm properties, the conjecture can probably be also completed by densities results thanks to the techniques used in the classical approaches [1,7,[START_REF] Jaulent | Principalisation abélienne des groupes de classes logarithmiques[END_REF][START_REF] Kurihara | On the ideal class group of the maximal real subfields of number fields with all roots of unity[END_REF] and especially those of [22,[START_REF] Smith | 2 ∞ -Selmer groups, 2 ∞ -class groups and Goldfeld's conjecture[END_REF]. The computations up to N = 3 or 4 (n ∈ [0, N]) are only for verification when a λ-stability exists; otherwise some examples do not λ-stabilize in the interval considered and no conclusion is possible. For the program, one must precise p, ell, the modulus mod, s = ±1 defining real or imaginary quadratic fields k, the length N of the tower and the interval for m: {p=2;ell=257;mod=5;s=-1;N=3;bm=2;Bm=10^3; for(m=bm,Bm,if(core(m)!=m || Mod(m,ell)==0,next); P=x^2-s*m;lambda=0;if(s==-1&kronecker(s*m,ell)==1,lambda=1);\\lambda print();print("p=",p," mod=",mod," ell=",ell," sm=",s*m," lambda=",lambda); for(n=0,N,Pn=polcompositum(polsubcyclo(ell,p^n),P) [1];kn=bnfinit(Pn,1);\\layer kn knmod=bnrinit(kn,mod);v=valuation(knmod.no,p);Cn=knmod.cyc;\\ray class group of kn C=List;d=matsize(Cn) [2];for(j=1,d,c=Cn[d-j+1];w=valuation(c,p); if(w>0,listinsert(C,p^w,1)));\\end of computation of the p-ray class group of kn print("v",n,"=",v," p-ray class group=",C)))} IMAGINARY QUADRATIC FIELDS, p=2, ell=257, mod=1: m=-2,lambda=1 m=-11,lambda=1 m=-14,lambda=0 m=-17,lambda=1 m=-15,lambda=1 v0=0 [] v0=0 [] v0=2 [START_REF] Friedman | On the ℓ-adic Iwasawa λ-invariant in a p-extension, with an Appendix by L.C. Washington[END_REF] v0=2 [START_REF] Friedman | On the ℓ-adic Iwasawa λ-invariant in a p-extension, with an Appendix by L.C. Washington[END_REF] v0=1 [2] v1=3 [START_REF] Gras | Class Field Theory: from theory to practice[END_REF] v1=2 [START_REF] Friedman | On the ℓ-adic Iwasawa λ-invariant in a p-extension, with an Appendix by L.C. Washington[END_REF] v1=4 [START_REF] Friedman | On the ℓ-adic Iwasawa λ-invariant in a p-extension, with an Appendix by L.C. Washington[END_REF][START_REF] Friedman | On the ℓ-adic Iwasawa λ-invariant in a p-extension, with an Appendix by L.C. Washington[END_REF] v1=5 [START_REF] Gras | Class Field Theory: from theory to practice[END_REF]2,2] v1=2 [START_REF] Friedman | On the ℓ-adic Iwasawa λ-invariant in a p-extension, with an Appendix by L.C. Washington[END_REF] v2=7 [16,[START_REF] Friedman | On the ℓ-adic Iwasawa λ-invariant in a p-extension, with an Appendix by L.C. Washington[END_REF]2] v2=7 [START_REF] Gras | Class Field Theory: from theory to practice[END_REF][START_REF] Gras | Class Field Theory: from theory to practice[END_REF]2] v2=8 [START_REF] Friedman | On the ℓ-adic Iwasawa λ-invariant in a p-extension, with an Appendix by L.C. Washington[END_REF][START_REF] Friedman | On the ℓ-adic Iwasawa λ-invariant in a p-extension, with an Appendix by L.C. Washington[END_REF][START_REF] Friedman | On the ℓ-adic Iwasawa λ-invariant in a p-extension, with an Appendix by L.C. Washington[END_REF][START_REF] Friedman | On the ℓ-adic Iwasawa λ-invariant in a p-extension, with an Appendix by L.C. Washington[END_REF] v2=10[16,2,2,2,2,2,2] v2=3 [START_REF] Gras | Class Field Theory: from theory to practice[END_REF] v3=13 [32,8,2, v3=10 [16,16,4] v3=16 [8,8,8,4, [START_REF] Friedman | On the ℓ-adic Iwasawa λ-invariant in a p-extension, with an Appendix by L.C. Washington[END_REF] v0=6 [16,[START_REF] Friedman | On the ℓ-adic Iwasawa λ-invariant in a p-extension, with an Appendix by L.C. Washington[END_REF] v0=4 [16] v0=5 [16,2] v0=6 [16,2,2] v0=5 [START_REF] Gras | Class Field Theory: from theory to practice[END_REF][START_REF] Gras | Class Field Theory: from theory to practice[END_REF] v1=2 [START_REF] Friedman | On the ℓ-adic Iwasawa λ-invariant in a p-extension, with an Appendix by L.C. Washington[END_REF] v1=6 [16,[START_REF] Friedman | On the ℓ-adic Iwasawa λ-invariant in a p-extension, with an Appendix by L.C. Washington[END_REF] v1=4 [16] v1=5 [16,2] v1=8 [16,[START_REF] Friedman | On the ℓ-adic Iwasawa λ-invariant in a p-extension, with an Appendix by L.C. Washington[END_REF]2,2] v1=10 [32,[START_REF] Gras | Class Field Theory: from theory to practice[END_REF][START_REF] Gras | Class Field Theory: from theory to practice[END_REF] REAL QUADRATIC FIELDS, p=3, lambda=0: mod=1,ell=109 mod=1,ell=109 mod=7,ell=163 mod=7,ell=163 m=326 m=4409 m=5 m=6 v0=1 [3] v0=2 [START_REF] Gras | Invariant generalized ideal classes -Structure theorems for p-class groups in pextensions[END_REF] v0=1 [3] v0=1 [3] v1=1 [3] v1=2 [START_REF] Gras | Invariant generalized ideal classes -Structure theorems for p-class groups in pextensions[END_REF] v1=1 [3] v1=2 [3,3] v2=1 [3] v2=2 [START_REF] Gras | Invariant generalized ideal classes -Structure theorems for p-class groups in pextensions[END_REF] v2=1 [3] v2=2 [3,3] mod=7,ell=163 mod=7,ell=163 mod=19,ell=163 mod=19,ell=163 m=22 m=15 m=2 m=11 v0=2 [3,3] v0=1 [3] v0=2 [START_REF] Gras | Invariant generalized ideal classes -Structure theorems for p-class groups in pextensions[END_REF] v0=3 [9,3] v1=2 [3,3] v1=3 [3,3,3] v1=3 [START_REF] Mizusawa | Tame pro-2 Galois groups and the basic Z 2 -extension[END_REF] v1=4 [27,3] v2=2 [3,3] v2=5 [START_REF] Gras | Invariant generalized ideal classes -Structure theorems for p-class groups in pextensions[END_REF][START_REF] Gras | Invariant generalized ideal classes -Structure theorems for p-class groups in pextensions[END_REF]3] v2=3 [START_REF] Mizusawa | Tame pro-2 Galois groups and the basic Z 2 -extension[END_REF] v2=4 [START_REF] Mizusawa | Tame pro-2 Galois groups and the basic Z 2 -extension[END_REF]3] One finds examples of λ-stabilities taking for instance #S = 6 with three primes split in k = Q( √ ±m) and any of the 1024 totally S-ramified cyclic 2-towers K/k of degree 2 6 contained in k(µ 257•449•577 ) but, unfortunately, only computing in k and {p=2;ell=257;mod=17;N=5;print("p=",p," ell=",ell," mod=",mod); for(n=0,N,Pn=polsubcyclo(ell,p^n);kn=bnfinit(Pn,1);\\layer kn knmod=bnrinit(kn,mod);v=valuation(knmod.no,p);Cn=knmod.cyc;\\ray class group C=List;d=matsize(Cn) [2];for(j=1,d,c=Cn[d-j+1];w=valuation(c,p); if(w>0,listinsert(C,p^w,1)));print("v",n,"=",v," C",n,"=",C))} p=2,ell=257,mod=17 ell=257,mod=4*17 p=3,ell=163,mod=19 ell=163,mod=9*19 v0=3 [START_REF] Gras | Class Field Theory: from theory to practice[END_REF] v0=4 [16] v0=2 [START_REF] Gras | Invariant generalized ideal classes -Structure theorems for p-class groups in pextensions[END_REF] v0=3 [9,3] v1=4 [16] v1=5 [16,2] v1=3 [START_REF] Mizusawa | Tame pro-2 Galois groups and the basic Z 2 -extension[END_REF] v1=5 [START_REF] Mizusawa | Tame pro-2 Galois groups and the basic Z 2 -extension[END_REF]3,3] v2=4 [16] v2=7 [16,2,2,2] v2=3 [START_REF] Mizusawa | Tame pro-2 Galois groups and the basic Z 2 -extension[END_REF] v2=6 [81,3,3] v3=4 [16] v3=11 [16,2,2,2,2,2,2,2] v3=3 [START_REF] Mizusawa | Tame pro-2 Galois groups and the basic Z 2 -extension[END_REF] v3=6 [81,3,3] v4=4 [16] v4=12 [32,2,2,2,2,2,2,2] v5=4 [16] v5=12 [32,2, if(h==2,if(Mod(a,9)==3,a=-a);P=x^3-f/3*x-f*a/27);print();print("f=",f," P=",P); \\end of computation of P defining k of conductor f for(n=0,N,Pn=polcompositum(polsubcyclo(ell,p^n),P) [1];kn=bnfinit(Pn,1); v=valuation(kn.no,p);Cn=kn.cyc;C=List;d=matsize(Cn) [2];for(j=1,d,c=Cn[d-j+1]; w=valuation(c,p);if(w>0,listinsert(C,p^w,1)));print("v",n,"=",v," C",n,"=",C)))

