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THE NATURAL EXTENSION OF THE GAUSS MAP AND HERMITE BEST APPROXIMATIONS

Following Humbert and Lagarias, we call a nonzero vector (p, q) ∈ Z × N a Hermite best approximation vector of θ if there exists ∆ > 0 such that (p-qθ) 2 +q 2 /∆ ≤ (a -bθ) 2 + b 2 /∆ for all nonzero (a, b) ∈ Z 2 . Hermite observed that if q > 0 then the fraction p/q must be a convergent of the continued fraction expansion of θ. Using minimal vectors in lattices, we give new proofs of results of Humbert and Meignen and complete their works. In particular, we show that the proportion of Hermite best approximation vectors among convergents is ln 3/ ln 4. The main tool of the proof is the natural extension of the Gauss map x ∈]0, 1[→ {1/x}.

Introduction

In 1850, Hermite observed that the fractions p ∆ q ∆ associated with the minima (p ∆ , q ∆ ) ∈ Z × N \ {0} of the quadratic forms f ∆ (p, q) = (p -qθ) 2 + q 2 ∆ , ∆ > 0, are all convergents of the continued fraction expansion of the real number θ (see [START_REF] Hermite | Sur diérents objets de la théorie des nombres (French)[END_REF], p.295).

We shall say that a pair (p, q) ∈ Z × N is a Hermite best approximations vector of θ if it minimizes the quadratic forms f ∆ on Z 2 \ {(0, 0)} for at least one ∆ > 0. In [START_REF] Humbert | Sur la méthode d'approximation d'Hermite (French)[END_REF], Humbert rather talk of Hermite fraction while Hermite best approximation vectors was used instead by Lagarias in [START_REF] Lagarias | Geodesic multidimensional continued fractions[END_REF]. Humbert observe that if (p, q) is a Hermite best approximation vector of θ with q > 0 then |qθ -p| ≤ 1 √ 3q

(this follows easily from the Gauss reduction of binary quadratic forms). Therefore some convergents of the continued fraction expansion of θ can be skipped. In [START_REF] Humbert | Sur la méthode d'approximation d'Hermite (French)[END_REF], Humbert adressed three issues:

• Given two consecutive Hermite fractions, nd the next one,

• Recognize if a given fraction, is a Hermite fraction,

• Study the connection between the ordinary convergents of θ and the Hermite fractions.

In [START_REF] Grabiner | Cutting Sequences fo Geodesic ow on the Modular Surface and Continued Fractions[END_REF], Grabiner and Lagarias continued and extended the work of Humbert on the third issues. They studied the deep relationships between the one-dimensional Minkowski geodesic continued fraction algorithm, the additive and multiplicative continued fraction algorithm, and the cutting sequences of the geodesic ow in the hyperbolic plane.

In [START_REF] Meignen | Fractions continues hermitiennes et billard hyperbolique (French)[END_REF], Meignen also continued and extended the work of Humbert. As Humbert, his main tool is the action of the isometry group of the hyperbolic plane. It can be noticed that Meignen used the whole isometry group, PGL(2, R), rather than the sub-group PSL(2, R)

preserving the orientation.

In this note, we shall explain how to recover two striking results of Humbert and

Meignen with a dierent starting point. We shall use minimal vectors in two-dimensional 1 lattices rather than the action of the isometry group on the hyperbolic plane. Here, we shall talk of best approximation vectors (p n , q n ) rather than convergents pn qn . The only slight dierence is that the convergent p 0 q 0 is skipped when the fractional part of θ is > 1 2 .

We shall prove the following results.

Theorem 1 [START_REF] Humbert | Sur la méthode d'approximation d'Hermite (French)[END_REF]). Let θ be in R and let (p n , q n ) n≥0 be the sequence of best approximation vectors of θ. Then, for all n ≥ 0, one at least of the best approximation vectors (p n , q n ) and (p n+1 , q n+1 ) is a Hermite best approximation. Theorem 2. Let θ be in R and let (p n , q n ) n≥0 be the sequence of best approximation vectors of θ. Then, for almost all θ ∈ R,

lim n→∞ 1 n card{0 ≤ k < n : (p k , q k ) is a Hermite best approximation vector} = ln 3 ln 4 .
Corollary 1. Let θ be in R and let (g n , h n ) be the n-th Hermite best approximation vector of θ. Then, for almost all θ ∈ R,

lim n→∞ 1 n ln h n = π 2 6 ln 3 .
Corollary 2 in Meignen's paper [START_REF] Meignen | Fractions continues hermitiennes et billard hyperbolique (French)[END_REF] is very close to the above Corollary. In Meignen's paper the almost sure was with respect to a measure for which the θ ∈ R are negligible.

