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ON THE λ-STABILITY OF p-CLASS GROUPS

ALONG CYCLIC p-TOWERS OF A NUMBER FIELD

GEORGES GRAS

Abstract. Let k be a number field, p ≥ 2 a prime and S a set of tame
or wild finite places of k. We call K/k a totally S-ramified cyclic p-tower
if Gal(K/k) ≃ Z/pNZ and if S 6= ∅ is totally ramified. Using analogues of
Chevalley’s formula (Gras, Proc. Math. Sci. 127(1) (2017)), we give an
elementary proof of a stability theorem (Theorem 3.1) for generalized p-class
groups Xn of the layers kn ⊆ K: let λ = max(0,#S−1−ρ) given in Definition
1.1; then #Xn = #X0 · pλ·n for all n ∈ [0, N ], if and only if #X1 = #X0 · pλ.
This improves the case λ = 0 of Fukuda (1994), Li–Ouyang–Xu–Zhang (2020),
Mizusawa–Yamamoto (2020), whose techniques are based on Iwasawa’s theory
or Galois theory of pro-p-groups. We deduce capitulation properties of X0 in
the tower. Finally we apply our principles to the torsion groups Tn of abelian
p-ramification theory. Numerical examples are given.
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1. Introduction

The behavior of p-class groups in a Zp-extension gives rise to many theoreti-
cal and computational results; a main observation is the unpredictability of these
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2 GEORGES GRAS

groups in the first layers of the Zp-extension, then their regularization from some
not effective level, Iwasawa’s theory giving the famous formula of the orders by
means of the invariants λ, µ, ν; nevertheless, this algebraic context is not sufficient
to estimate these parameters (e.g., Greenberg’s conjecture [13]). Our purpose is
to see, more generally, what is the behavior of the p-class groups (and some other
arithmetic invariants) in cyclic p-extensions in which one allows tame ramification.

Let k be a number field, p ≥ 2 a prime number and K a cyclic extension of
degree pN of k, N ≥ 1, and let kn, n ∈ [0, N ], be the degree pn extension of k in
K. We speak of cyclic p-towers K/k and put G = Gal(K/k). Let S be the set of
places of k, ramified in K/k. We will assume S 6= ∅ and S totally ramified in K/k;
in general, S contains tame places, except if K is contained in a Zp-extension of k,
in which case S is a set of p-places of k. Due to the very nature of a tower, there
will never be “complexification=ramification” of infinite real places.

Let m 6= 0 be an integer ideal of k, of support T disjoint from S; let Ck,m and
Ckn,m, denoted simply C0,m and Cn,m, be the p-Sylow subgroups of the ray class
groups modulo m, of k and kn, respectively (for n > 0, m is seen as extended ideal
in kn). The class of an ideal a of kn is denoted cℓn,m(a).

Let NK/kn
be the arithmetic norm inK/kn, defined on class groups from norms of

ideals. Since m is prime to S 6= ∅ totally ramified, the corresponding p-Hilbert’s ray
class fields Hn,m, of the kn’s are linearly disjoint from the relative p-towers K/kn;
since, by class field theory, NK/kn

corresponds to the restriction of automorphisms
Gal(HN,m/K) → Gal(Hn,m/kn), we get NK/kn

(CN,m) = Cn,m, for all n ∈ [0, N ].

Let HN be a sub-Zp[G]-module of CN,m; we may represent a minimal set of
Zp[G]-generators of HN with prime ideals Q1, . . . ,Qt /∈ S ∪ T , Qi | qi in K/k.
Let IN be the Z[G]-module generated by these ideals; thus I0 := NK/k(IN ) is of
minimal Z-rank t since NK/k(IN )⊗Q = 〈q1, . . . , qt〉Z⊗Q. We set, for all n ∈ [0, N ]:

(1.1) In := NK/kn
(IN ), Hn := NK/kn

(HN ), Xn,m := Cn,m/Hn.

This defines the family {Xn,m}n∈[0,N ] (“generalized p-class groups”) such that:

NK/kn
(XN,m) = Xn,m, for all n ∈ [0, N ].

Any place Q of K, such that cℓN,m(Q) ∈ HN , totally splits in the subfield of HN,m

fixed by the image of HN in Gal(HN,m/K); so this general definition allows to
enforce decomposition conditions in the ray class fields.

To simplify, we shall remove the indices m, except necessity.

One speaks of “λ-stability” of these Xn along the cyclic p-tower K/k when there
exists λ ≥ 0 such that #Xn = #X0 · pλ·n, for all n ∈ [0, N ]. Of course, this is not
a workable definition, both theoretically (classical context of Zp-extensions or less
familiar case of p-towers with tame ramification) and computationally (inability to
use PARI/GP [30] beyond some level n = 3 or 4, and almost nothing for p > 5). So
we intend to get an accessible criterion likely to give information in all the tower.

Definition 1.1. Let Λ := {x ∈ k×, x ≡ 1 (mod m), (x) ∈ NK/k(IN )}. For
instance, IN = 1 yields {Xn} = {Cn} and Λ = E, the group of units ε ≡ 1
(mod m) of k. We have the exact sequence 1 → Λ/E → I0 → H0 → 1. Since Λ/E
is Z-free (of Z-rank t because H0 is finite), one can write, with representatives αj

of Λ/E:

Λ = torZ(E)
⊕

〈ε1, . . . , εr;α1, . . . , αt〉Z =: torZ(E)
⊕

X, εi ∈ E,
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r := r1+r2−1, where (r1, r2) is the signature of k, and where X is Z-free of Z-rank
ρ := r + t; we define the parameter λ := max (0,#S − 1− ρ).

We shall see that the norm properties, in K/k, of torZ(E)⊗ Zp are specific and
may give some obstructions that are elucidated by the following Lemma.

Lemma 1.2. (Albert’s Theorem for K/k; for a proof, see [8, Exercise I.6.2.3]). If
k contains the group µpǫ of pǫth roots of unity, then µpǫ ⊂ NK/k(K

×) if and only
if there exists a degree pǫ cyclic extension L/K such that L/k is cyclic.

Remark 1.3. We shall restrict ourselves to the case torZ(E) ⊗ Zp ⊂ NK/k(K
×).

If necessary, it suffices to restrict the tower K/k to the sub-tower K ′/k such that
[K : K ′] be the order of the group of pth roots of unity of k, or to notice that L/K/k
does exist (recall that no arithmetic condition is required on L/K).

Thus, the norm properties of Λ are assigned to X.

We put to simplify C0 =: C , H0 =: H , I0 =: I , X0 =: X , and so on, m being
implied; let pe be the exponent of X . Under the assumptions on S, T , we will
prove the following result for the cyclic p-tower K/k of degree pN (see Theorem 3.1
and Corollary 3.2 for more complete statements):

Main Result. Assume that torZ(E) ⊂ NK/k(K
×) (Remark 1.3). Let ρ ≥ 0 be the

Z-rank of the Z-module X and let λ := max (0,#S − 1− ρ) (Definition 1.1). Then
#Xn = #X ·pλ·n for all n ∈ [0, N ]), if and only if #X1 = #X ·pλ. If the criterion
applies with λ = 0 (i.e., #X1 = #X ) and if e ≤ N , then X capitulates in K.

Remark 1.4. (a) If λ = max (0,#S−1−ρ) fulfills the criterion of λ-stability from
the base field k, it fulfills the same λ-stability criterion in any relative p-tower K/k′,
k′ := kn0 , n0 ∈ [0, N [, since (with X ′

n := Xn0+n, n ≥ 0) we get #X ′
n = #X ′ · pλ·n

since #X ′
n = #Xn0+n = #X · pλ (n0+n) = (#X · pλn0) · pλn = #X ′ · pλn.

(b) If λ = max (0,#S − 1 − ρ) is not suitable for the criterion in k1/k (which
shall be equivalent to #X1 > #X · pλ due to Chevalley’s formula), we can consider
a relative tower K/k′; then, in k′, #S′ = #S, t′ = t, and λ′ := max (0,#S− 1− ρ′)
is a strictly decreasing function of [k′ : k] (indeed, from Definition 1.1, we compute
that ρ′ − ρ = r′ − r = (r1 + r2) · ([k′ : k]− 1)), so that two cases may arise:

(i) For some k′ ⊂ K, we have #X ′
1 = #X ′ ·pλ′

giving the λ′-stability in K/k′

with regular linear increasing orders from k′.

(ii) Whatever k′ ⊂ K, λ′ is not suitable (i.e., #X ′
1 > #X ′ ·pλ′

, even if λ′ = 0,
which occurs rapidly for k′ high enough in the tower), which means that #Xn is
strictly increasing from some level n0, which is illustrated by numerical examples

and can define a non-linear increasing (in a Zp-extension k̃ this means “µ̃ 6= 0”).

It is important to note that a λ̃-stability may exist from some level, with λ̃ > λ′;

this is the case in a Zp-extension k̃ with Iwasawa’s invariants λ̃ 6= 0 and µ̃ = 0.

Numerical experiments are out of reach as soon as n > 3 or 4, but a reasonable
heuristic is a tendency to stabilization in totally real p-towers, by analogy with the
study of Greenberg’s conjecture carried out in [11]. In a different framework, let kn
be the nth layer of the cyclotomic Zp-extension k∞ of k and let Cn be the whole
class group of kn; then, for ℓ 6= p, #(Cn ⊗Zℓ) stabilizes in k∞ (a deep result in the
abelian case [33], extended in [4] to Iwasawa context in the Zp×Zℓ-extension of k).