k 1 = k( √ 257 • 449 • 577) with λ = 4 (resp. 5) for k (resp. imaginary): m=193 m=1591 m=2669 m=-527 m=-1739 v0=0 [] v0=1 [2] v0=2 [4] v0=1 [2] v0=2 [4] v1=4 [2,2,2,2] v1=5 [2,2,2,2,2] v1=6 [4,2, 2,2,2] v1=6 [4,2,2,2,2] v1=7 [8,2,2,2,2] 5.2 
))} p=2,ell=257,lambda=0 f=63 f=163 f=277 f=279 P=x^3-21*x-35 P=x^3+x^2-54*x-169 P=x^3+x^2-92*x+236 P=x^3-93*x+217 v0=0 [] v0=2 [2,2] v0=2 [2,2] v0=0 [] v1=2 [2,2] v1=4 [4,4] v1=4 [2,2,2,2] v1=2 [2,2] v2=2 [2,2] v2=4 [4,4] v2=6 [2,2,2,2,2,2] v2=4 [4,4] v3=2 [2,2] v3=4 [4,4] v3=6 [2,2,2,2,2,2] ? f=333 f=349 f=397 f=547 P=x^3-111*x+37 P=x^3+x^2-116*x-517 P=x^3+x^2-132*x-544 P=x^3+x^2-182*x-81 v0=0 [] v0=2 [2,2] v0=2 [2,2] v0=2 [2,2] v1=4 [4,4] v1=4 [2,2,2,2] v1=2 [2,2] v1=4 [2,2,2,2] v2=4 [4,4] v2=4 [2,2,2,2] v2=2 [2,2] v2=6 [4,4,2,2] p=3,ell=109,lambda=0 f=1687 f=1897 f=2359 f=5383 x^3+x^2-562*x-4936 x^3+x^2-632*x-4075 x^3+x^2-786*x+7776 x^3+x^2-1794*x+17744 v0=1 [3] v0=1 [3] v0=2 [3,3] v0=3 [9,3] v1=1 [3] v1=1 [3] v1=2 [3,3] v1=3 [9,3] 
As for the quadratic case, we may use k 1 = k( √ 257 • 449 • 577) for p = 2 with #S = 9, ρ = 2, λ = 6. The contribution of the 2-tower over Q is given by the 2-stability from the structures [ ], [2,2]. We find a great lot of λ-stabilities with the structures [ ], [2, 2, 