If one add, as we did, the standard argument using the expanding direction of the geodesic ow, the above Corollary becomes a Corollary of Meignen's result. Theorem 2 was not formulate by Meignen but can be easily deduced from the Corollary and from Levy's Theorem about the growth rate of the (q n ) n≥0 .

Our main ingredient in the proof of Theorem 2 is the natural extension of the Gauss map

x ∈]0, 1[→ { 1 x } and its ergodicity. Instead, Meignen use the ergodicity of the geodesic ow in the modular surface togetherwith a cross section of the ow. In fact, another objective of this note is to introduce the natural extension of the Gauss map starting from minimal vectors in lattices. There are many ways to introduce the natural extension of the Gauss map, see for instance see [START_REF] Nakada | Metrical Theory for a Class of Continued Fraction Transformations and Their Natural Extensions[END_REF][START_REF] Arnoux | Mesures de Gauss pour les algorithmes de fractions continues multidimensionnelles[END_REF][START_REF] Schweiger | Ergodic Theory of Fibred Systems and Metric Number Theory[END_REF] and, although the idea of minimal vectors goes back to Voronoï ([15]), it seems that their use for the natural extension of the Gauss map is not so well known, a use the Author learned from Yitwah Cheung. Recently, Yi Han, a student of Cheung, did a senior thesis where the same approach is explained with emphasis on the role of the diagonal ow, see [4].

The note is organized as follows. We rst dene minimal vectors in lattices of R 2 and pairs of consecutive minimal vectors in these lattices. Then, we describe the algorithm that computes the minimal vector that immediately follows a pair of consecutive minimal vectors, this leads to the denition of the natural extension of the Gauss map. Afterward, we state and prove all the results about the natural extension that are needed to prove Theorem 2, even those that are well known, including Theorem 1. Among these intermediate results, Proposition 15 b characterizes Hermite vectors with the natural extension.

Then we prove Theorem 2 and its Corollary. In our work we do not emphasis on the cross section associated with minimal vectors, however in the last section we compare this latter cross section to cross sections obtained with the hyperbolic plane. Denition 2. Let Λ be a lattice in R 2 .

• A nonzero vector u = (u 1 , u 2 ) ∈ Λ is a minimal vector in Λ if for every nonzero v ∈ Λ, v ∈ B(u) ⇒ |v 1 | = |u 1 | and |v 2 | = |u 2 |. • Two minimal vectors u = (u 1 , u 2 ) and v = (v 1 , v 2 ) are consecutive if |u 2 | < |v 2 |
and there are no minimal vector w = (w 

1 , w 2 ) such that |u 2 | < |w 2 | < |v 2 |. • A sequence X n = (x n , y n ), n ∈ I,
Λ θ = {(p -qθ, q) : (p, q) ∈ Z 2 }
where θ ∈ R, the vectors (1, 0) and (-θ , 1) with θ ∈ [- 

Lemma 3. Two minimal vectors

u = (u 1 , u 2 ) and v = (v 1 , v 2 ) in a lattice Λ ⊂ R 2 are consecutive i |u 2 | < |v 2 | and the only lattice point in the interior of B(u, v) is zero. Consider the lexicographic preorder on R 2 dened by (x 1 , x 2 ) ≺ (y 1 , y 2 ) i |x 2 | < |y 2 | or |x 2 | = |y 2 | and |x 1 | ≤ |y 1 |. Proof. Let u = (u 1 , u 2 ) and v = (v 1 , v 2 ) be two minimal vectors with |u 2 | < |v 2 |. If the set o B(u, v)∩Λ\{0} is
nonempty, then it is nite and there is a w minimal for the lexicographic preorder ≺ in this set. On the one hand w is a minimal vector in Λ. Suppose that x + y > 1.

| < |w 2 | < |v 2 |. Since w is minimal |u 1 | > |w 1 |, hence w ∈ o B(u, v) ∩ Λ. Proposition 4. Let u = (u 1 , u 2 ) and v = (v 1 , v 2 ) be two consecutive minimal vectors in a lattice Λ ⊂ R 2 . Then the pair (u, v) is primitive, i.e. Λ = Zu + Zv. Proof. We can suppose v 2 > u 2 ≥ 0. Since v is minimal |u 1 | > |v 1 |. Let w = (w 1 , w 2 ) = xu + yv be in Λ with 0 ≤ x, y < 1,
The vector w = u + v -w = x u + y v is in Λ. Since x = 1 -x and y = 1 -y are both in ]0, 1[ and since x + y = 2 -x -y < 1, w is in the interior of the box B(u, v) which contradicts Lemma 3.
Remark 3. This proposition is still true when one consider minimal vectors in [START_REF] Cheung | Hausdor dimension of singular couples[END_REF]). However, the proposition no longer holds when one consider triples of minimal vectors rather than pairs. One can nd examples with 3 consecutive minimal vectors that are not primitive. This was observed by Lagarias in terms of best approximation vectors (see [START_REF] Lagarias | Best simultaneous Diophantine approximations. II. Behavior of consecutive best approximations[END_REF]). This observation explains why a multidimensional continued fraction algorithm cannot share all the properties of the one dimensional continued fraction algorithm.

