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1 Introduction

Mendelian Randomization (MR) has become a standard approach for evaluating the causal

effects of heritable exposures on outcomes of interest (Davey Smith et al. 2003; Burgess

et al. 2012; Davey Smith et al. 2014). Often, investigators do not have access to raw

genetic data and methods have been developed that allow MRs to be carried out with

only summary statistics of exposure-to-instrument and outcome-to-instrument regressions

(Burgess et al. 2013). In addition, many MRs are implemented using multiple instruments

in order to maximize the power to detect a true causal effect and to protect against directional

pleiotroy (e.g., Voight et al. 2012; Day et al. 2015). A common approach to conducting an

MR under this paradigm (using multiple instruments with access only to summary statistics),

is an inverse-variance weighted (IVW) meta-analysis of estimated causal effects across the

instruments. A critical assumption of this approach is the so called ”exclusion criteria” which

specifies that the instrument cannot be associated with the outcome except through its effect

on the exposure (i.e., only an indirect effect through the exposure). When this assumption is

met, the IVW method provides an unbiased estimate of the true causal effect of the exposure

on the outcome. When this assumption is violated, other more robust methods can be used

to estimate the causal effect. One such approach is the often used MR-Egger regression
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(Bowden et al. 2015). MR-Egger regression has become a popular approach to conducting

MR analyses due to its flexibility in allowing direct effects of instruments on the outcome

and providing a robust estimate of the causal effect in the presence of modest violations to

the exclusion restriction. An added benefit of the MR-Egger approach is that it too only

requires access to summary statistics, i.e., access to raw genotypes is not necessary.

Given the popularity of MR-Egger regression, it has been used in a variety of MRs in-

cluding when the outcome of interest is failure time. Indeed, previous publications have used

MR-Egger regression with summary statistics on proportional hazard models of instruments

on failure time (e.g., Guo et al. 2015). Here we show through mathematical derivations and

simulations that when the outcome of interest is failure time, a naive analysis can lead to

significant bias. We recommend that raw genetic data be accessed in order to assess the

proportionality assumption of the standard Cox model (Cox 1972) across instruments. After

assessing the validity of this assumption, the appropriate model (an additive hazards model

or a proportional hazards model) can be fit to the data and causal inference can proceed. Fi-

nally, we provide an application of this principle on data from the Women’s Health Initiative

on the causal effect of body mass index (BMI) on breast cancer survival.

2 Methods

2.1 Causal Inference with survival outcomes and an additive haz-

ard function

In the context of survival data, we let time to event and censoring be T and C, respectively,

where we observe the minimum, T̃ = min(T,C). We denote a p × 1 vector of covariates

by X. As proposed in the Li et al. (2014), we assume an additive hazard model for the

exposure and T . That is, the hazard function is an additive function of covariates.

h(t|X) = h0(t) +XTβ
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where β is a p× 1 vector of regression coefficients. In an MR with multiple genetic variants

as instruments, we let G1, . . . , GJ represent the J genetic variants (coded as 0, 1, or 2), XE

represent the exposure of interest and XU represent a vector of confounders. We assume

that XU is unknown and that the following relationships hold:

XE = γ0 +GTγG +XT
UγU + εX

h(t|X) = h0(t) + βEXE +XT
UβU

When we have a single genetic variant j, as Li et al. (2014) discussed, we can estimate XE

with

X̂E = γ̂0 +GT γ̂G

To carry out a two-stage regression approach to causal inference we then fit an additive

hazard model by using X̂E with the observed time and censoring indicator. This approach

can be extended to multiple genetic variants by plugging in

h(t|X) = h0(t) + βE(GTγG +XT
UγU + εX) +XT

UβU

Now, consider the survival function:

S(t|XE,XU , ε
X) = S0(t) exp{−t(βE(GTγG +XT

UγU + εX) +XT
UβU)}

= S0(t) exp{−t(βEGTγG)} exp{−t(XT
U(βEγU + βU) + βEε

X)}

By integration with respect to (XU , ε
X), we divide the survival function given XE into two

parts : one which depends only on XE and another which depends on (XU , ε
X). Hence from

this approach, the additivity of the hazard function is preserved and the effect of interest is

βE.