(c) For k fixed, λ is unbounded (which only depends on the tower via S) and the
condition #C1 = #C of the literature (λ = t = 0, thus #S ≤ r1 + r2) is empty as
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soon as λ ≥ 1, whence the interest of the factor pλ to get examples whatever S.
For known results (all relative to λ = 0), one may cite Fukuda [5] using Iwasawa’s
theory, Li–Ouyang–Xu–Zhang [25, § 3] working in a non-abelian Galois context, in
Kummer towers, via the use of the fixed points formulas [6, 9], then Mizusawa [27]
above Z2-extensions, and Mizusawa–Yamamoto [28] for generalizations, including
ramification and splitting conditions, via the Galois theory of pro-p-groups.

(d) If Lemma 1.2 does not apply, some counterexamples can arise. For instance,
let k = Q(

√
−55), p = 2, K = k(µ17) of degree 24 over k (−1 /∈ NK/k(K

×),
#S = 2, λ = 1); the successive 2-structures are [4], [8], [16], [32], [32], for which
#Cn = #C · 2n holds for n ∈ [0, 3], since −1 is norm in k3/k, but not for n = 4.

To conclude, we will show that the behavior, in K/k, of the finite torsion groups
Tn of p-ramification theory (as “dual” invariants of p-class groups) gives much

strongly increasing groups with possibly non-zero µ̃-invariants in Zp-extensions k̃/k.

2. Around Chevalley’s ambiguous class number formula

The well-known Chevalley’s formula [2, p. 402] is the pivotal element for a great
lot of “fixed points formulas”. For the ordinary sense, it takes into account the
complexification of real infinite places, which does not occur for us as explained in
the Introduction. Let L/F be a cyclic p-extension of Galois group G, S-ramified,
non-complexified if p = 2, and let ev(L/F ) be the ramification index of v ∈ S; we

have #CG
L =

#CF ·
∏

v∈S ev(L/F )

[L : F ] · (EF : EF ∩ NL/F (L×))
, where CF , CL denote the p-class groups

of F , L, respectively, and EF the group of units of F .

Various generalizations of this formula were given (Gras [6, Théorème 2.7, Corol-
laire 2.8], [9, Theorem 3.6, Corollaries 3.7, 3.9], Jaulent [16, Chap. II, § 3]); mention
their recent idelic proof by Li–Yu [26, Theorem 2.1 & § 2.3, Examples]. We shall
use the following one for the layers of a S-ramified cyclic p-tower K/k:

Proposition 2.1. Assume S 6= ∅ totally ramified in L/F . Let m, of support T
disjoint from S, be a modulus of F and let CF , CL, be the p-Sylow subgroups of
the ray class groups modulo m, of F and L, respectively. For any Z[G]-module
IL, of prime-to-T ∪ S ideals of L, defining HL := cℓL(IL), HF := NL/F (HL) =

cℓF (NL/F (IL)), we have, with ΛL/F := {x ∈ F×, x ≡ 1(mod m), (x) ∈ NL/F (IL)}:

(2.1) #(CL/HL)
G = #(CF /HF )×

(#G)#S−1

(ΛL/F : ΛL/F ∩ NL/F (L×))
.

Lemma 2.2. Let K/k be a cyclic p-tower of degree pN , of Galois group G =: 〈σ〉.
Let HN =: cℓN(IN ) ⊆ CN and Λ := {x ∈ k×, x ≡ 1 (mod m), (x) ∈ NK/k(IN )}
(see Definition 1.1):

(i) Λ = {x ∈ k×, x ≡ 1 (mod m), (x) ∈ Nkn/k(In)} (i.e., ΛK/k = Λkn/k),

(ii) Λ ⊆ Λ1 := {x1 ∈ k×1 , x1 ≡ 1 (mod m), (x1) ∈ NK/k1
(IN )}.

Proof. Point (i) comes from In = NK/kn
(IN ). Let x ∈ Λ seen in k1; then (x) =

NK/k(A) = NK/k1
(AΘ), where Θ = 1 + σ + · · ·+ σp−1, and AΘ ∈ IN since IN is

a Z[G]-module, whence (ii). Notice that (x) ∈ NK/k(IN ) expresses that x is local
norm in K/k at every v /∈ S; if moreover x is local norm at S it is a global one
(Hasse norm theorem). �
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In what follows, throughout the article, only the invariant ρ = rkZ(X) is needed
(Definition 1.1 giving λ := max (0,#S − 1 − ρ)) and never IN , Λ, . . . However,
ρ = r + t may be unknown because of the minimal number t of generators of the
Z[G]-module IN (or the Z-module I ) if it is too general; but, in practice, ρ is
known (e.g., ρ = r1 + r2 − 1 for ray class groups modulo m) or ρ is large enough to
get λ = 0.

Lemma 2.3. Let X = 〈x1, . . . , xρ〉Z be a free Z-module of Z-rank ρ ≥ 0, let
Ω := (Z/pnZ)δ, n ≥ 1, δ ≥ 0, and let f : X → Ω be an homomorphism such that
the image of X → Ω/Ωp is of Fp-dimension min (ρ, δ). Then #f(X) = pmin (ρ,δ)·n

and for all m ∈ [0, n], #fpm

(X) = pmin (ρ,δ)·(n−m) (where fpm

(x) := f(x)p
m

).

Proof. From f : X → Ω, let f : X/Xp → Ω/Ωp; by assumption, dimFp
(Im(f)) =

min (ρ, δ). Let M = 〈e1, . . . , eδ〉Zp
be a free Zp-module of Zp-rank δ, and replace Ω

by M/Mpn

. Let q : X → X/Xp, πn : M → M/Mpn

, π : M/Mpn → M/Mp, and
π1 = π ◦ πn : M → M/Mp, be the canonical maps. Then, let F : X → M be any
map such that πn ◦ F = f . We have, since n ≥ 1, the commutative diagram:

❅
❅❅ցf

X≃Zρ

X/Xp

M≃Zδ
p

Ω/Ωp≃M/Mp

Ω≃M/Mpn

F

f

πn

π

q π1

(i) Case ρ ≥ δ (surjectivity of f). Let y ∈ M ; there exists x ∈ X such that

π1(y) = f(q(x)) = π1(F (x)), whence y = F (x) · y′p, y′ ∈ M ; so, by a finite
induction, M = F (X) ·Mpn

and πn(M) = Ω = f(X) is of order pδ·n.

(ii) Case ρ < δ (injectivity of f). Let y ∈ M such that yp = F (x), x ∈ X ; then
1 = π1(y

p) = π1(F (x)) = f(q(x)), whence q(x) = 1 and x = x′p, x′ ∈ X , giving
yp = F (x′)p in M thus y = F (x′), proving that F (X) is direct factor in M ; thus
f(X) = πn(F (X)) is a direct factor, in Ω, isomorphic to (Z/pnZ)ρ.

Since fpm

(X) = f(X)p
m

, this gives f(X)p
m

= Ωpm ≃ ((Z/pnZ)δ)p
m

in case (i)
and ((Z/pnZ)ρ)p

m

in case (ii). Whence the orders. �

3. Introduction of Hasse’s norm symbols – Main theorem

Let K/k be a S-ramified cyclic p-tower of degree pN , N ≥ 1. Let ωkn/k

be the map which associates with x ∈ Λ the family of Hasse’s norm symbols(x , kn/k

v

)
∈ Iv(kn/k) (inertia groups of v ∈ S), where Λ := {x ∈ k×, x ≡ 1

(mod m), (x) ∈ NK/k(IN )}. Since x is local norm at the places v /∈ S, the image

of ωkn/k is contained in Ωkn/k :=
{
(τv)v∈S ∈ ⊕

v∈S Iv(kn/k),
∏

v∈S τv = 1
}
(from

the product formula); then Ker(ωkn/k) = Λ ∩ Nkn/k(k
×
n ).

Assume S 6= ∅ totally ramified; so, fixing any v0 ∈ S, Ωkn/k ≃ ⊕
v 6=v0

Gn, with

Gn := Gal(kn/k). We consider formula (2.1) in kn/k, using Lemma 2.2 (i):

(3.1) #X Gn

n = #X · pn (#S−1)

(Λ : Λ ∩ Nkn/k(k
×
n ))

= #X · pn (#S−1)

#ωkn/k(Λ)
,

where Xn := Cn/Hn for the family {Hn} (cf. (1.1) with a prime-to-S modulus m).
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Theorem 3.1. Set Λ =: torZ(E)
⊕

X, with X = 〈x1, . . . , xρ〉Z free of Z-rank ρ,
and let λ := max (0,#S−1−ρ). Assume that torZ(E) ⊂ NK/k(K

×) (see Lemma 1.2
and Remark 1.3). We then have the following properties of λ-stability:

(i) If #X1 = #X ·pλ, then #Xn = #X ·pλ·n and X Gn
n = Xn, for all n ∈ [0, N ].

(ii) If #X1 = #X ·pλ, then Jkn/k(X ) = X pn

n and Ker(Jkn/k) = Nkn/k(Xn[p
n]),

for all n ∈ [0, N ], where the Jkn/k’s are the transfer maps in kn/k and Xn[p
n] :=

{x ∈ Xn, xpn

= 1}. If moreover, λ = 0, the norm maps Nkn/k : Xn →→ X are
isomorphisms.