R d = R d-1 × R dened with the boxes B((u 1 , u 2 )) = {(x 1 , x 2 ) ∈ R d-1 × R : |x 1 | R d-1 ≤ |u 1 | R d-1 and |x 2 | ≤ |u 2 |} where |.| R d-1 is any norm on R d-1 (see
2.1. Minimal vectors and Diophantine approximations. Denition 5. Let θ be a real number. A pair (p, q) ∈ Z × N * is a best approximation

vector of θ if for all (a, b) ∈ Z 2 , 0 < |b| < |q| ⇒ |p -qθ| < |a -bθ| 0 < |b| ≤ |q| ⇒ |p -qθ| ≤ |a -bθ| .
Proposition 6. Let θ be a real number and consider the lattice Λ θ dened by

Λ θ = {(p -qθ, q) : (p, q) ∈ Z 2 }.
Then X = (p -qθ, q) ∈ Λ θ is a minimal vector with q = 0 i (p, q) is a best approximation vector of θ.

Proof. Suppose that X = (p -qθ, q) is a minimal vector with q = 0. If a and b are integers

with 0 < |b| < |q|, then Y = (a -bθ, b) / ∈ B(X) which implies |a -bθ| > |p -qθ|. If |b| = |q| and if |a -bθ| ≤ |p -qθ| then Y ∈ B(X) which implies |a -bθ| = |p -qθ|.
Conversely, suppose that (p, q) is a best approximation vector of θ. 

U =]0, 1[ 2 ∪ ({0} × [0, 1 2 ]) ∪ ([0, 1 2 ] × {0}). Proposition 7. Let Λ be a lattice in R 2 and let u = (u 1 , u 2 ) and v = (v 1 , v 2 ) be a pair of consecutive minimal vectors in Λ with u 2 , v 2 ≥ 0 and v 2 > u 2 .
(1) Then u 1 = 0 and there exist (x, y) ∈ U and ε ∈ {-1, 1} unique such that

u = (u 1 , u 2 ) = (ε|u 1 |, v 2 y) v = (v 1 , v 2 ) = (-ε|u 1 |x, v 2 ).
(In the case u 2 = 0 and

u 1 v 1 > 0 we change u in -u.) (2) If v 1 = 0, then, with a = 1 x , w = u + av
is the minimal vector that follows immediately v. Furthermore,

v = (ε |v 1 |, w 2 y ) w = (-ε |v 1 |x , w 2 )
where

ε = -ε, w 2 = v 2 (a + y), x = { 1
x } and y = 1 a + y .

Remark 4. When u 2 = 0, u is the rst minimal vectors: there is no minimal vector w such that w and u are consecutive.

Proof. 1. Let u = (u 1 , u 2 ) and v = (v 1 , v 2 ) be a pair of consecutive minimal vectors with u 2 and v 2 non negative and

u 2 < v 2 . Since v is minimal, we have |u 1 | > |v 1 |, u 1 = ε|u 1 |, v 1 = αε|u 1 |x and u 2 = v 2 y where ε, α = ±1 and x, y ∈ [0, 1[. Consider the vectors w = u -αv = (ε|u 1 |(1 -x), v 2 (y -α)), w = u + αv = (ε|u 1 |(1 + x), v 2 (y + α)).
( It follows that (x, y) ∈ U . In case (1), when x, y > 0 only α = -1 is possible. In case (2), α can be either 1 or -1. In case (3), we can suppose α = -1 by changing u in -u when u 1 v 1 > 0. In the three cases α = -1 works. Finally, ε, x and y are unique because |u 1 | and v 2 are > 0.

2. If v 1 = 0, then x > 0 and the vector u + av is in the strip {(x 1 , x 2 ) :

|x 1 | < |v 1 |} for its rst coordinate is ε|u 1 |x( 1 x -a) = -v 1 { 1 x }. If w = (w 1 , w 2 ) ∈ Λ \ {0}
is minimal for the lexicographic preorder ≺ in this strip, then w is the minimal vector that immediately follows v. By Proposition 4, Λ = Zu+Zv = Zv+Zw, hence det (u,v) (v, w) = ±1. Therefore w = ±u + nv where n ∈ Z. We can suppose w 2 > 0.

It implies n > 0 for v 2 > u 2 ≥ 0. Now, |w 1 | = |nv 1 ± u 1 | = |v 1 || ± 1 x -n| < |v 1 |, hence | ± 1
x -n| < 1. Since n ≥ 1, the sign ± must be + and n = 1 x = a or a + 1. Since w 2 = u 2 + nv 2 and since w is minimal for the lexicographic preorder ≺, n = a. Therefore w = u + av.