Other examples of applications and Remarks

Assume the total ramification of S = ∅ in the cyclic p-tower K/k and the main condition #X 1 = #X • p λ with λ = max (0, #S -1ρ) (Definition 1.1); remember that it is easy to ensure that tor Z (E) ⊂ N K/k (K × ) (Remark 1.3):

(a) Let k/k be a Z p -extension with Iwasawa's invariants λ, µ, ν. We then have a set of p-places S with 1 ≤ #S ≤ [k : Q] = r 1 + 2 r 2 and λ = max (0, #Sr 1r 2 ) ∈ [0, r 2 ]; one gets the formula #X n = #X • p λ•n for all n, as soon as #X 1 = #X • p λ holds, and in that case, λ is equal to λ and µ = 0; the Iwasawa formula being #X n = p λ•n+ν with p ν := #X (recall that this may apply only from a larger layer k ′ ). For CM-fields k with p totally split in k, λ = 1 2 [k : Q]. When k is totally real, Greenberg's conjecture [START_REF] Greenberg | On the Iwasawa invariants of totally real number fields[END_REF] for p-class groups ( λ = µ = 0) holds if and only if #C n0+1 = #C n0 is fulfilled for some n 0 ≥ 0 (λ ′ -stabilization from k ′ = k n0 with λ ′ = λ = 0), which may be checked if n 0 is not too large by chance (as in [START_REF] Kraft | Computing Iwasawa modules of real quadratic number fields[END_REF] for real quadratic fields, p = 3 non-split, or in various works of Taya [32], Fukuda, Komatsu). For m = -55 (successive structures [START_REF] Friedman | On the ℓ-adic Iwasawa λ-invariant in a p-extension, with an Appendix by L.C. Washington[END_REF], [START_REF] Friedman | On the ℓ-adic Iwasawa λ-invariant in a p-extension, with an Appendix by L.C. Washington[END_REF][START_REF] Friedman | On the ℓ-adic Iwasawa λ-invariant in a p-extension, with an Appendix by L.C. Washington[END_REF], [START_REF] Gras | Class Field Theory: from theory to practice[END_REF][START_REF] Friedman | On the ℓ-adic Iwasawa λ-invariant in a p-extension, with an Appendix by L.C. Washington[END_REF][START_REF] Friedman | On the ℓ-adic Iwasawa λ-invariant in a p-extension, with an Appendix by L.C. Washington[END_REF]2], [16,[START_REF] Gras | Class Field Theory: from theory to practice[END_REF][START_REF] Gras | Class Field Theory: from theory to practice[END_REF][START_REF] Friedman | On the ℓ-adic Iwasawa λ-invariant in a p-extension, with an Appendix by L.C. Washington[END_REF]), m = -115 (structures [2], [2,2], [2, 2, 2, 2], [START_REF] Gras | Class Field Theory: from theory to practice[END_REF][START_REF] Gras | Class Field Theory: from theory to practice[END_REF][START_REF] Gras | Class Field Theory: from theory to practice[END_REF][START_REF] Gras | Class Field Theory: from theory to practice[END_REF]), we have two examples of stabilization from n = 2 (rank 4).