Proof. Put Nn := Nkn/k, Jn := Jkn/k, Gn =: 〈σn〉, Ωn := Ωkn/k, ωn := ωkn/k,

s := #S. By assumption, ωn(Λ) = ωn(X) for all n ∈ [1, N ]. From (3.1), #X G1
1 =

#X · ps−1

#ω1(X)
≥ #X · pλ since #ω1(X) ≤ pmin (ρ,s−1); thus, with #X1 = #X · pλ,

we obtain X G1
1 = X1, whence #X G1

1 = #X · pλ and #ω1(X) = pmin (ρ,s−1).

By restriction of Hasse’s symbols, ω1 = π ◦ ωn, with π : Ωn → Ωn/Ω
p
n ≃ Gs−1

1 .
Since we have proven that dimFp

(ω1(X)) = min (ρ, s− 1), Lemma 2.3 applies to

X = 〈x1, . . . , xρ〉Z, δ = s− 1, f = ωn; so, #ωn(X) = pmin (ρ,s−1)n and, from (3.1):

(3.2) #X Gn

n = #X · pλ·n, for all n ∈ [0, N ].

Consider the extension kn/k1, of Galois group Gp
n = 〈σp

n〉, and the corresponding

map ω′n on k×1 with values in Ωkn/k1
≃ Ωp

n; then #X
Gp

n
n = #X1 · p(n−1) (s−1)

#ω′
n(Λ1)

,

Λ1 := {x ∈ k×1 , x ≡ 1 (mod m), (x) ∈ NK/k1
(IN )}. Since Λ ⊆ Λ1 (Lemma

2.2 (ii)), the functorial properties of Hasse’s symbols on X imply (where v1 | v in
k1):

ω′n(xi) =
((

xi, kn/k1

v1

))

v
=

((
N1(xi), kn/k

v

))

v
=

((
xp
i , kn/k

v

))

v
=

((
xi, kn/k

v

)p)

v
,

giving ω′n = ωp
n on X . Then, ω′n(X) ⊆ ω′n(Λ1) yields:

#X
Gp

n
n = #X1 · p

(n−1) (s−1)

#ω′
n(Λ1)

≤ #X1 · p
(n−1) (s−1)

#ω′
n(X)

= #X1 · p
(n−1) (s−1)

#ωp
n(X)

;

Lemma 2.3, for ωp
n, gives #ωp

n(X) = p(n−1) min (ρ,s−1), then, with #X1 = #X · pλ:

#X
Gp

n
n ≤ #X1 · p(n−1) (s−1)

p(n−1) min (ρ,s−1)
= #X1 ·pλ·(n−1) = #X ·pλ·n.

Since X
Gp

n
n ⊇ X Gn

n and #X Gn
n = #X · pλ·n from (3.2), we get X Gn

n = X
Gp

n
n ,

equivalent to X 1−σn
n = X

1−σp
n

n = X
(1−σn) · θ
n , where θ = 1 + σn + · · · + σp−1

n ∈
(p, 1−σn), a maximal ideal of Zp[Gn] since Zp[Gn]/(p, 1−σn) ≃ Fp; so X 1−σn

n = 1,
thus Xn = X Gn

n . Whence (i).

From Nn(Xn) = X , Xn = X Gn
n (from (i)) and Jn ◦ Nn = νn (the algebraic

norm), one obtains Jn(X ) = Jn(Nn(Xn)) = X νn
n = X pn

n . Let x ∈ Ker(Jn)
and put x = Nn(y), y ∈ Xn; then 1 = Jn(x) = Jn(Nn(y)) = yp

n

, so Ker(Jn) ⊆
Nn(Xn[p

n]) and if x = Nn(y), yp
n

= 1, then Jn(x) = Jn(Nn(y)) = yp
n

= 1.
Whence (ii). �

Corollary 3.2. Let pe be the exponent of X in k fixed, and let K be a totally
S-ramified cyclic p-tower of degree pN , with N ≥ e, such that λ = 0 (namely
1 ≤ #S ≤ r1 + r2 for the family {Cn} of p-class groups). If #X1 = #X , then
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X capitulates in ke. In particular, this applies in a Zp-extension k̃/k with λ = 0,
#X1 = #X and S (set of p-places) totally ramified.

Proof. Since λ = 0, Xe ≃ X from the isomorphism induced by Ne : Xe →→ X ,
whence Ker(Je) = Ne(Xe[p

e]) ≃ X [pe] = X . �

Example 3.3. Put pǫ := #torZp
(E). For a prime ℓ ≡ 1 (mod pN+ǫ), let Sℓ be

the set of prime ideals l of k dividing ℓ and let K ⊆ k(µℓ) be the subfield of
degree pN . Sections 4 and 5 will give many examples of such capitulations of
p-class groups of real fields k in K ⊆ k(µℓ) (totally S-ramified with S = Sℓ);

for instance, for k = Q(
√
4409), the capitulation of the 3-class group C ≃ Z/9Z

occurs in k2 for ℓ ∈ {19, 37, 73, 109, 127, 271, 307, 379, 397, 523, 541, 577,
739, 883, . . .}. The 3-class group C ≃ Z/9Z × Z/3Z of the cyclic cubic field of
conductor 5383, defined by P = x3 + x2 − 1794x + 17744, capitulates in k2 for
ℓ = 109, 163, 919, . . . The 2-class group C ≃ Z/16Z of Q(

√
2305) capitulates in in

k4 for ℓ = 97, 193, 353, 449, 929, . . . The 5-class group C ≃ Z/25Z of Q(
√
24859)

capitulates in in k2 for ℓ = 101, 151, 251, 401, . . .

Totally real fields k give λ = 0 whatever S = Sℓ, but some non-totally real fields
may give λ = 0; for instance, let P = x6 + x5 − 5x4 − 4x3 + 6x2 + 2x+ 7 defining
k, of signature (0, 3), of Galois group S6 and discriminant −11 · 31 · 971 · 2801; so
λ = max(0,#S − 1 − (r1 + r2 − 1)) = max(0,#S − 3). For p = 3, C ≃ Z/3Z
capitulates in k1 for ℓ = 37, 61, 67, 73, 97, 103, 109, . . . for which #Sℓ ∈ {1, 2, 3},
giving λ = 0 as expected. We have verified the capitulation of C in k1 for ℓ = 37
(for this and other complements see [12]).

4. On the existence of capitulation fields for real class groups

A totally real field k been given, a problem is the existence of cyclic p-towersK/k
such that C , of exponent pe, capitulates in K. We do not intend to establish again
the “abelian capitulation” proved in the literature (Gras [7] (1997), Kurihara [24]
(1999), Bosca [1] (2009), Jaulent [18, 20] (2019, 2020)), but we will examine this
possibility in a simpler way using Theorem 3.1. We may assume that k is Galois
real and we shall make some heuristics using only cyclic p-towers totally S-ramified
with S = Sℓ, the set of places of k above ℓ; this is an important difference compared
to the previous references.

4.1. Monogenic class groups and K ⊂ k(µℓ). We assume, at first, that C is
monogenic, that is to say that there exists a prime ideal q such that C is generated
by the classes of the conjugates of q. Let K ⊆ k(µℓ), ℓ ≡ 1 (mod 2pN ), N ≫ 0,
be a cyclic p-tower of degree pN and let S = Sℓ. We assume ℓ totally split in k,
whence #S = [k : Q]. We have, for ke/k of Galois group Ge, the exact sequence:
1 → cℓe(J Ge

e ) −→ CGe
e −→ E ∩ Ne(k

×
e )/Ne(Ee) → 1, where the group J Ge

e , of
invariant ideals of ke, is of the form 〈Se〉·Je(J ), where Se is the set of prime ideals of
ke above S and Je(J ) the extension to ke of the group of ideals of k. From Theorem
3.1, necessary conditions, to get the criterion of stability #C1 = #C , are Ce = CGe

e

and (E : E∩Ne(k
×
e )) = pe(#S−1) = pe([k:Q]−1), whence E∩Ne(k

×
e ) = Epe ⊆ Ne(Ee)

giving C Ge
e = cℓe(〈Se〉) · Je(C ). But the condition Ce = C Ge

e is equivalent to

(Ce/C
Ge
e )Ge = 1, whence (from (2.1)), to

#C

#Ne(C
Ge
e )

× pe([k :Q]−1)

(Λ′ : Λ′ ∩ Ne(k
×
e ))

= 1, for
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some Λ′ ⊇ E so that the second factor is trivial. Since Ne(〈Se〉) = 〈S〉, #C

#Ne(C
Ge
e )

=

#C
#cℓ(〈S〉) · #C pe =

#C
#cℓ(〈S〉) = 1 if and only if S generates C . Under the assumption

of monogenicity, from Chebotarev density theorem, there exist infinitely many such
sets and an obvious heuristic is that among these sets, infinitely many ones give
the criterion #C1 = #C , hence capitulation of C . But we can go further for non-
monogenic C ’s.