Finally, we obtain v = (-ε|u 1 |x, v 2 ) = (ε |v 1 |, w 2 y ), w = (ε|u 1 |x( 1 x -a), v 2 (y + a)) = (-ε |v 1 |x , w 2 ) where ε = -ε, x = { 1
x } and y = 1 a + y .

Denition 8. Let Λ be a lattice in R 2 .

(1) Let u = (u 1 , u 2 ) and v = (v 1 , v 2 ) be two consecutive minimal vectors in Λ. The triple (ε, x, y) ∈ {-1, 1} × U associated with (u, v) by Proposition 7 is called the intrinsic coordinates of the pair (u, v).

(2) The map T :]0, 1

[ 2 ∪(]0, 1 2 ] × {0}) → [0, 1[ 2 dened by T (x, y) = ({ 1 x }, 1 1 x + y )
is the natural extension of the Gauss map.

Remark 5. Natural extensions of measure preserving maps were introduced by Rohlin in 1961 (see [START_REF] Rohlin | Exact endomorphisms of a Lebesgue space[END_REF]). Here we shall not prove that the map T is the natural extension of the Gauss map, i.e., is the smallest invertible extension of the Gauss map. We shall only prove that it is invertible and measure preserving.

Properties of the natural extension.

Lemma 9. T is one to one and

T (]0, 1[ 2 ∪(]0, 1 2 ] × {0})) =]0, 1[ 2 ∪({0}×]0, 1 2 ]). Further- more, for (x , y ) ∈ U \ (]0, 1 2 ]) × {0}, T -1 (x , y ) = ( 1 1 y +x , { 1 y }).
Proof. If T (x, y) = (x , y ) then 0 < y = 1

1 x +y < 1. With b = 1 y , we have , b ≤ 1 x + y < b + 1, which implies 1 x = b. In turn this implies x = 1 x -b and y = 1 y -b and then (x, y) = ( 1 b+x , { 1 y }). Therefore T is one to one. Moreover, if x = 0, then x = 1 b and b cannot be 1 so that y ≤ 1 2 . It follows that T (]0, 1[ 2 ∪(]0, 1 2 ]×{0})) ⊂]0, 1[ 2 ∪({0}×]0, 1 2 ]) . Conversely, it is easy to check that if (x , y ) ∈]0, 1[ 2 ∪({0}×]0, 1 2 ]) then T ( 1 1 y +x , { 1 y }) = (x , y ).
Lemma 10 (Contraction Lemma). Let x ∈]0, 1[ be such that x = { 1

x } > 0. Then for any y, z ∈]0, 1[, the four pairs (x , y ) = T (x, y), (x , y ) = T 2 (x, y), (x , z ) = T (x, z) and Proof. With a = 1

x and a = 1

x , we have

y = 1 a + y , z = 1 a + z , |z -y | = |y -z| |a + z||a + y| ≤ |z -y|, y = 1 a + 1 a+y = a + y 1 + aa + a y , z = a + z 1 + aa + a z , z -y = (1 + aa + a y)(a + z) -(1 + aa + a z)(a + y) (1 + aa + a z)(1 + aa + a y) , |z -y | ≤ |z -y| (1 + aa ) 2 ≤ 1 2 |z -y|.
Lemma 11. The probability µ = 1 ln 2(1+xy) 2 dxdy on U is T -invariant and ergodic.

Proof. Since T is a dieomorphism from (]0, 1[\{

1 n : n ∈ N 2 })×]0, 1[ onto ]0, 1[×(]0, 1[\{ 1 n : n ∈ N 2 }), it suces to check that f • T × | Jac T | = f
where f is the density of µ. This verication is straightforward.

By the contraction Lemma, for all x ∈]0, 1[\Q and all y, z ∈]0, 1[, lim n→∞ d(T n (x, y), T n (x, z)) = 0.

So that, if f : U → R is continuous and if for some (x, y) ∈]0, 1[ 2 , lim n→+∞ ,y). Therefore, by Birkho Theorem, for almost all (x, y) ∈ U , the sequence 1 n n-1 k=0 f •T k (x, y) converges to a limit l(x) which does not depend on y. Since T -1 = s • T • s where s(u, v) = (v, u), we also have that for almost all (x, y), the sequence

1 n n-1 k=0 f • T k (x, y) = l(x, y), then for all z ∈]0, 1[, lim n→+∞ 1 n n-1 k=0 f • T k (x, z) = l(x
1 n n-1 k=0 f • T -k (x, y) = 1 n n-1 k=0 f • s • T -k (y, x)
converges to a limit l (y) which does not depend on x. Since the forward limit and the backward limit are almost surely equal, it follows that l(x) = l (y) for almost all (x, y).