If k ⊆ K ⊆ k, for a Z p -extension k of k, and if λ(1) = 0 (e.g., k is any quadratic field and C = 1) then rk p (C n ) = rk p (C ) as soon as this is true for n 1 (this may holds from some layer). See [START_REF] Gras | Numerical data verifying capitulations of C[END_REF]Section 7] for many examples. The following ones (among others) show a great tendency to stabilization of the rank: [2,[START_REF] Friedman | On the ℓ-adic Iwasawa λ-invariant in a p-extension, with an Appendix by L.C. Washington[END_REF][START_REF] Friedman | On the ℓ-adic Iwasawa λ-invariant in a p-extension, with an Appendix by L.C. Washington[END_REF][START_REF] Friedman | On the ℓ-adic Iwasawa λ-invariant in a p-extension, with an Appendix by L.C. Washington[END_REF][START_REF] Friedman | On the ℓ-adic Iwasawa λ-invariant in a p-extension, with an Appendix by L.C. Washington[END_REF][START_REF] Friedman | On the ℓ-adic Iwasawa λ-invariant in a p-extension, with an Appendix by L.C. Washington[END_REF][START_REF] Friedman | On the ℓ-adic Iwasawa λ-invariant in a p-extension, with an Appendix by L.C. Washington[END_REF][START_REF] Gras | Class Field Theory: from theory to practice[END_REF][START_REF] Gras | Class Field Theory: from theory to practice[END_REF] p=3 m=6559 [START_REF] Gras | Invariant generalized ideal classes -Structure theorems for p-class groups in pextensions[END_REF], [3,[START_REF] Mizusawa | Tame pro-2 Galois groups and the basic Z 2 -extension[END_REF], [START_REF] Gras | Invariant generalized ideal classes -Structure theorems for p-class groups in pextensions[END_REF][START_REF] Mizusawa | Tame pro-2 Galois groups and the basic Z 2 -extension[END_REF]; m=-362 [START_REF] Gras | Invariant generalized ideal classes -Structure theorems for p-class groups in pextensions[END_REF], [3,[START_REF] Mizusawa | Tame pro-2 Galois groups and the basic Z 2 -extension[END_REF], [START_REF] Gras | Invariant generalized ideal classes -Structure theorems for p-class groups in pextensions[END_REF]81]; m=-929 [START_REF] Gras | Invariant generalized ideal classes -Structure theorems for p-class groups in pextensions[END_REF], [3,[START_REF] Gras | Invariant generalized ideal classes -Structure theorems for p-class groups in pextensions[END_REF][START_REF] Mizusawa | Tame pro-2 Galois groups and the basic Z 2 -extension[END_REF], [START_REF] Gras | Invariant generalized ideal classes -Structure theorems for p-class groups in pextensions[END_REF][START_REF] Mizusawa | Tame pro-2 Galois groups and the basic Z 2 -extension[END_REF]81] (c) If K/Q is abelian with p ∤ [k : Q], λ-stabilities may hold for the isotopic Z p [Gal(k/Q)]-components of the X n 's, using fixed points formulas [16,[START_REF] Jaulent | Théorie ℓ-adique globale du corps de classes[END_REF].

p=2 m=-93 [2,2],[2,2,2],[2,2,2,2,2],[2,2,2,2,2,2,2,2,2],
(d) Remarks. Let's consider, for an arbitrary k, the family {C n } assuming the context of Lemma 1.2 and Remark 1.3; so λ = max (0, #S -1-ρ) with ρ = r 1 +r 2 -1.

(i) The condition of λ-stability, #C 1 = #C • p λ , implies C Gn n = C n for all n ≥ 1, but is not equivalent. Indeed, let k = Q( √ m), m > 0 such that 17 splits in k, and let K = kL, where L is the subfield of Q(µ 17 ) of degree 8; whence ρ = 1, λ = 0. Assume that ω 1 (ε) = 1 (ε norm in k 1 /k); then, from Chevalley's formula,

#C G1 1 = #C • p = #C . For m = 26, ε = 3 + √ 26 ≡ 5 2 (mod 17) in the completion Q 17 ; one obtains the structures [2], [2, 2], [4, 2] giving #C = 2 and #C 1 = #C G1 1 = 4. (ii) When #C 1 = #C • p λ does not hold (whence #C 1 > #C • p λ ),
we observe that orders and p-ranks are unpredictable and possibly unlimited in the tower; indeed, put 

C i n := {c ∈ C n , c (1-σn) i = 1} =: cℓ n (I i n ), i ≥ 1; we have, from (2.1), # C i+1 n /C i n = #C #N n (C i n ) × p n (#S-1) #ω n (Λ i ) , where Λ i := {x ∈ k × , (x) ∈ N n (I i n )};
III i k (Σ p ) := Ker H i (G k,Σp , F p ) → p∈Σp H i (G kp , F p ) , i = 1, 2 
, can be examined, in the same way in towers, as for generalized class groups. This is possible for III 1 k (Σ p ) ≃ (C k /cℓ k (Σ p ))⊗F p , but III 2 k (Σ p ) does not appear immediately as a generalized class group and is not of easy computational access (see [START_REF] Hajir | On the Shafarevich group of restricted ramification extensions of number fields[END_REF] for

#H 1 (g m n , T n+m ) = #H 2 (g m n , T n+m ) = #(T g m n n+m /J m n T n ) = p m•#S ta , giving an exact sequence of the form 1 → A → (T n+m /J m n T n ) g m n → T n [p m ] → A ′ , with #A ′ = #A = p m•#S ta .
We then obtain the following inequality:

(7.1) #T n+m ≥ #T n • #T n [p m ],
more precise than #T n+m ≥ #T g m n n+m = #T n • p m•#S ta , when the p-rank of T n increases, since #S ta is a constant.

For m = 1 one gets #T n+1 ≥ #T n • p rkp(Tn) . This tendency to give large orders and p-ranks is enforced by the presence of tame ramification (see § 7.2 for numerical illustrations) and leads to the vast theory of pro-p-extensions and Galois cohomology of pro-p-groups in a broader context than p-ramification theory, which is not our purpose (see [START_REF] Hajir | On the invariant factors of class groups in towers of number fields[END_REF] for more information). This explains that, for λ = #S ta = 0, Corollary 3.2 never applies for T (except T = 1 giving T n = 1 for all n).