4.2. Non-monogenic class groups and K ⊂ k(µℓ). Using only single primes ℓ,
the condition #C1 = #C does not hold in general in the first layer k1. Nevertheless,
many examples lead to a stabilization from some n0 > 1, hence capitulation of C
from k′e = kn0+e, so that we must have N > n0 + e, where e is a constant, which
suggests the existence of such towers. Unfortunately, any verification becomes out
of reach if n0 is too large. For instance, using the program of § 5.1 or the program
below, for k = Q(

√
130), the p-class group C ≃ (Z/2Z)2 capitulates in k2 for

ℓ = 1697, 2017, 5153, 5857, . . .. For k = Q(
√
2310), where C ≃ (Z/2Z)3, we have

the following results:

ell=593 ell=1217 ell=4289

v0=3 C0=[2,2,2] v0=3 C0=[2,2,2] v0=3 C0=[2,2,2]

v1=6 C1=[2,4,8] v1=6 C1=[2,4,8] v1=7 C1=[2,2,2,16]

v2=7 C2=[2,4,16] v2=7 C2=[2,4,16] v2=9 C2=[2,2,4,32]

v3=7 C3=[2,4,16] v3=7 C3=[2,4,16] v3=10 C3=[2,2,4,64]

For ℓ = 593 (resp. ℓ = 1217) the stability holds from n0 = 2 with N = 3 (resp.
N = 5); thus C2[2] capitulates in k′1 = k3, whence C [2] = C capitulates in k3. For
ℓ = 4289, a stabilization seems possible from n0 = 3, but C4 is not computable.

Concerning capitulation of C in towers K ⊂ k(µℓ), we have the following experi-
ments, showing that it can happen even if no stabilization is obtained; the notation
Cn = [A, . . . ,Z] means Cn ≃ Z/AZ × . . . × Z/ZZ in kn and a box [a, . . . , z] means
that the generators of C extended in kn are, respectively, the ath, . . ., zth powers of
suitable generators of Cn computed by PARI/GP (a, . . . , z, being integers modulo
A, . . . , Z, respectively); so that [0, . . . , 0] is equivalent to the capitulation of C . For
the program, one must precise p the minimal p-rank of C required rpmin, the length
N of the tower and the interval for m:

{p=2;rpmin=3;N=3;bm=2;Bm=10^6;for(m=bm,Bm,if(core(m)!=m,next);

P=x^2-m;k=bnfinit(P,1);Ck=k.clgp;r=matsize(Ck[2])[2];\\Ck=class group of k

L=List;for(i=1,r,listput(L,0,i));rp=0;for(i=1,r,ei=Ck[2][i];v=valuation(ei,p);

if(v>0,rp=rp+1));if(rp<rpmin,next);\\computation and test of the p-rank rp

h=k.no;u=h/p^valuation(h,p);Ckp=List;for(i=1,r,ai=idealpow(k,Ck[3][i],u);

listput(Ckp,ai,i));\\representatives ai of the p-class group Ckp

forprime(ell=5,200,if(Mod(ell-1,2*p^N)!=0||Mod(m,ell)==0,next);Lq=List;

\\the program computes prime representatives qi, inert in K/k, split in k:

for(i=1,r,ai=Ckp[i];forprime(q=2,10^4,if(q==ell || kronecker(m,q)!=1,next);

o=znorder(Mod(q,ell));if(valuation(o,p)!=valuation(ell-1,p),next);\\inertia

f=idealfactor(k,q);qi=component(f,1)[1];cij=ai;for(j=1,p-1,cij=idealmul(k,cij,qi);

if(List(bnfisprincipal(k,cij)[1])==L,listput(Lq,q,i);break(2)))));

print("m=",m," Lq=",Lq);\\Lq = list of primes qi generating the p-class group

for(n=0,N,R=polcompositum(P,polsubcyclo(ell,p^n))[1];K=bnfinit(R,1);H=K.no;

U=H/p^valuation(H,p);print();print("ell=",ell," n=",n," CK",n,"=",K.cyc);

for(i=1,r,Fi=idealfactor(K,Lq[i]);Qi=idealpow(K,component(Fi,1)[1],U);

print(bnfisprincipal(K,Qi)[1])))))}

p = 2
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m=1155 ell=193

C0=[2,2,2] C1=[2,2,2,2,2] C2=[4,4,2,2,2,2,2] C3=[8,8,4,2,2,2,2]

[1,0,0] [1,0,1,0,0] [0,0,0,0,0,0,0] [0,0,0,0,0,0,0]

[0,1,0] [1,1,1,0,0] [2,2,1,1,1,0,0] [0,0,0,0,0,0,0]

[0,0,1] [0,1,0,0,0] [2,2,1,1,1,0,0] [0,0,0,0,0,0,0]

m=1155 ell=337

C0=[2,2,2] C1=[2,2,2,2,2] C2=[20,4,4,2,2] C3=[40,4,4,2,2]

[1,0,0] [0,1,1,1,1] [0,0,0,0,0] [0,0,0,0,0]

[0,1,0] [1,0,1,1,0] [10,2,0,0,0] [0,0,0,0,0]

[0,0,1] [1,1,0,0,1] [10,2,0,0,0] [0,0,0,0,0]

m=1995 ell=17

C0=[2,2,2] C1=[4,2,2,2] C2=[8,4,2,2] C3=[8,4,2,2]

[1,0,0] [2,1,0,0] [0,0,0,0] [0,0,0,0]

[0,1,0] [2,1,0,0] [0,0,0,0] [0,0,0,0]

[0,0,1] [0,1,0,0] [4,0,0,0] [0,0,0,0]

m=1995 ell=113

C0=[2,2,2] C1=[12,2,2,2] C2=[12,2,2,2,2,2] C3=[24,4,2,2,2,2]

[1,0,0] [6,1,1,1] [0,0,1,1,1,0] [0,0,0,0,0,0]

[0,1,0] [6,0,0,0] [0,0,0,0,0,0] [0,0,0,0,0,0]

[0,0,1] [0,0,0,0] [0,0,0,0,0,0] [0,0,0,0,0,0]

m=1995 ell=193

C0=[2,2,2] C1=[2,2,2,2,2] C2=[12,6,2,2,2,2,2] C3=[24,12,4,4,2,2,2]

[1,0,0] [1,0,1,1,0] [6,3,1,0,0,0,0] [0,0,0,0,0,0,0]

[0,1,0] [0,1,1,1,0] [6,3,1,0,0,0,0] [0,0,0,0,0,0,0]

[0,0,1] [0,0,0,0,0] [0,0,0,0,0,0,0] [0,0,0,0,0,0,0]

m=2210 ell=97

C0=[2,2,2] C1=[12,4,2] C2=[24,4,2] C3=[24,4,2]

[1,0,0] [0,0,0] [0,0,0] [0,0,0]

[0,1,0] [6,0,0] [12,0,0] [0,0,0]

[0,0,1] [6,2,0] [12,0,0] [0,0,0]

m=2210 ell=113

C0=[2,2,2] C1=[12,2,2,2] C2=[24,4,2,2,2] C3=[48,12,12,4,2]

[1,0,0] [0,1,1,0] [0,2,0,0,0] [0,0,0,0,0]

[0,1,0] [6,0,0,0] [12,0,0,0,0] [24,0,0,0,0]

[0,0,1] [6,1,1,0] [12,2,0,0,0] [24,0,0,0,0]

p = 3
m=23659 ell=19 m=23659 ell=37 m=32009 ell=19

C0=[6,3]C1=[18,3]C2=[18,3] C0=[6,3]C1=[18,3,3]C2=[18,3,3] C0=[3,3]C1=[9,3]C2=[9,3]

[0,1] [0,0] [0,0] [0,2] [12 0,0] [0,0,0] [0,1] [6,0] [0,0]

[2,0] [6,0] [0,0] [2, 0] [6,0,0] [0,0,0] [1,2] [6,0] [0,0]

m=32009 ell=37 m=42817 ell=19

C0=[3,3] C1=[9,3] C2=[9,3] C0=[3,3] C1=[9,3] C2=[27,3]

[0,1] [6,0] [0,0] [2,1] [6,0] [9,0]

[1,2] [3,0] [0,0] [1,0] [3,0] [18,0]

In the non-monogenic case, we observe many capitulations (or partial ones), in
cyclic p-tower contained in k(µℓ) (possibly, the capitulation holds in larger layers but
this would require several days of computer); so we propose the following conjecture:

Conjecture 4.1. Let k be a totally real number field with generalized p-class
group Xk,m = Ck,m/Hk (cf. (1.1)). There are infinitely many primes ℓ, ℓ ≡ 1
(mod 2 pN), N ≫ 0, such that Xk,m capitulates in k(µℓ).

Examples of non-totally real fields (case of the degree 6 example and non-Galois
cubic fields, as illustrated in [12]) show that the property can be enlarged to some
non-totally real fields, with some conditions on the infinite places since it is obvious
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that capitulation in k(µℓ) does not hold for an imaginary quadratic field. Since the
structures of these p-class groups depend on norm properties, the conjecture can
probably be also completed by densities results thanks to the techniques used in
the classical approaches [1, 7, 20, 24] and especially those of [22, 31].

5. Examples and counterexamples, with modulus, of λ-stabilities

5.1. Cyclic p-towers over k = Q(
√±m). Consider, for ℓ ≡ 1 (mod pN) (in ell),

the cyclic p-tower contained in k(µℓ)/k, for k = Q(
√
sm), m > 0 square free (in

m), s = ±1. The following PARI/GP program computes Ckn,m =: Cn for any
prime-to-ℓ modulus m (in mod). The polynomial Pn (in Pn) defines the layer kn.
If s = −1 (resp. s = 1), λ = #S− 1− ρ ∈ {0, 1} (resp. λ = 0) in k but decreases in
the tower (Remark 1.4). Then vn denotes the p-valuation of the order of Cn whose
structure Cn is given by the list C.