Therefore, the sequence

1 n n-1 k=0 f • T k (x, y)
converges almost everywhere to a constant that must be the mean M (f ) = U f dµ. By Lebesgue Theorem, the convergence also holds in L 1 (µ). It follows that the sequence of linear maps

A n f = 1 n n-1 k=0 f •T k converges in L 1 (
µ) on an everywhere dense set of continuous functions to M (f ). Since the sequence of linear maps (A n ) n is bounded for the operator norm in L 1 (µ), it follows that for all

f ∈ L 1 , A n f → M (f ) in L 1 (µ) which implies that T is ergodic.

Hermite best approximations vectors

Recall that a shortest vector in a lattice with respect to a norm . is a nonzero vector of the lattice whose norm is minimal. Denition 12. A Hermite vector in a lattice Λ ⊂ R 2 is a vector w in Λ that is a shortest

vector in Λ for an Euclidean norm |(x 1 , x 2 )| 2 t = |tx 1 | 2 + | 1 t x 2 | 2
where t is a positive real number.

A Hermite best approximation vector of θ ∈ R is a pair (p, q) ∈ Z × N such that (p -qθ, q) is a Hermite vector in Λ θ .

Lemma 13. If u = (u 1 , u 2 ) is a Hermite vector in a lattice Λ ⊂ R 2 , then u is a minimal vector in Λ.

Proof. By denition of Hermite vector, there exists t > 

0 such that u = (u 1 , u 2 ) is a shortest vector for the norm |.| t . Since the box B(u) ⊂ {v ∈ R 2 : |v| t ≤ |u| t } and B(u) \ {v ∈ R 2 : |v| t < |u| t } = {(±u 1 , ±u 2 )}, u is a minimal vector in Λ. Lemma 14. Let u = (u 1 , u 2 ) be a Hermite vector of a lattice Λ ⊂ R 2 . If |u 1 | > 0, then ( 
v = (v 1 , v 2 ) ∈ Λ such that |v 1 | < |u 1 |. For s > 0, large enough, |v| 2 s = s 2 |v 1 | 2 + 1 s 2 |v 2 | 2 < s 2 |u 1 | 2 . Let h = (h 1 , h 2 ) be a shortest vector in Λ for the norm |.| s . Then s 2 |h 1 | 2 ≤ |h| 2 s ≤ |v| 2 s < s 2 |u 1 | 2 . 2. Suppose now h = (h 1 , h 2 ) is a hermite best approximation vector with |h 1 | < |u 1 | with |h 2 | minimal. . Let Let t = sup{s > 0 : u is a shortest vector with respect to the norm |.| s }.
By continuity, we see that u is still a shortest vector with respect to the norm |.| t . We want to show that |u| t = |h| t . We use the following short steps: • There exists r ≥ t such that h is a shortest vector with respect to the norm |.| r .

• If v = (v 1 , v 2
Otherwise, there exists r < t such that h is a shortest vector with respect to |.| r and we would have |u| t -|h| t > |u| r -|h| r ≥ 0 and u would not be a shortest vector with respect to |.| t . • Since Λ is discrete there exists a vector v = (v 1 , v 2 ) and a sequence (s n ) of real numbers (strictly) decreasing to t such that v is a shortest vector with respect to the norm |.| sn for each n.

• If v = (v 1 , v 2 ) is
• We have |v 1 | = |u 1 |. Otherwise |v 2 | = |u 2 |
and u would be a shortest vector with respect to a norm |.| sn with s n > t.

• We have |v 1 | < |u 1 |, otherwise |v| t -|u| t < |v| sn -|u| sn < 0. • If |h 1 | = |v 1 | we are done. • If |h 1 | = |v 1 | then by denition of h we have |h 2 | < |v 2 | and therefore |v 1 | < |h 1 |.
It follows that |h| t -|v| t ≤ |h| r -|v| r ≤ 0 and therefore |h| t ≤ |v| t = |u| t .

Theorem 1 is a particular case of (a) in the next proposition.

Proposition 15. Let Λ be a lattice in R 2 and let u = (u 1 , u 2 ) and v = (v 1 , v 2 ) be a pair of consecutive minimal vectors in Λ with u 2 , v 2 ≥ 0 and v 2 > u 2 . Let (ε, x, y) ∈ {-1, 1} × U be the intrinsic coordinates of (u, v) (see denition 8).

a. One at least of the two vectors u and v is a Hermite vector (Theorem 1). b. u is a Hermite vector and v is not a Hermite vector i

x > 2y + 1 y + 2 .
Furthermore, if this inequality holds then v and v + u are consecutive minimal vectors.