To summarize, we extend the approach of Li et al. (2014), as follows:

1. Estimate XE by fitting a linear regression model on G1, . . . , GJ .

2. Fit additive hazard model by using estimate XE.

The estimator from this procedure exactly falls into framework from Li et al. (2014), and it

is therefore consistent and asymptotically normal.
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2.2 Causal Inference with survival outcomes and a proportional

hazard function

If we assume a proportional hazard model, we have

XE = γ0 +GTγG +XT
UγU + εX

h(t|X) = h0(t) exp(βEXE +XT
UβU)

In a two-stage approach, we then plug XE into the function h(t|X),and get

h(t|X) = h0(t) exp{βE(γ0 +GTγG +XT
UγU + εX) +XT

UβU}

By integration to obtain the survival function, we get

S(t|X) = {S0(t)}exp(−βE(γ0+GTγG+XT
UγU+εX)+XT

UβU )

In this case, unlike the additive hazard model, we cannot separate the part only depending

on XE although we integrate out XU . Therefore, the proportionality of the hazard function

is not preserved with respect to XE and βE is not the causal effect.

2.3 Extensions to MR-egger regression

In the context of MR-egger regression, we assume that the hazard function is related to Gj

as well as βE and XU as follows:

XE = γ∗0j + γ∗1jGj + γ∗T
U XU + εX∗

h(t) = h0(t) + α∗
jGj + βEXE + βTUXU

where εX∗ is a new error term in the new linear regression with respect to Gj. In this case,

other than unmeasured confounders, we focus on the relation between individual genetic

variant and the exposure, and between the hazard and the exposure with individual genetic

variant. Then by plugging in XE into h(t), we obtain

h(t) = h0(t) + α∗
jGj + βE(γ∗0j + γ∗1jGj + γ∗T

U XU + ε∗X) + βTUXU

= h0(t) +Gj(α
∗
j + γ∗1jβE) + ε∗
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where ε∗ = βEγ
∗
0j +βEβ

T
UXU +γ∗T

U XU + ε∗X . By two-stage modeling, we obtain
α∗
j+βEγ

∗
1j

γ∗1j
=

βE +
α∗
j

γ∗1j
. We can see from this that when genetic variants are valid instrument variables,

they satisfy the following conditions (Bowen et al. 2015)

1. Each Gj and XU are independent.

2. Each Gj is associated with XE.

3. Each Gj is independent of (T,C) conditional on the XE and XU .

In this case, α∗
j = 0, so the causal effect is βE.

This method is particularly useful. For censored data, suppose we have:

• Summary statistics from running an additive hazard model for failure time on each

genetic variant, i.e., We run the additive hazard model to estimate Γj = α∗
j + βEγ

∗
1j.

Denote the statistics by Γ̂Gj and its estimated standard error as ŝΓ̂Gj
.

• Summary statistics from running a simple linear regression model of exposure on each

genetic variant. Denote the statistic for the estimated slope as γ̂Gj

The estimation procedure for regression coefficients for time-independent covariates is the

least-square method (Lin and Ying, 1994; Li et al. 2014). Hence by employing an addi-

tive hazard model, we can follow estimation procedures for MRs in censored data. As we

discussed, due to additivity and linearity of our model, we can apply the inverse variance

weighting method (Johnson, 2013; Bowen et al. 2015). Let γ̂j be∑J
j=1 γ̂Gj ŝ

−2

Γ̂Gj
Γ̂Gj∑J

j=1 γ̂
2
Gj ŝ

−2

Γ̂Gj

However, this inverse weighting method has bias when α∗
j 6= 0 (i.e., directional pleiotropy).