The computations up to N = 3 or 4 (n ∈ [0,N]) are only for verification when
a λ-stability exists; otherwise some examples do not λ-stabilize in the interval
considered and no conclusion is possible. For the program, one must precise p, ell,
the modulus mod, s = ±1 defining real or imaginary quadratic fields k, the length
N of the tower and the interval for m:
{p=2;ell=257;mod=5;s=-1;N=3;bm=2;Bm=10^3;

for(m=bm,Bm,if(core(m)!=m || Mod(m,ell)==0,next);

P=x^2-s*m;lambda=0;if(s==-1&kronecker(s*m,ell)==1,lambda=1);\\lambda

print();print("p=",p," mod=",mod," ell=",ell," sm=",s*m," lambda=",lambda);

for(n=0,N,Pn=polcompositum(polsubcyclo(ell,p^n),P)[1];kn=bnfinit(Pn,1);\\layer kn

knmod=bnrinit(kn,mod);v=valuation(knmod.no,p);Cn=knmod.cyc;\\ray class group of kn

C=List;d=matsize(Cn)[2];for(j=1,d,c=Cn[d-j+1];w=valuation(c,p);

if(w>0,listinsert(C,p^w,1)));\\end of computation of the p-ray class group of kn

print("v",n,"=",v," p-ray class group=",C)))}

IMAGINARY QUADRATIC FIELDS, p=2, ell=257, mod=1:

m=-2,lambda=1 m=-11,lambda=1 m=-14,lambda=0 m=-17,lambda=1 m=-15,lambda=1

v0=0 [] v0=0 [] v0=2 [4] v0=2 [4] v0=1 [2]

v1=3 [8] v1=2 [4] v1=4 [4,4] v1=5 [8,2,2] v1=2 [4]

v2=7 [16,4,2] v2=7 [8,8,2] v2=8 [4,4,4,4] v2=10[16,2,2,2,2,2,2] v2=3 [8]

v3=13 [32,8,2, v3=10 [16,16,4] v3=16 [8,8,8,4, v3=19[32,2,2,2,2,2, v3=4 [16]

2,2,2,2] 4,2,2,2] 2,2,2,2,2,2,2,2,2]

m=-782,lambda=1 m=-858,lambda=0

v0=3 [4,2] v0=4 [4,2,2]

v1=8 [4,4,4,2,2] v1=12 [128,2,2,2,2,2]

v2=22[32,32,4,4,4,2,2,2,2,2,2] v2=22 [256,16,8,2,2,2,2,2,2,2]

v3=35[64,64,8,8,8,2,2,2,2,2,2,2,2,2,2,2,2,2,2]v3=32 [512,32,16,4,4,4,2,2,2,2,2,2,2,2]

m=-15,mod=5,lambda=1 m=-35,mod=5,lambda=1 m=-253,mod=5,lambda=1

v0=2 [4] v0=2 [4] v0=4 [4,2,2]

v1=3 [4,2] v1=3 [4,2] v1=12 [64,4,2,2,2,2]

v2=4 [8,2] v2=4 [8,2] v2=22 [128,8,4,4,2,2,2,2,2,2,2,2]

v3=34 [256,16,8,4,4,4,4,4,4,2,2,2,2,2,2,2]

IMAGINARY QUADRATIC FIELDS, p=3, ell=163, mod=1:

m=-2,lambda=1 m=-293,lambda=1 m=-983,lambda=1 m=-3671,lambda=0

v0=0 [] v0=2 [9] v0=3 [27] v0=4 [81]

v1=1 [3] v1=3 [27] v1=4 [81] v1=7 [243,3,3]

v2=2 [9] v2=4 [81] v2=5 [243] v2=11 [729,9,9,3]

REAL QUADRATIC FIELDS, p=2, lambda=0:

mod=7,ell=12289:

m=2 m=19 m=89 m=15 m=39

v0=0 [] v0=1 [2] v0=0 [] v0=2 [2,2] v0=2 [2,2]
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v1=1 [2] v1=2 [2,2] v1=0 [] v1=5 [2,2,2,2,2] v1=5 [2,2,2,2,2]

v2=1 [2] v2=2 [2,2] v2=0 [] v2=9 [8,4,4,2,2] v2=10 [8,4,2,2,2,2,2]

mod=17,ell=7340033

m=17 m=19 m=21 m=38 m=26 m=226

v0=2 [4] v0=6 [16,4] v0=4 [16] v0=5 [16,2] v0=6 [16,2,2] v0=5 [8,8]

v1=2 [4] v1=6 [16,4] v1=4 [16] v1=5 [16,2] v1=8 [16,4,2,2] v1=10 [32,8,8]

REAL QUADRATIC FIELDS, p=3, lambda=0:

mod=1,ell=109 mod=1,ell=109 mod=7,ell=163 mod=7,ell=163

m=326 m=4409 m=5 m=6

v0=1 [3] v0=2 [9] v0=1 [3] v0=1 [3]

v1=1 [3] v1=2 [9] v1=1 [3] v1=2 [3,3]

v2=1 [3] v2=2 [9] v2=1 [3] v2=2 [3,3]

mod=7,ell=163 mod=7,ell=163 mod=19,ell=163 mod=19,ell=163

m=22 m=15 m=2 m=11

v0=2 [3,3] v0=1 [3] v0=2 [9] v0=3 [9,3]

v1=2 [3,3] v1=3 [3,3,3] v1=3 [27] v1=4 [27,3]

v2=2 [3,3] v2=5 [9,9,3] v2=3 [27] v2=4 [27,3]

One finds examples of λ-stabilities taking for instance #S = 6 with three primes
split in k = Q(

√±m) and any of the 1024 totally S-ramified cyclic 2-towers K/k of
degree 26 contained in k(µ257·449·577) but, unfortunately, only computing in k and

k1 = k(
√
257 · 449 · 577) with λ = 4 (resp. 5) for k real (resp. imaginary):

m=193 m=1591 m=2669 m=-527 m=-1739

v0=0 [] v0=1 [2] v0=2 [4] v0=1 [2] v0=2 [4]

v1=4 [2,2,2,2] v1=5 [2,2,2,2,2] v1=6 [4,2,2,2,2] v1=6 [4,2,2,2,2] v1=7 [8,2,2,2,2]

5.2. Cyclic p-towers over Q with modulus. In a cyclic p-towerK/Q for S = Sℓ,
m = 1, (2.1) shows that λ = 0 and #Cn = 1 for all n. For m 6= 1, a stability
may occur (possibly from n0 > 0) as shown by the following examples (p = 2, 3)
analogous to [28, Example 4.1]:

{p=2;ell=257;mod=17;N=5;print("p=",p," ell=",ell," mod=",mod);

for(n=0,N,Pn=polsubcyclo(ell,p^n);kn=bnfinit(Pn,1);\\layer kn

knmod=bnrinit(kn,mod);v=valuation(knmod.no,p);Cn=knmod.cyc;\\ray class group

C=List;d=matsize(Cn)[2];for(j=1,d,c=Cn[d-j+1];w=valuation(c,p);

if(w>0,listinsert(C,p^w,1)));print("v",n,"=",v," C",n,"=",C))}

p=2,ell=257,mod=17 ell=257,mod=4*17 p=3,ell=163,mod=19 ell=163,mod=9*19

v0=3 [8] v0=4 [16] v0=2 [9] v0=3 [9,3]

v1=4 [16] v1=5 [16,2] v1=3 [27] v1=5 [27,3,3]

v2=4 [16] v2=7 [16,2,2,2] v2=3 [27] v2=6 [81,3,3]

v3=4 [16] v3=11 [16,2,2,2,2,2,2,2] v3=3 [27] v3=6 [81,3,3]

v4=4 [16] v4=12 [32,2,2,2,2,2,2,2]

v5=4 [16] v5=12 [32,2,2,2,2,2,2,2]

5.3. Cyclic p-towers over a cyclic cubic field k. Let K ⊂ k(µℓ) defining a
cyclic p-tower of k. The program gives the complete list of cyclic cubic fields of
conductor f ∈ [bf,Bf]. An interesting fact is that, in most cases, the stability occurs
(with λ = 0 in the case S = Sℓ); we give an excerpt with the defining polynomial
P of k of conductor f:

{p=2;ell=257;N=3;bf=7;Bf=10^3;for(f=bf,Bf,if(Mod(f,ell)==0,next);

h=valuation(f,3);if(h!=0 & h!=2,next);F=f/3^h;if(core(F)!=F,next);F=factor(F);