Proof. 1. Let us show that if u is a Hermite vector and v is not a Hermite vector then w = u + v is a Hermite vector and is the minimal vector that follows v. We proceed by contradiction and suppose that w is not a Hermite vector. Call h = (h 1 , h 2 ) the Hermite vector with |h 1 | < |u 1 | and h 2 non negative and minimal. By Lemma 14, there exists a t > 0 such that u and h are shortest vectors of Λ for the same norm |.| t . Since v is not a Hermite vector, v is not a shortest vector of Λ for the X n+1 is a Hermite vector. It follows that X n 2 or X n 2 +1 is a Hermite vector which proves a.

4. Let u and v be two consecutive minimal vectors. With r = |u 1 |, q = v 2 > 0 by denition of the intrinsic coordinate, u = (εr, qy) and v = (-εrx, q). Suppose that u is a Hermite vector and v is not. Let w = u + v. By 1, there exists t > 0 such that |u| t = |w| t < |v| t .

As in 1, this implies

t 4 = q 2 ((1 + y) 2 -y 2 ) r 2 (1 -(1 -x) 2 ) , t 4 r 2 (1 -x 2 ) + q 2 (y 2 -1) < 0, thus ((1 + y) 2 -y 2 ) (1 -(1 -x) 2 ) (1 -x 2 ) + (y 2 -1) < 0.
which is equivalent to 

(2y + y 2 )x 2 + 2(1 -y 2 )x -(2y + 1) > 0 Solving in x, the discriminant is (1 -y 2 ) 2 + (2y + y 2 )(2y + 1) = (1 + y + y 2 )
Let V = {(x, y) ∈ U : x > 2y+1 y+2 }. Then V 1 (1 + xy) 2 dxdy = ln 2 -1 2 ln 3
Proof. The lemme follows from the two standard calculations:

1 2y+1 y+2 1 (1 + xy) 2 dx = - 1 y 1 1 + xy 1 2y+1 y+2 = 1 -y 2(1 + y)(1 + y + y 2 ) and 1 -y 2(1 + y)(1 + y + y 2 ) dy = -2 ln(1 + y) + ln(1 + y + y 2 ).
Which contradicts Birkho Theorem used with the function 1 Vt .

Proof of corollary 1. (1) in Theorem 1 is the particular case Λ = Λ θ of (a) in Proposition 15. ( 2) is just the above Lemma. Let us now prove (3).

Let (g n -h n θ, h n ) n≥0 be the sequence of Hermite vectors in Λ θ and X n (θ) = (p n -q n θ, q n ), n ≥ 0, be the complete sequence of minimal vectors of Λ θ . We can suppose that the q n and h n are ≥ 0. By Lemma 13, the sequence (h n ) n≥0 is a sub-sequence of the sequence (q n ) n≥0 . Therefore, there exists an increasing sequence (n k ) k≥0 such that for all k ≥ 0, 

h k = q n k . By denition, {0 ≤ n < 1 + n k : X k (θ)
1 k + 1 ln h k = 1 k + 1 ln q n k = n k k + 1 × 1 n k ln q n k -→ 2 ln 2 ln 3 × π 2 12 ln 2 = π 2 6 
ln 3 when k goes to innity.

Minimal vectors, cross sections and the hyperbolic plane

Thanks to Proposition 7, there is an algorithm that associates to a pair of consecutive minimal vectors (u, v) in a lattice Λ ⊂ R 2 , the minimal vector w that follows v. With the intrinsic coordinates, the map (u, v) → (v, w) is given by the natural extension T of the Gauss map and a sign (see Proposition 7). We can think of this map another way. For each pair of consecutive minimal vector u 

= (u 1 , u 2 ), v = (v 1 , v 2 ), since |u 1 | > |v 1 | and |v 2 | > |u 2 |, the diagonal matrix g t = e t 0 0 e -t , with t = 1 2 ln |v 2 | |u 1 | , is such that |ug t | ∞ = |vg t | ∞ where |(x, y)| ∞ = max(|x|, |y|).
u = (u 1 , u 2 ) and v = (v 1 , v 2 ) in Λ such that • |u 2 | and |v 1 | < r = |u 1 | = |v 2 | and
• ±u and ±v are the only nonzero vectors in Λ that are in the closed ball B ∞ (0, r) associated with the sup norm.

Observe that u and v are consecutive minimal vectors. Now we can replace the previous map (u, v) → (v, w) by the rst return map of the ow (g t ) t∈R in the cross section S. The ergodicity of the natural extension T of the Gauss map can be deduced from the ergodicty of diagonal ow in the space of unimodular lattices.