It would be interesting to give an analogous study for the Jaulent logarithmic class group [START_REF] Jaulent | Classes logarithmiques des corps de nombres[END_REF] since its capitulation in the cyclotomic Z p -extension of k (real) characterizes Greenberg's conjecture. Remark 7.2. For p-class groups C n , in totally real cyclic p-towers, one obtains an inequality similar to (7.1) provided one replaces C n by J m n C n , where J m n is in general non-injective, a crucial point in this comparison. But for CM-fields k and p = 2, J n is injective on the "minus parts", giving

#C - n+m ≥ #C - n •#C - n [p m ],
which explains the results for imaginary quadratic fields in § 5.1, especially for m = -782 and m = -858, for which we can predict #C 4 larger than 2 54 and 2 46 , respectively. Remark 7.3. One can wonder about the contribution of the p-towers contained in Q(µ ℓ ), ℓ ≡ 1 (mod qp N ), used in the compositum with k. We have the following examples of T n for p = 2, 3 and S = S ℓ ; let vn, rkn denote the p-valuation, the p-rank, of T n , respectively; the parameter E must be chosen such that E > e + 1, where p e is the exponent of T n . {p=3;ell=17497;E=8;print("p=",p," ell=",ell);for(n=0,4,Qn=polsubcyclo(ell,p^n); kn=bnfinit(Qn,1);knmod=bnrinit(kn,p^E);Tn=knmod.cyc;\\computation of Tn T=List;d=matsize(Tn) [2];rkn=0;vn=0;for(j=1,d-1,c=Tn[d-j+1];w=valuation(c,p); if(w>0,vn=vn+w;rkn=rkn+1;listinsert(T,p^w,1)));\\computation of vn and rkn print("v",n,"=",vn," rk",n,"=",rkn," ",T))} p=2,ell=17 p=2,ell=7681 p=2,ell=257 v0=0 rk0=0 [] v0=0 rk0=0 [] v0=0 rk0=0 [] v1=1 rk1=1 [2] v1=1 rk1=1 [2] v1=3 rk1=1 [8] v2=2 rk2=1 [START_REF] Friedman | On the ℓ-adic Iwasawa λ-invariant in a p-extension, with an Appendix by L.C. Washington[END_REF] v2=2 rk2=1 [START_REF] Friedman | On the ℓ-adic Iwasawa λ-invariant in a p-extension, with an Appendix by L.C. Washington[END_REF] v2=7 rk2=3 [16,4,2] v3=3 rk3=1 [START_REF] Gras | Class Field Theory: from theory to practice[END_REF] v3=3 rk3=1 [START_REF] Gras | Class Field Theory: from theory to practice[END_REF] v3=13 rk3=7 [32,8,2,2,2,2,2] v4=4 rk4=1 [16] v4=4 rk4=1 [16] v4=23 [3] v1=1 rk1=1 [3] v1=2 rk1=2 [3,3] v1=3 rk1=2 [9,3] v2=2 rk2=1 [START_REF] Gras | Invariant generalized ideal classes -Structure theorems for p-class groups in pextensions[END_REF] v2=2 rk2=1 [START_REF] Gras | Invariant generalized ideal classes -Structure theorems for p-class groups in pextensions[END_REF] v2=4 rk2=2 [START_REF] Gras | Invariant generalized ideal classes -Structure theorems for p-class groups in pextensions[END_REF][START_REF] Gras | Invariant generalized ideal classes -Structure theorems for p-class groups in pextensions[END_REF] v2=6 rk2=3 [27,9,3] v3=3 rk3=1 [START_REF] Mizusawa | Tame pro-2 Galois groups and the basic Z 2 -extension[END_REF] v3=3 rk3=1 [START_REF] Mizusawa | Tame pro-2 Galois groups and the basic Z 2 -extension[END_REF] 7.1. Case of the cyclotomic Z p -extensions k ∞ /k of k real. The Iwasawa invariants λ, µ, ν, attached to lim ←-

T n satisfy λ = µ = 0 if and only if T = 1 (in which case ν = 0). Indeed, if λ = µ = 0, #T n = p ν for all n ≫ 0; but (7.1), with m = 1, gives ν ≥ ν + r n , where r n := rk p (T n ), whence r n = 0; but r n ≥ r, so r = 0 (J n is injective). The reciprocal comes from T Gn n ≃ T since S ta = ∅. Thus a λ-stability does exist only for λ = 0, which is excluded if T = 1. Computations suggest that the true Iwasawa parameters λ, µ may be often non-zero, even if few levels are accessible with PARI/GP; often there is stability for the p-class groups Cn (#Sp is the number of p-places of k = Q( √ m)): Strikingly, for m = 17, one verifies the formula #T n = 2 3•n+3•2 n -2 for n ∈ [0, 4] and (7.1) predicts #T 5 ≥ 2 89 ; for m = 34, (7.1) predicts #T 5 ≥ 2 92 (or much more).

(ii) Case p = 3. [START_REF] Gras | Invariant generalized ideal classes -Structure theorems for p-class groups in pextensions[END_REF]3,3,3] C1= [3] v1=7 rk1=4 [START_REF] Mizusawa | Tame pro-2 Galois groups and the basic Z 2 -extension[END_REF][START_REF] Gras | Invariant generalized ideal classes -Structure theorems for p-class groups in pextensions[END_REF]3,3] C1= [START_REF] Gras | Invariant generalized ideal classes -Structure theorems for p-class groups in pextensions[END_REF] v1=4 rk1=3 [START_REF] Gras | Invariant generalized ideal classes -Structure theorems for p-class groups in pextensions[END_REF]3,3] C1=[] v2=9 rk2=4 [START_REF] Mizusawa | Tame pro-2 Galois groups and the basic Z 2 -extension[END_REF][START_REF] Gras | Invariant generalized ideal classes -Structure theorems for p-class groups in pextensions[END_REF][START_REF] Gras | Invariant generalized ideal classes -Structure theorems for p-class groups in pextensions[END_REF][START_REF] Gras | Invariant generalized ideal classes -Structure theorems for p-class groups in pextensions[END_REF]C2= [START_REF] Gras | Invariant generalized ideal classes -Structure theorems for p-class groups in pextensions[END_REF] v2=11rk2=4 [81,27,9,9]C2= [START_REF] Gras | Invariant generalized ideal classes -Structure theorems for p-class groups in pextensions[END_REF] v2=8 rk2=4 [START_REF] Mizusawa | Tame pro-2 Galois groups and the basic Z 2 -extension[END_REF][START_REF] Gras | Invariant generalized ideal classes -Structure theorems for p-class groups in pextensions[END_REF][START_REF] Gras | Invariant generalized ideal classes -Structure theorems for p-class groups in pextensions[END_REF]3] 