Div=component(F,1);d=matsize(F)[1];for(j=1,d,D=Div[j];if(Mod(D,3)!=1,break));

for(b=1,sqrt(4*f/27),if(h==2 & Mod(b,3)==0,next);A=4*f-27*b^2;

if(issquare(A,&a)==1,\\computation of a and b such that f=(a^2+27b^2)/4

if(h==0,if(Mod(a,3)==1,a=-a);P=x^3+x^2+(1-f)/3*x+(f*(a-3)+1)/27);

if(h==2,if(Mod(a,9)==3,a=-a);P=x^3-f/3*x-f*a/27);print();print("f=",f," P=",P);
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\\end of computation of P defining k of conductor f

for(n=0,N,Pn=polcompositum(polsubcyclo(ell,p^n),P)[1];kn=bnfinit(Pn,1);

v=valuation(kn.no,p);Cn=kn.cyc;C=List;d=matsize(Cn)[2];for(j=1,d,c=Cn[d-j+1];

w=valuation(c,p);if(w>0,listinsert(C,p^w,1)));print("v",n,"=",v," C",n,"=",C)))))}

p=2,ell=257,lambda=0

f=63 f=163 f=277 f=279

P=x^3-21*x-35 P=x^3+x^2-54*x-169 P=x^3+x^2-92*x+236 P=x^3-93*x+217

v0=0 [] v0=2 [2,2] v0=2 [2,2] v0=0 []

v1=2 [2,2] v1=4 [4,4] v1=4 [2,2,2,2] v1=2 [2,2]

v2=2 [2,2] v2=4 [4,4] v2=6 [2,2,2,2,2,2] v2=4 [4,4]

v3=2 [2,2] v3=4 [4,4] v3=6 [2,2,2,2,2,2] ?

f=333 f=349 f=397 f=547

P=x^3-111*x+37 P=x^3+x^2-116*x-517 P=x^3+x^2-132*x-544 P=x^3+x^2-182*x-81

v0=0 [] v0=2 [2,2] v0=2 [2,2] v0=2 [2,2]

v1=4 [4,4] v1=4 [2,2,2,2] v1=2 [2,2] v1=4 [2,2,2,2]

v2=4 [4,4] v2=4 [2,2,2,2] v2=2 [2,2] v2=6 [4,4,2,2]

p=3,ell=109,lambda=0

f=1687 f=1897 f=2359 f=5383

x^3+x^2-562*x-4936 x^3+x^2-632*x-4075 x^3+x^2-786*x+7776 x^3+x^2-1794*x+17744

v0=1 [3] v0=1 [3] v0=2 [3,3] v0=3 [9,3]

v1=1 [3] v1=1 [3] v1=2 [3,3] v1=3 [9,3]

As for the quadratic case, we may use k1 = k(
√
257 · 449 · 577) for p = 2 with

#S = 9, ρ = 2, λ = 6. The contribution of the 2-tower over Q is given by the
2-stability from the structures [ ], [2, 2]. We find a great lot of λ-stabilities with
the structures [ ], [2, 2, 2, 2, 2, 2] or [2, 2], [4, 4, 2, 2, 2, 2] and very few exceptions for
which one does not know if a λ-stabilization does exist for n > 1 (case of f = 1531

below):

f=171,P=x^3-57*x-152 f=349,P=x^3+x^2-116*x-517 f=1531,P=x^3+x^2-510*x-567

C0=[] C0=[2,2] C0=[]

C1=[2,2,2,2,2,2] C1=[4,4,2,2,2,2] C1=[4,4,2,2,2,2]

6. Other examples of applications and Remarks

Assume the total ramification of S 6= ∅ in the cyclic p-tower K/k and the main
condition #X1 = #X · pλ with λ = max (0,#S− 1− ρ) (Definition 1.1); remember
that it is easy to ensure that torZ(E) ⊂ NK/k(K

×) (Remark 1.3):

(a) Let k̃/k be a Zp-extension with Iwasawa’s invariants λ̃, µ̃, ν̃. We then have a
set of p-places S with 1 ≤ #S ≤ [k : Q] = r1 +2 r2 and λ = max (0,#S− r1 − r2) ∈
[0, r2]; one gets the formula #Xn = #X · pλ·n for all n, as soon as #X1 = #X · pλ
holds, and in that case, λ̃ is equal to λ and µ̃ = 0; the Iwasawa formula being
#Xn = pλ·n+ν with pν := #X (recall that this may apply only from a larger layer
k′). For CM-fields k with p totally split in k, λ = 1

2 [k : Q].

When k is totally real, Greenberg’s conjecture [13] for p-class groups (λ̃ = µ̃ = 0)
holds if and only if #Cn0+1 = #Cn0 is fulfilled for some n0 ≥ 0 (λ′-stabilization

from k′ = kn0 with λ′ = λ̃ = 0), which may be checked if n0 is not too large by
chance (as in [23] for real quadratic fields, p = 3 non-split, or in various works of
Taya [32], Fukuda, Komatsu).

(b) Taking HN = C pr

N may give the λ(r)-stability of the Cn/C
pr

n ’s, for some
λ(r), whence rkp(Cn) = rkp(C ) + λ(1) · n for all n, as soon as this equality holds
for n = 1 (where rkp(A) := dimFp

(A/Ap)). For instance, let k = Q(
√−m) and
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K ⊂ k(µ257) and consider the stability of the 2-ranks when rk2(C ) ≥ 1 (λ(1) = 0
since #S ≤ 2 and ρ = t ≥ 1 when C 6= 1); we find many examples:

For m ∈ {-15, -35, -95, -111, -123, -159, -215, -235, -259, -287, -291, -303, -327,
-355, -371, -415, -447, . . .} the 2-rank is 1 and stable from n = 0.

For m ∈ {-39, -87, -91, -155, -183, -195, -203, -247, -267, -295, -339, -395, -399,
-403, -427, -435, -455, -471, . . .} the 2-rank (equal to 2 or 3) is stable from n = 1.

For m = −55 (successive structures [4], [4, 4], [8, 4, 4, 2], [16, 8, 8, 4]), m = −115
(structures [2], [2, 2], [2, 2, 2, 2], [8, 8, 8, 8]), we have two examples of stabilization
from n = 2 (rank 4).

We see that the orders are not necessarily λ-stable from n = 0 (λ = #S − 1):
m=-15 m=-403 m=-259 m=-95 m=-195 m=-895

v0=1 [2] v0=1 [2] v0=2 [4] v0=3 [8] v0=2 [2,2] v0=4 [16]

v1=2 [4] v1=5 [8,2,2] v1=3 [8] v1=4 [16] v1=4 [4,2,2] v1=5 [32]

v2=3 [8] v2=8 [16,4,4] v2=4 [16] v2=5 [32] v2=9 [8,8,8] v2=6 [64]

v3=4 [16] v3=11 [32,8,8] v3=5 [32] v3=6 [64] v3=12 [16,16,16] v3=7 [128]

If k ⊆ K ⊆ k̃, for a Zp-extension k̃ of k, and if λ(1) = 0 (e.g., k is any quadratic
field and C 6= 1) then rkp(Cn) = rkp(C ) as soon as this is true for n = 1 (this may
holds from some layer). See [12, Section 7] for many examples. The following ones
(among others) show a great tendency to stabilization of the rank:
p=2 m=-93 [2,2],[2,2,2],[2,2,2,2,2],[2,2,2,2,2,2,2,2,2],[2,4,4,4,4,4,4,8,8]

p=3 m=6559 [9],[3,27],[9,27]; m=-362 [9],[3,27],[9,81]; m=-929 [9],[3,9,27],[9,27,81]

(c) If K/Q is abelian with p ∤ [k : Q], λ-stabilities may hold for the isotopic
Zp[Gal(k/Q)]-components of the Xn’s, using fixed points formulas [16, 17].

(d) Remarks. Let’s consider, for an arbitrary k, the family {Cn} assuming the
context of Lemma 1.2 and Remark 1.3; so λ = max (0,#S−1−ρ) with ρ = r1+r2−1.

(i) The condition of λ-stability, #C1 = #C · pλ, implies CGn
n = Cn for all

n ≥ 1, but is not equivalent. Indeed, let k = Q(
√
m), m > 0 such that 17 splits in

k, and let K = kL, where L is the subfield of Q(µ17) of degree 8; whence ρ = 1,
λ = 0. Assume that ω1(ε) = 1 (ε norm in k1/k); then, from Chevalley’s formula,
#CG1

1 = #C · p 6= #C . For m = 26, ε = 3 +
√
26 ≡ 52 (mod 17) in the completion

Q17; one obtains the structures [2], [2, 2], [4, 2] giving #C = 2 and #C1 = #CG1

1 = 4.

(ii) When #C1 = #C · pλ does not hold (whence #C1 > #C · pλ), we observe
that orders and p-ranks are unpredictable and possibly unlimited in the tower;

indeed, put C i
n := {c ∈ Cn, c

(1−σn)
i

= 1} =: cℓn(I i
n), i ≥ 1; we have, from (2.1),

#
(
C i+1
n /C i

n

)
= #C

#Nn(C i
n)
×pn (#S−1)

#ωn(Λi)
, where Λi := {x ∈ k×, (x) ∈ Nn(I i

n)}; in general

these two factors are non-trivial giving #C i+1
n > #C i

n and the filtration increases.