Many Authors used such a rst return map dened on the quotient of the unit tangent bundle of the hyperbolic plane PSL(2, Z)\T 1 H (see [START_REF] Grabiner | Cutting Sequences fo Geodesic ow on the Modular Surface and Continued Fractions[END_REF], [START_REF] Series | The modular surface and continued fractions[END_REF]). Identifying the space of unimodular lattices with the quotient PSL(2, Z)\T 1 H the diagonal ow becomes the geodesic ow. Meignen used the action of the whole isometry group instead of just PSL(2, R). To be precise, on the one hand, T 1 H can be identied with SL ± (2, R)/{diag(±1, ±1)} and on the other hand, the space of unimodular lattices quotiented by the symmetries with respect to the two axes can be identied with PGL(2, Z)\T 1 H. Now the geodesic ow in the space of unimodular lattices can be view as a billiard in a well chosen fundamental domain for the action of PGL(2, Z). Meignen used an hyperbolic triangle with one vertex at innity as fundamental domain. The trajectories of the billiard are piecewise geodesics with the usual laws of reection along the sides of the triangle. So that the geodesics in the modular surface become billiard trajectories. Then the ergodicity of the geodesic ow and a cross section allowed Meignen to prove his version of Corollary 1.

The common characteristic of the methods based on the hyperbolic plane is to use the geodesic ow on a quotient of T 1 H and the rst return map on a cross section whose projection in the corresponding quotient of H, is a nite union of geodesic segments. For instance, the cross section used by Meignen projects on the bounded side of the hyperbolic triangle.

We want to point out that the projection in H of the cross section S dened with the minimal vectors, has non empty interior. Indeed, thanks to Proposition 7, it is easy to see that the projection of S contains all the complex numbers z = i + εy -εxi + 1 with (x, y) ∈]0, 1[ 2 , ε = ±1.

Thus, the cross section S, when seen in the hyperbolic plane, is not of the usual type.

  we want to show that x = y = 0. Suppose x + y ≤ 1. If x and y > 0, then w = (x + y) xu+yv x+y is (x + y) times a vector in the open line segment ]u, v[, thus w in the interior of the box B(u, v) which contradicts Lemma 3. If x = 0, then w = yv and since v is minimal, y = 0. If y = 0, then x = 0 as well.

  For any (a, b) ∈ Z 2 , Y = (a -bθ, b) ∈ B(X) implies |a -bθ| ≤ |p -qθ| |b| ≤ |q| . If b = 0, this in turn, implies |a -bθ| = |p -qθ| and |b| = |q| by denition of best approximation vectors. If b = 0 and a = 0 then |a| ≥ 1 > 1 2 ≥ |p -qθ|, hence Y / ∈ B(X).

3 .

 3 Minimal vectors and the natural extension of the Gauss map 3.1. Denition of the natural extension. Let denote x the lower integer part of the real number x and {x} = x -x its fractional part. Set

  ) If x, y > 0 and α = 1 then w is in the interior of the box B(u, v), by Proposition 3, this contradicts that u and v are consecutive minimal vectors . (2) If x = 0, then |y -α| and |y + α| are ≥ y because u is minimal. It implies y ≤ 1/2. (3) If y = 0, then |1 -x| and |1 + x| are ≥ x because v is minimal. It implies x ≤ 1/2.

  (x , y ) = T 2 (x, z) are dened and |z -y | ≤ |z -y| and |z -y | ≤ 1 2 |z -y|.

  ) and w = (w 1 , w 2 ) are two Hermite vectors and if |w 1 | < |v 1 | then |w 2 | > |v 2 | because w is a minimal vector. Therefore the function s → |v| 2 s -|w| 2 s is strictly increasing.

2 ,

 2 is a Hermite vector} = {n 0 , . . . , n k }, and by Theorem 2, for almost all θ, so that by Levy's Theorem ([START_REF] Lévy | Sur le developpement en fraction continue d'un nombre choisi au hasard[END_REF]),

  Notation. For a and b ≥ 0, the box B(a, b) is the set of vectors (x, y) ∈ R 2 such that |x| ≤ a and |y| ≤ b. When u = (u 1 , u 2 ) and v = (v 1 , v 2 ) are in R 2 , the box B(u) is dened by B(u) = B(|u 1 |, |u 2 |) and the box B(u, v) is dened by B(u, v) = B(max(|u 1 |, |v 1 |), max(|u 2 |, |v 2 |)).

	The Author would like to thank Yann Bugeaud for bringing the work of Meignen to his
	attention.
	2. Minimal vectors in lattices of R 2

  is a complete sequence of minimal vectors in Λ ∈ I such that n + 1 ∈ I, |y n+1 | > |y n |, for all minimal vectors u = (x, y), there exists n ∈ I such that |y n | = |y|.

	if
	I ⊂ Z is an interval,
	for all n ∈ I, X n is a minimal vector in Λ,
	for all n Example 1. When

  On the other hand, |w 1 | < |u 1 | and |w 2 | < |v 2 | and since u is a minimal vector we have |w 2 | > |u 2 |. Hence u

and v are not consecutive. Conversely, if u and v are not consecutive there is a minimal vector w with |u 2

  Hermite vector with |h 2 | minimal, then there exists a positive real number t such that u and h are shortest vectors of Λ with respect to the same norm |.| t . Proof. 1. Since |u 1 | > 0, there exists at least one nonzero vector

1) there exists a Hermite vector h

= (h 1 , h 2 ) with |h 1 | < |u 1 |, (2) if h is such a

  a shortest vector of Λ with respect to |.| s for some s > t then |v 1 | ≤ |u 1 |. Otherwise, |v| t -|u| t < |v| s -|u| s ≤ 0 and u would not be a shortest vector with respect to |.| t .