  Chap. II, § 3]); mention their recent idelic proof by Li-Yu [26, Theorem 2.1 & § 2.3, Examples]. We shall use the following one for the layers of a S-ramified cyclic p-tower K/k: Proposition 2.1. Assume S = ∅ totally ramified in L/F . Let m, of support T disjoint from S, be a modulus of F and let C F , C L , be the p-Sylow subgroups of the ray class groups modulo m, of F and L, respectively. For any Z[G]-module I L , of prime-to-T ∪ S ideals of L, defining H

  #S = [k : Q]. We have, for k e /k of Galois group G e , the exact sequence: 1 → cℓ e (J Ge e ) -→ C Ge e -→ E ∩ N e (k × e )/N e (E e ) → 1, where the group J Ge e , of invariant ideals of k e , is of the form S e •J e (J ), where S e is the set of prime ideals of k e above S and J e (J ) the extension to k e of the group of ideals of k. From Theorem 3.1, necessary conditions, to get the criterion of stability #C 1 = #C , are C e = C Ge e and (E : E ∩N e (k × e )) = p e(#S-1) = p e([k:Q]-1) , whence E ∩N e (k × e ) = E p e ⊆ N e (E e ) giving C Ge e = cℓ e ( S e ) • J e (C ). But the condition C e = C Ge e is equivalent to (C e /C Ge e ) Ge = 1, whence (from (2.1)), to #C #N e (C Ge e ) × p e([k :

Conjecture 4 . 1 .

 41 Let k be a totally real number field with generalized p-class group X k,m = C k,m /H k (cf. (1.1)). There are infinitely many primes ℓ, ℓ ≡ 1 (mod 2 p N ), N ≫ 0, such that X k,m capitulates in k(µ ℓ ).

5 . 1 .

 51 Examples and counterexamples, with modulus, of λ-stabilities5.Cyclic p-towers over k = Q( √ ±m). Consider, for ℓ ≡ 1 (mod p N ) (in ell), the cyclic p-tower contained in k(µ ℓ )/k, for k = Q( √ s m), m > 0 square free (in m), s = ±1.The following PARI/GP program computes C kn,m =: C n for any prime-to-ℓ modulus m (in mod). The polynomial P n (in Pn) defines the layer k n . If s = -1 (resp. s = 1), λ = #S -1ρ ∈ {0, 1} (resp. λ = 0) in k but decreases in the tower (Remark 1.4). Then vn denotes the p-valuation of the order of C n whose structure Cn is given by the list C.

.

  Cyclic p-towers over Q with modulus. In a cyclic p-tower K/Q for S = S ℓ , m = 1, (2.1) shows that λ = 0 and #C n = 1 for all n. For m = 1, a stability may occur (possibly from n 0 > 0) as shown by the following examples (p = 2, 3) analogous to [28, Example 4.1]:

.

  Cyclic p-towers over a cyclic cubic field k. Let K ⊂ k(µ ℓ ) defining a cyclic p-tower of k. The program gives the complete list of cyclic cubic fields of conductor f ∈ [bf, Bf]. An interesting fact is that, in most cases, the stability occurs (with λ = 0 in the case S = S ℓ ); we give an excerpt with the defining polynomial P of k of conductor f: {p=2;ell=257;N=3;bf=7;Bf=10^3;for(f=bf,Bf,if(Mod(f,ell)==0,next); h=valuation(f,3);if(h!=0 & h!=2,next);F=f/3^h;if(core(F)!=F,next);F=factor(F); Div=component(F,1);d=matsize(F)[1];for(j=1,d,D=Div[j];if(Mod(D,3)!=1,break)); for(b=1,sqrt(4*f/27),if(h==2 & Mod(b,3)==0,next);A=4*f-27*b^2; if(issquare(A,&a)==1,\\computation of a and b such that f=(a^2+27b^2)/4 if(h==0,if(Mod(a,3)==1,a=-a);P=x^3+x^2+(1-f)/3*x+(f*(a-3)+1)/27);

  (b) Taking H N = C p r N may give the λ(r)-stability of the C n /C p r n 's, for some λ(r), whence rk p (C n ) = rk p (C ) + λ(1) • n for all n, as soon as this equality holds for n = 1 (where rk p (A) := dim Fp (A/A p )). For instance, let k = Q( √ -m) and K ⊂ k(µ 257 ) and consider the stability of the 2-ranks when rk 2 (C ) ≥ 1 (λ(1) = 0 since #S ≤ 2 and ρ = t ≥ 1 when C = 1); we find many examples: For m ∈ {-15, -35, -95, -111, -123, -159, -215, -235, -259, -287, -291, -303, -327, -355, -371, -415, -447, . . .} the 2-rank is 1 and stable from n = 0. For m ∈ {-39, -87, -91, -155, -183, -195, -203, -247, -267, -295, -339, -395, -399, -403, -427, -435, -455, -471, . . .} the 2-rank (equal to 2 or 3) is stable from n = 1.

> #C i n and the filtration increases. 7 .