7. Behavior of other invariants in cyclic p-towers

Let Σp be the set of p-places of k. In relation with class field theory and coho-
mology of the Galois group Gk,Σp

of the maximal Σp-ramified (= p-ramified) pro-
p-extension of k and of its local analogues Gkp

, the fundamental Tate–Chafarevich
groups [21, Theorem 3.74], [29, § 1]:

IIIik(Σp) := Ker
[
Hi(Gk,Σp

,Fp) →
⊕

p∈Σp
Hi(Gkp

,Fp)
]
, i = 1, 2,

can be examined, in the same way in towers, as for generalized class groups. This is
possible for III1k(Σp) ≃ (Ck/cℓk(Σp))⊗Fp, but III

2
k(Σp) does not appear immediately

as a generalized class group and is not of easy computational access (see [15] for
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a thorough study of III2k(S) when Σp 6⊂ S; the case Σp ⊆ S easily reduces to
S = Σp under Leopoldt’s conjecture [8, Theorem III.4.1.5]). Nevertheless, we have
an arithmetic interpretation, much more easily computable and having well-known
properties, with the key invariant, closely related to III2k(Σp),

Tk := torZp
(G ab

k,Σp
) ≃ H2(Gk,Σp

,Zp)
∗ [29, Théorème 1.1]

(see general rank computations in [8, Theorem III.4.2 and Corollaries]). Neverthe-
less, Tk, linked to the residue at s = 1 of p-adic ζ-functions [3], gives rise to some
analogies with generalized class groups (due to reflection theorems [8, Theorem
II.5.4.5]). See in [10] the interpretation of Tk with the p-class group Ck and the
normalized p-adic regulator Rk. Since the deep aspects of these cohomology groups
are due to the p-adic properties of global units (i.e., Rk) we shall restrict ourselves
to the totally real case under Leopoldt’s conjecture. For any field κ, let κ∞ be its
cyclotomic Zp-extension; then Tκ = Gal((Hpr

κ )ab/κ∞) where Hpr
κ is the maximal

abelian Σp-ramified pro-p-extension of κ.

Let K/k be a totally real, S-ramified, cyclic p-tower; denote by Sta ⊆ S the
subset of tame places (when non-empty, Sta is assumed totally ramified, but the
subset of p-places may be arbitrary). For all extensions L/F contained in K/k,
the transfer maps JL/F : TF → TL are injective [8, Theorem IV.2.1] and, since

L∞/F∞ is totally Sta-ramified, the norm maps NL/F : TL → TF are surjective.
In the particular case L/F ⊂ k∞/k, Sta = ∅, but NL/F is still surjective (indeed,

F∞ = L∞ = k∞ and (Hpr
k )ab ⊆ (Hpr

F )ab ⊆ (Hpr
L )ab).

Lemma 7.1. Let K/k be a totally real cyclic p-tower of degree q pN , p-ramified or
else totally ramified at Sta 6= ∅, where q = p or 4; assume that k ∩Q∞ = Q. Then,

for any 0 ≤ n ≤ n+m ≤ N , and gmn := Gal(kn+m/kn), #T
gm
n

n+m = #Tn · pm·#Sta

.

Proof. We have (with our notations) #T
gm
n

n+m = #Tn · pm·#Sta· pR−m [8, Theorem
IV.3.3, Exercise 3.3.1], R = minl∈Sta(m ; . . . , νl+ϕl+ γl, . . .) (with pνl ∼ q−1 log(ℓ)
where l∩Z = ℓZ, pϕl ∼ residue degree of l in k/Q, γl = 0 since Sta does not split in
K/k). When Sta 6= ∅, the existence (see [8, V, Theorem 2.9] for a characterization)
of a cyclic p-tower K/k implies N (l) ≡ 1 (mod q pN ), for all l ∈ Sta, where N is
the absolute norm; indeed, the inertia group of the local extension KL/kl, L | l,
is isomorphic to a subgroup of F×

N (l). So, we have νl + ϕl ≥ N and R = m; this

explains the limitation of the level n to get the given fixed points formula in any
case. If k ∩Q∞ = Qn0 , one must take ℓ ≡ 1 (mod qpn0 · pN ) �

If a λ-stability does exist with Tn = T Gn
n of order #T · pλ·n, then λ = #Sta

(from the relation #T1 = #T p#Sta

giving T Gn
n = T

Gp
n

n ). However, the properties
of the groups Tn will give sometimes non-trivial Iwasawa’s µ̃-invariants in k∞/k

and very large ranks in cyclic p-towers with tame ramification; moreover λ̃ may
be much larger than λ = #Sta which explains that the λ-stability problem is less
pertinent in this framework (few examples). A reason (based on the properties, in
kn+m/kn, of the norms Nm

n (surjectivity) and transfer maps Jmn (injectivity)) is the
following, where gmn := Gal(kn+m/kn):

From 1 → Jmn Tn → Tn+m → Tn+m/Jmn Tn → 1, we get:

1 → T
gm
n

n+m/Jmn Tn → (Tn+m/Jmn Tn)
gm
n → H1(gmn , Jmn Tn) → H1(gmn ,Tn+m),

where H1(gmn , Jmn Tn) = (Jmn Tn)[p
m] ≃ Tn[p

m], and:
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#H1(gmn ,Tn+m) = #H2(gmn ,Tn+m) = #(T
gm
n

n+m/Jmn Tn) = pm·#Sta

,

giving an exact sequence of the form 1 → A → (Tn+m/Jmn Tn)
gm
n → Tn[p

m] → A′,

with #A′ = #A = pm·#Sta

. We then obtain the following inequality:

(7.1) #Tn+m ≥ #Tn · #Tn[p
m],

more precise than #Tn+m ≥ #T
gm
n

n+m = #Tn · pm·#Sta

, when the p-rank of Tn

increases, since #Sta is a constant.

For m = 1 one gets #Tn+1 ≥ #Tn · prkp(Tn). This tendency to give large
orders and p-ranks is enforced by the presence of tame ramification (see § 7.2 for
numerical illustrations) and leads to the vast theory of pro-p-extensions and Galois
cohomology of pro-p-groups in a broader context than p-ramification theory, which
is not our purpose (see [14] for more information). This explains that, for λ =
#Sta = 0, Corollary 3.2 never applies for T (except T = 1 giving Tn = 1 for
all n).

It would be interesting to give an analogous study for the Jaulent logarithmic
class group [19] since its capitulation in the cyclotomic Zp-extension of k (real)
characterizes Greenberg’s conjecture.

Remark 7.2. For p-class groups Cn, in totally real cyclic p-towers, one obtains
an inequality similar to (7.1) provided one replaces Cn by Jmn Cn, where Jmn is in
general non-injective, a crucial point in this comparison. But for CM-fields k and
p 6= 2, Jn is injective on the “minus parts”, giving #C−n+m ≥ #C−n ·#C−n [pm], which
explains the results for imaginary quadratic fields in § 5.1, especially for m = −782
and m = −858, for which we can predict #C4 larger than 254 and 246, respectively.

Remark 7.3. One can wonder about the contribution of the p-towers contained in
Q(µℓ), ℓ ≡ 1 (mod qpN), used in the compositum with k. We have the following
examples of Tn for p = 2, 3 and S = Sℓ; let vn, rkn denote the p-valuation, the
p-rank, of Tn, respectively; the parameter E must be chosen such that E > e + 1,
where pe is the exponent of Tn.
{p=3;ell=17497;E=8;print("p=",p," ell=",ell);for(n=0,4,Qn=polsubcyclo(ell,p^n);

kn=bnfinit(Qn,1);knmod=bnrinit(kn,p^E);Tn=knmod.cyc;\\computation of Tn

T=List;d=matsize(Tn)[2];rkn=0;vn=0;for(j=1,d-1,c=Tn[d-j+1];w=valuation(c,p);

if(w>0,vn=vn+w;rkn=rkn+1;listinsert(T,p^w,1)));\\computation of vn and rkn

print("v",n,"=",vn," rk",n,"=",rkn," ",T))}

p=2,ell=17 p=2,ell=7681 p=2,ell=257

v0=0 rk0=0 [] v0=0 rk0=0 [] v0=0 rk0=0 []

v1=1 rk1=1 [2] v1=1 rk1=1 [2] v1=3 rk1=1 [8]

v2=2 rk2=1 [4] v2=2 rk2=1 [4] v2=7 rk2=3 [16,4,2]

v3=3 rk3=1 [8] v3=3 rk3=1 [8] v3=13 rk3=7 [32,8,2,2,2,2,2]

v4=4 rk4=1 [16] v4=4 rk4=1 [16] v4=23 rk4=15 [64,16,2,2,2,2,2,2,2,2,2,2,2,2,2]

v5=38 rk5=15 [128,32,4,4,4,4,4,4,4,4,4,4,4,4,4]

p=3,ell=109 p=3,ell=163 p=3,ell=487 p=3,ell=17497

v0=0 rk0=0 [] v0=0 rk0=0 [] v0=0 rk0=0 [] v0=0 rk0=0 []

v1=1 rk1=1 [3] v1=1 rk1=1 [3] v1=2 rk1=2 [3,3] v1=3 rk1=2 [9,3]

v2=2 rk2=1 [9] v2=2 rk2=1 [9] v2=4 rk2=2 [9,9] v2=6 rk2=3 [27,9,3]

v3=3 rk3=1 [27] v3=3 rk3=1 [27]