  = |w = u + v| t < |v| twhich implies that v is not a Hermite vector. Actually, if s > t then |w| s < |v| s and if s < t then |u| s < |v| s . u is a Hermite vector. Since v is not a Hermite vector this follows from a.

						2 , thus we
	obtain	x >	2y + 1 y + 2	or x < -	1 y
	and since x ≥ 0, x > 2y+1 y+2	.			
	5. Conversely if the inequality x > 2y+1 y+2	holds then with the value t 4 = q 2 ((1+y) 2 -y 2 ) r 2 (1-(1-x) 2 )	, we
	obtain				
	|u| t 6. It remains to show that if	x >	2y + 1 y + 2	,
	5. Proportion and growth rate of Hermite best approximations
	Lemma 16.				

then

  This brings the lattice Λ in the cross section S of the diagonal ow in SL(2, Z)\ SL(2, R) dened by Λ ∈ S i there exist two vectors

. On the one hand, by Proposition 7, v and u + av are the two minimal vectors that follows u, on the other hand, h is a minimal vector that follows u and (|h

) is a minimal vector and h = w because we have assumed that w is not a Hermite vector. Now, w = (w 1 , w 2 ) where |w

We have

2 ) ≥ 0 a contradiction. Hence w is Hermite vector and by Proposition 7, w is the minimal vector that follows v.

2. For every minimal vector u = (u 1 , u 2 ) with u 2 > 0, there exists a Hermite vector z = (z 1 , z 2 ) with 0 ≤ z 2 < u 2 . Indeed, if Λ contains a nonzero vector whose second coordinate vanishes, just take z = (z 1 , 0) with 0 ≤ z 1 minimal. z is a Hermite vector with respect to |.| t when t > 0 is small enough. Otherwise there is a vector

A shortest vector z = (z 1 , z 2 ) associated with such a s, is by denition a Hermite vector and we have 0

Let us show a. If u 2 = 0 then u is a Hermite vector. If u 2 > 0, by 2, there exists a Hermite vector z = (z 1 , z 2 ) with 0 ≤ z 2 < u 2 . There exists a complete sequence of minimal vectors

Let us show that by induction that for all n ≥ n 1 such that n + 1 ∈ I, X n or X n+1 is Hermite vector. If n = n 1 it holds because z is a Hermite vector. If X n is not a Hermite vector, by induction hypothesis, X n-1 is a Hermite vector. By 1, X n-1 + X n is a Hermite vector and is the minimal vector that follows X n . Therefore Lemma 17. Let Λ be a lattice in R 2 and let X n = (r n , q n ), n ∈ I ⊂ Z, be a complete sequence of minimal vectors with q n ≥ 0 for all n. Suppose that 0, 1 ∈ I and let (ε, x, y) be the intrinsic coordinates of the pair (X 0 , X 1 ). Then, for all n ∈ I such that n + 1 ∈ I, X n+1 is not a Hermite vector of Λ i T n (x, y) ∈ V . Proof. By Proposition 7, for all n ∈ I such that n + 1 ∈ I, the intrinsic coordinate of (X n , X n+1 ) are

If X n+1 is not a Hermite vector, X n is a Hermite vector by Proposition 15 a, and therefore Proof of Theorem 2. Let θ be in R. The rst two minimal vectors of Λ θ are X 0 = ±(1, 0)

and X 1 = (-θ , 1) where θ = θ -[θ] and [θ] is the integer nearest to θ. The intrinsic coordinates of these two consecutive minimal vectors are (ε, x, 0) = (sgn θ , |θ |, 0). So that, thanks to the previous Lemma, it is enough to prove that

for almost all x ∈ [0, 1 2 ]. By Birkho Theorem applied to the natural extension of the Gauss map and to the indicator function 1 V , we know that for almost all (x, y) ∈ U ,

The problem is that the limit hold for almost all (x, y) and not for almost all x. The method to overcome this problem is standard, we have just to use that T does not increase the distance along the y direction (contraction Lemma). Suppose on the contrary that there exist a > 0 and a measurable set S ⊂ [0, 1 2 ] of positive measure such that for all x ∈ S lim sup

We deal with the rst case, the second is similar. Let t be positive real number and let V t = {(x, y) ∈ U : ∃(y , x) ∈ U, |y -y | ≤ t}.

We can choose t small enough so that µ(V t ) < µ(V ) + a 1 V (T k (x, 0))