As discussed in Bowen et al. (2015), this meta-analysis framework is applicable to an additive

hazard model. As in Bowen et al. (2015), for each j = 1, . . . , J ,

Γ̂MR
Gj = β0E + βE γ̂

MR
Gj
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Then by estimation of βE, we obtain the estimated causal effect. The intercept β0E estimates

the overall directional pleiotropy (Bowen et al. 2015)

Due to the linearity and additivity of the additive hazard model, our additive hazard

model has the same characteristics as a linear regression model for uncensored data. In

other words, our estimate of βE is the causal effect when β0E = 0.

Under a Cox proportional hazard model,

h0(t) exp(αjGj + βEXE + βTUU)

= h0(t) exp(αjGj + βE(γ∗0j + γ∗1jGj + γ∗T
U XU + ε∗X) + βTUU)

Due to multiplicity of the proportional hazard model, as argued in Li et al. (2014), βE does

not represent the causal effect. Therefore the IVW and MR-egger methods based on a Cox

model do not provide valid procedures for estimating the causal effect of βE.

3 Simulation study

3.1 Models and parameter settings

To evaluate the performance of the estimation procedures under a variety of settings, let Gj

represent the jth genetic variant drawn from a multinomial distribution ((0,1,2); (0.25, 0.5,

0.25)) with γj drawn from Uniform(0.5, 4). Let αj also be a fixed value that is generated

from

1. Case 1 : αj = 0 for all j, i.e., no pleiotropy.

2. Case 2: αj ∼ N(0.25, 0.12) for all j, pleiotropy.
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U and εX are independently generated from N(0, 4). Let γ0 = 0. We generate data from an

additive hazard as:

X = γ0 +
J∑
j=1

γjGj + U + εX

h(t) = h0(t) +
J∑
j=1

αjGj + βEX + U

We set h0(t) = 5 which implies a constant hazard. In this scenario, we fit an additive hazard

model. We investigated four different causal effect sizes βE = 0, 0.1, 0.5, 1. In this section,

we display results from βE = 0.1 and βE = 0.5, with results from βE = 0 and βE = 1 in the

Appendix.

We also generated failure times from the Cox model in order to investigate the properties

of estimates obtained by fitting a Cox model. The posited model is

X = γ0 +
J∑
j=1

γ∗jGj + U∗ + εX∗

h(t) = exp(
J∑
j=1

α∗
jGj + βEX + U∗)

where γj ∼ Uniform(0, 0.5), j = 1, . . . , 25, U∗, ε∗ ∼ N(0, 1) and U∗ and ε∗ are independently

generated. We considered causal effects when βE = 0 and βE = 0.5. In this section, we

display result from βE = 0.5 with result from βE = 0 in the Appendix. Let α∗
j also be a

fixed value that is generated from

1. Case 1∗ : α∗
j = 0 for all j, i.e., no pleiotropy.

2. Case 2∗: α∗
j ∼ N(0.1, 0.052) for all j, pleiotropy.

We generate time by using a probability integral transformation. Let U∗ ∼ Unif(0, 1) and

S(t) be the survival function. Note that

S(t) = e−H(t)
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where H(t) is the cumulative hazard function. Since the survival function also follows

Unif(0, 1), the failure time is generated from

T = − logU∗

H(t)

For the additive hazard model, for both Case 1 and Case 2, the censoring variable C is

generated from an exponential distribution with rate 2. For the Cox model, for Case 1∗ and

Case 2∗, C is generated from an exponential distribution with rate 10 and 50, respectively.

We compared the performance of 3 different models: 2-stage regression as in Li et al.

(2014) (Multi), the IVW method, and the MR-Egger method for both additive hazard and

Cox models. We considered two different sample sizes, n = 250 and n = 500.

3.2 Results

Under our simulation settings, we calculated bias (Bias), the empirical standard deviation

(Emp), standard error (SE), and 95% coverage (Coverage, based on the Wald method), and

power (evaluated at a significance level of 0.05) When βE = 0.1, the censoring rate for Case

1 is approximately 29% and for Case 2 is approximately 28%. For βE = 0.5, the censoring

rate for Case 1 is approximately 12% and Case 2 is approximately 14%.