 7 in general these two factors are non-trivial giving #C i+1 n Behavior of other invariants in cyclic p-towers Let Σ p be the set of p-places of k. In relation with class field theory and cohomology of the Galois group G k,Σp of the maximal Σ p -ramified (= p-ramified) prop-extension of k and of its local analogues G kp , the fundamental Tate-Chafarevich groups [21, Theorem 3.74], [29, § 1]:

  C2=[] See Remark 7.3 to compute the contributions of the towers over Q. Remark 7.4. Let K/k be a totally real, p-ramified (whence S ⊆ Σ p , arbitrary), cyclic p-tower (i.e., k ⊆ K ⊆ (H pr k ) ab , where Gal((H pr k ) ab /k) ≃ Z p ⊕ T k ). Then if the p-ranks of k and k 1 coincide, the p-rank is constant in the tower (indeed, this corresponds to the stability of T n [p], n ∈ [0, N ], since T n [p] Gn = T [p] and T n [p] G p n = T 1 [p] which leads to T n [p] ≃ T [p] for all n). Of course, this may occur only from some layer k ′ and the numerical data of § 7.1 gives many examples.

  . Sections 4 and 5 will give many examples of such capitulations of p-class groups of real fields k in K ⊆ k(µ ℓ ) (totally S-ramified with S = S ℓ ); for instance, for k = Q( √ 4409), the capitulation of the 3-class group C ≃ Z/9Z occurs in k 2 for ℓ ∈ {19, 37, 73, 109, 127, 271, 307, 379, 397, 523, 541, 577, 739, 883, . . .}. The 3-class group C ≃ Z/9Z × Z/3Z of the cyclic cubic field of conductor 5383, defined by P = x 3 + x 2 -1794x + 17744, capitulates in k 2 for ℓ = 109, 163, 919, . . . The 2-class group C ≃ Z/16Z of Q( √ 2305) capitulates in in k 4 for ℓ = 97, 193, 353, 449, 929, . . . The 5-class group C ≃ Z/25Z of Q( √ 24859) capitulates in in k 2 for ℓ = 101, 151, 251, 401, . . .

  and only if S generates C . Under the assumption of monogenicity, from Chebotarev density theorem, there exist infinitely many such sets and an obvious heuristic is that among these sets, infinitely many ones give the criterion #C 1 = #C , hence capitulation of C . But we can go further for nonmonogenic C 's. 4.2. Non-monogenic class groups and K ⊂ k(µ ℓ ). Using only single primes ℓ, the condition #C 1 = #C does not hold in general in the first layer k 1 . Nevertheless, many examples lead to a stabilization from some n 0 > 1, hence capitulation of C from k ′ e = k n0+e , so that we must have N > n 0 + e, where e is a constant, which suggests the existence of such towers. Unfortunately, any verification becomes out of reach if n 0 is too large. For instance, using the program of § 5.1 or the program below, for k = Q( √ 130), the p-class group C ≃ (Z/2Z) 2 capitulates in k 2 for ℓ = 1697, 2017, 5153, 5857, . . .. For k = Q(

	the following results:		√ 2310), where C ≃ (Z/2Z) 3 , we have
	ell=593	ell=1217	ell=4289
	v0=3 C0=[2,2,2]	v0=3 C0=[2,2,2]	v0=3 C0=[2,2,2]
	v1=6 C1=[2,4,8]	C1=[2,4,8]	v1=7 C1=[2,2,2,16]
	v2=7 C2=[2,4,16]	v2=7 C2=[2,4,16]	v2=9 C2=[2,2,4,32]
	v3=7 C3=[2,4,16]	v3=7 C3=[2,4,16]	v3=10 C3=[2,2,4,64]

  2, 2, 2, 2] or [2, 2], [4, 4, 2, 2, 2, 2] and very few exceptions for which one does not know if a λ-stabilization does exist for n > 1 (case of f = 1531 below):

	f=171,P=x^3-57*x-152	f=349,P=x^3+x^2-116*x-517	f=1531,P=x^3+x^2-510*x-567
	C0=[]	C0=[2,2]	C0=[]
	C1=[2,2,2,2,2,2]	C1=[4,4,2,2,2,2]	C1=[4,4,2,2,2,2]

  rk4=15 [64,16,2,2,2,2,2,2,2,2,2,2,2,2,2] v5=38 rk5=15 [128,32,[START_REF] Friedman | On the ℓ-adic Iwasawa λ-invariant in a p-extension, with an Appendix by L.C. Washington[END_REF][START_REF] Friedman | On the ℓ-adic Iwasawa λ-invariant in a p-extension, with an Appendix by L.C. Washington[END_REF][START_REF] Friedman | On the ℓ-adic Iwasawa λ-invariant in a p-extension, with an Appendix by L.C. Washington[END_REF][START_REF] Friedman | On the ℓ-adic Iwasawa λ-invariant in a p-extension, with an Appendix by L.C. Washington[END_REF][START_REF] Friedman | On the ℓ-adic Iwasawa λ-invariant in a p-extension, with an Appendix by L.C. Washington[END_REF][START_REF] Friedman | On the ℓ-adic Iwasawa λ-invariant in a p-extension, with an Appendix by L.C. Washington[END_REF][START_REF] Friedman | On the ℓ-adic Iwasawa λ-invariant in a p-extension, with an Appendix by L.C. Washington[END_REF][START_REF] Friedman | On the ℓ-adic Iwasawa λ-invariant in a p-extension, with an Appendix by L.C. Washington[END_REF][START_REF] Friedman | On the ℓ-adic Iwasawa λ-invariant in a p-extension, with an Appendix by L.C. Washington[END_REF][START_REF] Friedman | On the ℓ-adic Iwasawa λ-invariant in a p-extension, with an Appendix by L.C. Washington[END_REF][START_REF] Friedman | On the ℓ-adic Iwasawa λ-invariant in a p-extension, with an Appendix by L.C. Washington[END_REF][START_REF] Friedman | On the ℓ-adic Iwasawa λ-invariant in a p-extension, with an Appendix by L.C. Washington[END_REF][START_REF] Friedman | On the ℓ-adic Iwasawa λ-invariant in a p-extension, with an Appendix by L.C. Washington[END_REF] 

	p=3,ell=109	p=3,ell=163	p=3,ell=487	p=3,ell=17497
	v0=0 rk0=0 []	v0=0 rk0=0 []	v0=0 rk0=0 []	v0=0 rk0=0 []
	v1=1 rk1=1			