7.1. Case of the cyclotomic Zp-extensions k∞/k of k real. The Iwasawa

invariants λ̃, µ̃, ν̃, attached to lim
←−

Tn satisfy λ̃ = µ̃ = 0 if and only if T = 1 (in

which case ν̃ = 0). Indeed, if λ̃ = µ̃ = 0, #Tn = pν̃ for all n ≫ 0; but (7.1), with
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m = 1, gives ν̃ ≥ ν̃ + rn, where rn := rkp(Tn), whence rn = 0; but rn ≥ r, so
r = 0 (Jn is injective). The reciprocal comes from T Gn

n ≃ T since Sta = ∅. Thus
a λ-stability does exist only for λ = 0, which is excluded if T 6= 1. Computations

suggest that the true Iwasawa parameters λ̃, µ̃ may be often non-zero, even if few
levels are accessible with PARI/GP; often there is stability for the p-class groups
Cn (#Sp is the number of p-places of k = Q(

√
m)):

{p=3;E=8;N=4;bm=2;Bm=10^3;for(m=bm,Bm,if(core(m)!=m,next);P=x^2-m;

Sp=1;if(kronecker(m,p)==1,Sp=2);print();print("p=",p," m=",m," #Sp=",Sp);

for(n=0,N,if(p==2,Qn=x;for(k=1,n,Qn=Qn^2-2));if(p!=2,Qn=polsubcyclo(p^(n+1),p^n));

Pn=polcompositum(Qn,P)[1];kn=bnfinit(Pn,1);Cn=kn.cyc;C=List;d=matsize(Cn)[2];

for(j=1,d,c=Cn[j];w=valuation(c,p);if(w>0,listinsert(C,p^w,1)));\\p-class group Cn

knmod=bnrinit(kn,p^E);rkn=0;vn=0;Tn=knmod.cyc;\\computation of Tn

T=List;d=matsize(Tn)[2];for(j=1,d-1,c=Tn[d-j+1];w=valuation(c,p);

if(w>0,vn=vn+w;rkn=rkn+1;listinsert(T,p^w,1)));\\computation of vn and rkn

print("v",n,"=",vn," rk",n,"=",rkn," T",n,"=",T," C",n,"=",C)))}

p=2

m=33,#Sp=2 m=41,#Sp=2 m=217,#Sp=2

v0=1 rk0=1 [2] C0=[] v0=4 rk0=1 [16] C0=[] v0=2 rk0=2 [2,2] C0=[]

v1=4 rk1=1 [16] C1=[] v1=5 rk1=1 [32] C1=[2] v1=4 rk1=3 [4,2,2] C1=[2]

v2=5 rk2=1 [32] C2=[] v2=6 rk2=1 [64] C2=[4] v2=8 rk2=5 [4,4,4,2,2] C2=[2]

v3=6 rk3=1 [64] C3=[] v3=7 rk3=1 [128]C3=[8] v3=15 rk3=9 [8,8,8,2,2,2,2,2,2] C3=[2]

v4=7 rk4=1 [128]C4=[] v4=8 rk4=1 [256]C4=[8] v4=24 rk4=9 [16,16,16,4,4,4,4,4,4]C4=[2]

m=193,#Sp=2 m=69,#Sp=1

v0=1 rk0=1 [2] C0=[] v0=2 rk0=1 [4] C0=[]

v1=2 rk1=2 [2,2] C1=[] v1=4 rk1=2 [4,4] C1=[]

v2=4 rk2=4 [2,2,2,2] C2=[] v2=6 rk2=2 [8,8] C2=[]

v3=8 rk3=8 [2,2,2,2,2,2,2,2] C3=[] v3=8 rk3=2 [16,16] C3=[]

v4=16 rk4=15 [4,2,2,2,2,2,2,2,2,2,2,2,2,2,2] C4=[]

p=3

m=62,#Sp=1 m=103,#Sp=2 m=1714,#Sp=2

v0=1 rk0=[3] C0=[] v0=1 rk0=1 [3] C0=[] v0=2 rk0=2 [3,3] C0=[3]

v1=3 rk1=[9,3] C1=[] v1=3 rk1=2 [9,3] C1=[3,3] v1=5 rk1=4 [9,3,3,3] C1=[3,3]

v2=5 rk2=[27,9] C2=[] v2=5 rk2=2 [27,9] C2=[3,3] v2=9 rk2=4 [27,9,9,9] C2=[9,3]

Formula (7.1) predicts #T5 ≥ 216+15 = 231 for m = 193, giving possibly µ̃ = 1.

7.2. Case of real cyclic p-towers with tame ramification. In the case of Sℓ-
ramified cyclic p-towers, one gets few examples of λ-stability (for λ = #Sℓ) and
mainly spectacular groups Tn; for example let k = Q(

√
m) and K = k(µ257) with

p = 2, then K = k(µ109) and K = k(µ163) with p = 3:

(i) Case p = 2.

{p=2;ell=257;N=3;E=8;bm=2;Bm=10^3;for(m=bm,Bm,if(core(m)!=m||Mod(m,ell)==0,next);

P=x^2-m;S=1;if(kronecker(m,ell)==1,S=2);print("p=",p," ell=",ell," m=",m," #S=",S);

for(n=0,N,Pn=polcompositum(polsubcyclo(ell,p^n),P)[1];kn=bnfinit(Pn,1);\\layer kn

Cn=kn.cyc;C=List;d=matsize(Cn)[2];for(j=1,d,c=Cn[j];w=valuation(c,p);

if(w>0,listinsert(C,p^w,1)));\\p-class group Cn

knmod=bnrinit(kn,p^E);Tn=knmod.cyc;T=List;d=matsize(Tn)[2];\\computation of Tn

rkn=0;vn=0;for(j=1,d-1,c=Tn[d-j+1];w=valuation(c,p);if(w>0,rkn=rkn+1;vn=vn+w;

listinsert(T,p^w,1)));print("v",n,"=",vn," rk",n,"=",rkn," ",T," C",n,"=",C)))}

p=2,ell=257,m=17,#S=2

v0=1 rk0=1 [2] C0=[]

v1=7 rk1=3 [16,4,2] C1=[]

v2=16 rk2=7 [32,8,8,4,2,2,2] C2=[]

v3=31 rk3=15 [64,16,16,4,4,4,4,4,2,2,2,2,2,2,2] C3=[]

v4=58 rk4=31 [128,32,32,8,8,8,8,4,4,4,4,4,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2] C4=[]
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p=2,ell=257,m=34,#S=2

v0=1 rk0=1 [2] C0=[2]

v1=8 rk1=3 [16,8,2] C1=[4,2]

v2=20 rk2=7 [32,16,8,8,4,4,2] C2=[4,2,2,2]

v3=37 rk3=15 [64,32,16,16,8,4,4,4,4,4,2,2,2,2,2] C3=[4,2,2,2,2,2,2,2]

v4=65 rk4=27 [128,64,32,32,16,8,8,8,8,8,4,4,4,4,4,4,2,2,2,2,2,2,2,2,2,2,2]

C4=[8,4,4,2,2,2,2,2,2,2]

Strikingly, for m = 17, one verifies the formula #Tn = 23·n+3·2n−2 for n ∈ [0, 4]
and (7.1) predicts #T5 ≥ 289; for m = 34, (7.1) predicts #T5 ≥ 292 (or much more).

(ii) Case p = 3.

p=3,ell=163,m=2,#S=1 p=3,ell=163,m=10,#S=2 p=3,ell=109,m=29,#S=2

v0=0 rk0=1 [] C0=[] v0=0 rk0=0 [] C0=[] v0=2 rk0=1 [9] C0=[]

v1=1 rk1=1 [3] C1=[] v1=2 rk1=2 [3,3] C1=[] v1=4 rk1=2 [27,3] C1=[]

v2=2 rk2=1 [9] C2=[] v2=4 rk2=2 [9,9] C2=[] v2=6 rk2=2 [81,9] C2=[]

p=3,ell=109,m=15,#S=2 p=3,ell=109,m=145,#S=2

v0=1 rk0=1 [3] C0=[] v0=0 rk0=0 [] C0=[]

v1=6 rk1=4 [9,9,3,3] C1=[] v1=8 rk1=3 [81,27,3] C1=[]

v2=10 rk2=4 [27,27,9,9] C2=[] v2=15 rk2=7 [243,81,9,3,3,3,3] C2=[]

p=3,ell=163,m=15,#S=2 p=3,ell=163,m=79 #S=1 p=3,ell=163,m=118,#S=2

v0=1 rk0=1 [3] C0=[] v0=2 rk0=1 [9] C0=[3] v0=0 rk0=0 [] C0=[]

v1=5 rk1=4 [9,3,3,3] C1=[3] v1=7 rk1=4 [27,9,3,3] C1=[9] v1=4 rk1=3 [9,3,3] C1=[]

v2=9 rk2=4 [27,9,9,9]C2=[9] v2=11rk2=4 [81,27,9,9]C2=[9] v2=8 rk2=4 [27,9,9,3] C2=[]

See Remark 7.3 to compute the contributions of the towers over Q.

Remark 7.4. Let K/k be a totally real, p-ramified (whence S ⊆ Σp, arbitrary),
cyclic p-tower (i.e., k ⊆ K ⊆ (Hpr

k )ab, where Gal((Hpr
k )ab/k) ≃ Zp ⊕ Tk). Then

if the p-ranks of k and k1 coincide, the p-rank is constant in the tower (indeed,
this corresponds to the stability of Tn[p], n ∈ [0, N ], since Tn[p]

Gn = T [p] and
Tn[p]

Gp
n = T1[p] which leads to Tn[p] ≃ T [p] for all n). Of course, this may occur

only from some layer k′ and the numerical data of § 7.1 gives many examples.
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