Tables 1 and 2 shows the results for βE = 0.1 and βE = 0.5, respectively, for the additive

hazard model. When conditions 1, 2 and 3 are satisfied (denoted Case 1), then Multi, IVW,

and Egger all display good performance with coverage close to 0.95 and small amounts of

bias. Note that Multi and IVW are both more efficient than Egger, under Case 1. When the

conditions for valid instruments are not satisfied (denoted Case 2), Multi and IVW display

significant bias and poor coverage at the nominal level. Note that Egger provides smaller

bias and correct coverage in the nominal level though it is less efficient than Multi and IVW.

Under the null (Table S1), Egger is the only method that consistently provides correct cov-

erage under all settings with the appropriate Type I error control.

Table 3 shows the result for βE = 0.5 for the Cox model. The censoring rate is approx-

imately 42% for Case 1∗ and 33% for Case 2∗. Although we fit the correct model, there is
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substantial bias for all three methods. Interestingly, in Case 1∗, the Egger method has lowest

bias while bias of the Multi method is the lowest one in Case 2∗. Under the null (Table S3)

and no pleiotropy, IVW and Multi perform the best in terms of coverage and Type I error

control. However, under the null with pleiotropy, Egger performs the best.

4 Data analysis

As a case study in the context of real data, we considered BMI as a potential causal factor

for breast cancer (BC) survival (Guo et al. 2015). Using data from the Women’s Health

Initiative (WHI), we considered a total of 1367 BC patients. The WHI is a prospective

cohort study and one of the largest studies of women’s health ever conducted in the U.S.

Recruitment for the WHI began in 1993 and ended in 1998 and was conducted by 40 Clinical

Centers in 24 states and the District of Columbia. There are two major components of

WHI: (1) a clinical trial (CT) that enrolled and randomized 68,132 women ages 5079 into

at least one of three placebo control clinical trials (hormone therapy, dietary modification,

and supplementation with calcium and vitamin D); and (2) an observational study (OS)

that enrolled 93,676 women of the same age range into a parallel prospective cohort study

(Prentice et al. 1998). All of the 1367 BC patients from the WHI were selected from the

OS. Of the 1367 patients, 484 died due to breast cancer and the remaining 883 were alive at

the time of the last follow-up.

We used the same 94 SNPs as in Guo et al. (2015) as instruments for BMI. First, we ran

a cox proportional hazards model independently for each SNP against survival status and

considered the global goodness-of-fit test as described in Grambsch and Therneau (1994).

The cox model showed poor goodness of fit across the 94 SNPs (p=0.0122), so we also ran

the Aalen additive hazards model between each SNP and survival status. To implement the

MR-Egger causal estimation procedure, we also ran linear models between each SNP and

BMI. Finally, we fit the MR-Egger regression line to obtain causal effects for both the Cox

model and the additive hazard. Both the estimate based on the additive hazard (beta =
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0.00096, p=0.7018) and the proportional hazard (beta = 0.0086, p = 0.557) provided non-

statistically significant results for the causal effect of BMI on BC survival. However, Figure

1 shows the differences in the fitted MR-Egger lines. Note that the appropriate model for

these data appears to be the additive hazard (based on the GoF test) and the estimated

effects differ by an order of magnitude.

5 Discussion

In Burgess and Thompson (2017), the authors comprehensively discuss the use of MR-

Egger regression and the importance of assessing the assumptions inherent to that model.

Specifically, they draw attention to the linearity assumption in MR-Egger regression and

classify this as a ’2nd order’ issue as it does not effect valid inferences on causal effects

but may effect valid estimates of causal effects. The issue we raise in this article is exactly

this type of 2nd order concern, i.e., obtaining valid estimates of causal effects when the

outcome of interest is failure time. In this context the additive hazard preservers linearity

and the resulting causal effect estimates from MR-Egger regression are valid. Though the Cox

model does not preserve linearity, it is still the appropriate model when the data generating

mechanism is a proportional hazard. In such cases, causal inferences can proceed with the

understanding that the causal effect estimates can be biased (as our simulations indicate).