 

We see that the orders are not necessarily λ-stable from n = 0 (λ = #S -1): m=-15 m=-403 m=-259 m=-95 m=-195 m=-895 v0=1 [2] v0=1 [2] v0=2 [START_REF] Friedman | On the ℓ-adic Iwasawa λ-invariant in a p-extension, with an Appendix by L.C. Washington[END_REF] v0=3 [START_REF] Gras | Class Field Theory: from theory to practice[END_REF] v0=2 [2,2] v0=4 [16] v1=2 [START_REF] Friedman | On the ℓ-adic Iwasawa λ-invariant in a p-extension, with an Appendix by L.C. Washington[END_REF] v1=5 [START_REF] Gras | Class Field Theory: from theory to practice[END_REF]2,2] v1=3 [START_REF] Gras | Class Field Theory: from theory to practice[END_REF] v1=4 [16] v1=4 [START_REF] Friedman | On the ℓ-adic Iwasawa λ-invariant in a p-extension, with an Appendix by L.C. Washington[END_REF]2,2] v1=5 [32] v2=3 [START_REF] Gras | Class Field Theory: from theory to practice[END_REF] v2=8 [16,[START_REF] Friedman | On the ℓ-adic Iwasawa λ-invariant in a p-extension, with an Appendix by L.C. Washington[END_REF][START_REF] Friedman | On the ℓ-adic Iwasawa λ-invariant in a p-extension, with an Appendix by L.C. Washington[END_REF] v2=4 [16] v2=5 [32] v2=9 [START_REF] Gras | Class Field Theory: from theory to practice[END_REF][START_REF] Gras | Class Field Theory: from theory to practice[END_REF][START_REF] Gras | Class Field Theory: from theory to practice[END_REF] v2=6 [64] v3=4 [16] v3=11 [32,[START_REF] Gras | Class Field Theory: from theory to practice[END_REF][START_REF] Gras | Class Field Theory: from theory to practice[END_REF] v3=5 [32] v3=6 [64] v3=12 [16,16,16] v3=7 [128] 

a thorough study of III 2 k (S) when Σ p ⊂ S; the case Σ p ⊆ S easily reduces to S = Σ p under Leopoldt's conjecture [START_REF] Gras | Class Field Theory: from theory to practice[END_REF]Theorem III.4.1.5]). Nevertheless, we have an arithmetic interpretation, much more easily computable and having well-known properties, with the key invariant, closely related to III 2 k (Σ p ), [START_REF] Gras | Class Field Theory: from theory to practice[END_REF]Theorem III.4.2 and Corollaries]). Nevertheless, T k , linked to the residue at s = 1 of p-adic ζ-functions [3], gives rise to some analogies with generalized class groups (due to reflection theorems [START_REF] Gras | Class Field Theory: from theory to practice[END_REF]Theorem II.5.4.5]). See in [10] the interpretation of T k with the p-class group C k and the normalized p-adic regulator R k . Since the deep aspects of these cohomology groups are due to the p-adic properties of global units (i.e., R k ) we shall restrict ourselves to the totally real case under Leopoldt's conjecture. For any field κ, let κ ∞ be its cyclotomic Z p -extension; then T κ = Gal((H pr κ ) ab /κ ∞ ) where H pr κ is the maximal abelian Σ p -ramified pro-p-extension of κ.

Let K/k be a totally real, S-ramified, cyclic p-tower; denote by S ta ⊆ S the subset of tame places (when non-empty, S ta is assumed totally ramified, but the subset of p-places may be arbitrary). For all extensions L/F contained in K/k, the transfer maps J L/F :

). Lemma 7.1. Let K/k be a totally real cyclic p-tower of degree q p N , p-ramified or else totally ramified at S ta = ∅, where q = p or 4; assume that k ∩ Q ∞ = Q. Then, for any 0 ≤ n ≤ n + m ≤ N , and

Proof. We have (with our notations) #T g m n n+m = #T n • p m•#S ta • p R-m [8, Theorem IV.3.3, Exercise 3.3.1], R = min l∈S ta (m ; . . . , ν l + ϕ l + γ l , . . .) (with p ν l ∼ q -1 log(ℓ) where l ∩ Z = ℓ Z, p ϕ l ∼ residue degree of l in k/Q, γ l = 0 since S ta does not split in K/k). When S ta = ∅, the existence (see [8, V, Theorem 2.9] for a characterization) of a cyclic p-tower K/k implies N (l) ≡ 1 (mod q p N ), for all l ∈ S ta , where N is the absolute norm; indeed, the inertia group of the local extension

. So, we have ν l + ϕ l ≥ N and R = m; this explains the limitation of the level n to get the given fixed points formula in any case

However, the properties of the groups T n will give sometimes non-trivial Iwasawa's µ-invariants in k ∞ /k and very large ranks in cyclic p-towers with tame ramification; moreover λ may be much larger than λ = #S ta which explains that the λ-stability problem is less pertinent in this framework (few examples