It is important to note that contemporary MRs are often performed on publicly available

summary statistics from large-scale genetics consortia. However, in the context of a MR

analysis with censored survival times as the outcome of interest, summary statistics do

not suffice to assess the appropriateness of the proportional hazards assumption. In these

contexts, we recommend only using data for which genotypes and phenotypes are available so

that the analyst can run the Grambsch and Therneau (1994)’s GoF test, to assess whether the

proportionality assumptions is met. Then the appropriate model (additive vs proportional

hazard) can be fit to the data and MR-Egger inference can proceed.
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Bias Emp SE Cover Power

250 Case 1 Multi 0.01 0.093 0.095 0.952 0.214

IVW 0.008 0.094 0.107 0.968 0.164

Egger 0.027 0.194 0.211 0.958 0.084

Case 2 Multi 0.101 0.147 0.149 0.888 0.256

IVW 0.098 0.149 0.169 0.92 0.204

Egger 0.042 0.31 0.333 0.958 0.068

500 Case 1 Multi 0.003 0.064 0.066 0.948 0.344

IVW 0.003 0.067 0.071 0.954 0.284

Egger 0.012 0.151 0.156 0.952 0.106

Case 2 Multi 0.091 0.1 0.104 0.86 0.464

IVW 0.091 0.105 0.112 0.874 0.39

Egger 0.014 0.236 0.247 0.962 0.06

Table 1: Simulation results from data generated from additive hazard model when βE = 0.1.

Multi : adaption of Li et al. (2014) IVW : inverse variance weighting Egger : adaption of

Egger regression
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Bias Emp SE Cover Power

250 Case 1 Multi 0.018 0.256 0.262 0.948 0.512

IVW 0.008 0.263 0.293 0.966 0.422

Egger 0.005 0.537 0.578 0.96 0.122

Case 2 Multi 0.106 0.309 0.315 0.94 0.486

IVW 0.096 0.316 0.353 0.954 0.4

Egger 0.021 0.65 0.697 0.962 0.104

500 Case 1 Multi 0.003 0.181 0.183 0.94 0.792

IVW 0.003 0.186 0.195 0.948 0.744

Egger 0.01 0.401 0.427 0.956 0.222

Case 2 Multi 0.092 0.219 0.219 0.928 0.774

IVW 0.092 0.226 0.234 0.94 0.714

Egger 0.016 0.49 0.514 0.96 0.168

Table 2: Simulation results from data generated from additive hazard model when βE = 0.5.

Multi : adaption of Li et al. (2014) IVW : inverse variance weighting Egger : adaption of

Egger regression
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Bias Emp SE Cover Power

250 Case 1∗ Multi -0.157 0.073 0.077 0.47 0.98

IVW -0.175 0.067 0.075 0.322 0.974

Egger -0.116 0.104 0.108 0.832 0.932

Case 2∗ Multi -0.046 0.072 0.074 0.888 1

IVW -0.084 0.06 0.066 0.784 1

Egger -0.141 0.096 0.099 0.714 0.938

500 Case 1∗ Multi -0.183 0.056 0.055 0.09 1

IVW -0.195 0.053 0.053 0.038 1

Egger -0.15 0.09 0.086 0.592 0.964

Case 2∗ Multi -0.06 0.052 0.053 0.786 1

IVW -0.091 0.046 0.047 0.476 1

Egger -0.184 0.081 0.08 0.338 0.956

Table 3: Simulation results from data generated from Cox model with βE= 0.5. Multi :

adaption of Li et al. (2014) IVW : inverse variance weighting Egger : adaption of Egger

regression
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8 Figure Legends

Figure 1: Causal diagram showing instrumental variable mechanism (Bowden et al. 2015)

Figure 2: Results from MR-Egger regression investigating the causal effect of BMI on

Breast Cancer survival. SNP-BMI effects are represented on the x-axis, SNP-BC survival

effects are represented on the y-axis. Results from both an additive hazard (blue) and a

proportional hazard (black) are shown.

Appendix

A Additional simulation results

This section describes results from βE = 0 and βE = 1 from additive hazard model, and

βE = 0 from Cox model. In additive hazard model, when βE = 0, (i.e., no causal effect) the

censoring rate is approximately 46% for Case 1 and 37% for Case 2. For βE = 1, censoring

rate for Case 1 is approximately 7% and Case 2 is approximately 9%. When βE = 0 and

Case 1 (i.e., no pleiotropy and no causal effect), fitting additive hazard model show good

performance with proper coverage at the nominal level. For Case 2 and no causal effect,

the Multi and IVW estimators show poor coverage. However, MR-egger provides

reasonable bias and good coverage. When βE = 1, results are very similar to βE = 0.1 and

βE = 0.5. In Case 1, all three methods perform well. In Case 2, MR-Egger has the smallest

bias and good coverage, though it is still less efficient than Multi and IVW.

For data generated from Cox model, in βE = 0, censoring rates for Case 1∗ and Case 2∗ are

approximately 88% and 80%, respectively. For bias point of view, in the Case 1∗, Egger has

the worst performance while it is the best performance in Case 2∗. For Case 1∗, when

n = 500, Multi and IVW are slightly biased but their coverage and power are closed to

nominal level.
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Bias Emp SE Cover Power

250 Case 1 Multi 0.006 0.05 0.052 0.944 0.056

IVW 0.005 0.053 0.059 0.95 0.05

Egger 0.018 0.106 0.116 0.948 0.052

Case 2 Multi 0.1 0.104 0.108 0.844 0.156

IVW 0.097 0.106 0.122 0.878 0.122

Egger 0.035 0.216 0.24 0.964 0.036

500 Case 1 Multi 0.005 0.036 0.036 0.946 0.054

IVW 0.005 0.037 0.039 0.95 0.05

Egger 0.013 0.084 0.086 0.952 0.048

Case 2 Multi 0.093 0.072 0.076 0.776 0.224

IVW 0.093 0.076 0.082 0.796 0.204

Egger 0.013 0.174 0.178 0.944 0.056

Table S1: Simulation results from data generated from additive hazard model when βE = 0.

Multi : adaption of Li et al. (2014) IVW : inverse variance weighting Egger : adaption of

Egger regression
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Bias Emp SE Cover Power

250 Case 1 Multi 0.025 0.462 0.466 0.946 0.608

IVW 0.004 0.47 0.519 0.972 0.516

Egger -0.002 0.948 1.028 0.972 0.166

Case 2 Multi 0.123 0.507 0.521 0.952 0.596

IVW 0.102 0.519 0.581 0.958 0.516

Egger 0.013 1.067 1.148 0.966 0.14

500 Case 1 Multi 0.0004 0.324 0.324 0.938 0.876

IVW -0.001 0.331 0.345 0.944 0.83

Egger 0.008 0.715 0.76 0.96 0.252

Case 2 Multi 0.085 0.365 0.363 0.924 0.854

IVW 0.085 0.374 0.385 0.932 0.8

Egger 0.011 0.804 0.849 0.96 0.226

Table S2: Simulation results when βE = 1. Multi : adaption of Li et al. (2014) IVW :

inverse variance weighting Egger : adaption of Egger regression
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Bias Emp SE Cover Power

250 Case 1∗ Multi 0.084 0.188 0.187 0.916 0.084

IVW 0.078 0.192 0.203 0.932 0.068

Egger 0.165 0.316 0.308 0.894 0.106

Case 2∗ Multi 0.268 0.141 0.145 0.532 0.468

IVW 0.259 0.142 0.157 0.614 0.386

Egger 0.155 0.232 0.237 0.88 0.12

500 Case 1∗ Multi 0.046 0.129 0.135 0.948 0.052

IVW 0.045 0.131 0.143 0.958 0.042

Egger 0.111 0.237 0.237 0.924 0.076

Case 2∗ Multi 0.25 0.101 0.106 0.312 0.688

IVW 0.247 0.104 0.111 0.368 0.632

Egger 0.09 0.185 0.186 0.906 0.094

Table S3: Simulation results from data generated from Cox model when βE = 0. Multi :

adaption of Li et al. (2014) IVW : inverse variance weighting Egger : adaption of Egger

regression
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