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Introduction

Mendelian Randomization (MR) has become a standard approach for evaluating the causal effects of heritable exposures on outcomes of interest (Davey [START_REF] Smith | Mendelian randomization: can genetic epidemiology contribute to understanding environmental determinants of disease?[END_REF][START_REF] Burgess | Use of Mendelian randomisation to assess potential benefit of clinical intervention[END_REF]; Davey [START_REF] Smith | Mendelian randomization: genetic anchors for causal inference in epidemiological studies[END_REF]). Often, investigators do not have access to raw genetic data and methods have been developed that allow MRs to be carried out with only summary statistics of exposure-to-instrument and outcome-to-instrument regressions [START_REF] Burgess | Mendelian randomization analysis with multiple genetic variants using summarized data[END_REF]). In addition, many MRs are implemented using multiple instruments in order to maximize the power to detect a true causal effect and to protect against directional pleiotroy (e.g., [START_REF] Voight | Plasma HDL cholesterol and risk of myocardial infarction: a mendelian randomisation study[END_REF]; [START_REF] Day | Large-scale genomic analyses link reproductive ageing to hypothalamic signaling, breast cancer susceptibility and BRCA1-mediated DNA repair[END_REF]. A common approach to conducting an MR under this paradigm (using multiple instruments with access only to summary statistics), is an inverse-variance weighted (IVW) meta-analysis of estimated causal effects across the instruments. A critical assumption of this approach is the so called "exclusion criteria" which specifies that the instrument cannot be associated with the outcome except through its effect on the exposure (i.e., only an indirect effect through the exposure). When this assumption is met, the IVW method provides an unbiased estimate of the true causal effect of the exposure on the outcome. When this assumption is violated, other more robust methods can be used to estimate the causal effect. One such approach is the often used MR-Egger regression 1 [START_REF] Bowden | Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression[END_REF]. MR-Egger regression has become a popular approach to conducting MR analyses due to its flexibility in allowing direct effects of instruments on the outcome and providing a robust estimate of the causal effect in the presence of modest violations to the exclusion restriction. An added benefit of the MR-Egger approach is that it too only requires access to summary statistics, i.e., access to raw genotypes is not necessary.

Given the popularity of MR-Egger regression, it has been used in a variety of MRs including when the outcome of interest is failure time. Indeed, previous publications have used MR-Egger regression with summary statistics on proportional hazard models of instruments on failure time (e.g., Guo et al. 2015). Here we show through mathematical derivations and simulations that when the outcome of interest is failure time, a naive analysis can lead to significant bias. We recommend that raw genetic data be accessed in order to assess the proportionality assumption of the standard Cox model [START_REF] Cox | Regression Models and Life-Tables[END_REF]) across instruments. After assessing the validity of this assumption, the appropriate model (an additive hazards model or a proportional hazards model) can be fit to the data and causal inference can proceed. Finally, we provide an application of this principle on data from the Women's Health Initiative on the causal effect of body mass index (BMI) on breast cancer survival.

Methods

Causal Inference with survival outcomes and an additive hazard function

In the context of survival data, we let time to event and censoring be T and C, respectively, where we observe the minimum, T = min(T, C). We denote a p × 1 vector of covariates by X. As proposed in the Li et al. (2014), we assume an additive hazard model for the exposure and T . That is, the hazard function is an additive function of covariates.

h(t|X) = h 0 (t) + X T β
where β is a p × 1 vector of regression coefficients. In an MR with multiple genetic variants as instruments, we let G 1 , . . . , G J represent the J genetic variants (coded as 0, 1, or 2), X E represent the exposure of interest and X U represent a vector of confounders. We assume that X U is unknown and that the following relationships hold:

X E = γ 0 + G T γ G + X T U γ U + X h(t|X) = h 0 (t) + β E X E + X T U β U
When we have a single genetic variant j, as Li et al. ( 2014) discussed, we can estimate

X E with XE = γ0 + G T γG
To carry out a two-stage regression approach to causal inference we then fit an additive hazard model by using XE with the observed time and censoring indicator. This approach can be extended to multiple genetic variants by plugging in

h(t|X) = h 0 (t) + β E (G T γ G + X T U γ U + X ) + X T U β U
Now, consider the survival function:

S(t|X E , X U , X ) = S 0 (t) exp{-t(β E (G T γ G + X T U γ U + X ) + X T U β U )} = S 0 (t) exp{-t(β E G T γ G )} exp{-t(X T U (β E γ U + β U ) + β E X )}
By integration with respect to (X U , X ), we divide the survival function given X E into two parts : one which depends only on X E and another which depends on (X U , X ). Hence from this approach, the additivity of the hazard function is preserved and the effect of interest is

β E .
To summarize, we extend the approach of Li et al. ( 2014), as follows:

1. Estimate X E by fitting a linear regression model on G 1 , . . . , G J .

2. Fit additive hazard model by using estimate X E .

The estimator from this procedure exactly falls into framework from Li et al. ( 2014), and it is therefore consistent and asymptotically normal.

Causal Inference with survival outcomes and a proportional hazard function

If we assume a proportional hazard model, we have

X E = γ 0 + G T γ G + X T U γ U + X h(t|X) = h 0 (t) exp(β E X E + X T U β U )
In a two-stage approach, we then plug X E into the function h(t|X),and get

h(t|X) = h 0 (t) exp{β E (γ 0 + G T γ G + X T U γ U + X ) + X T U β U }
By integration to obtain the survival function, we get

S(t|X) = {S 0 (t)} exp(-β E (γ 0 +G T γ G +X T U γ U + X )+X T U β U )
In this case, unlike the additive hazard model, we cannot separate the part only depending on X E although we integrate out X U . Therefore, the proportionality of the hazard function is not preserved with respect to X E and β E is not the causal effect.

Extensions to MR-egger regression

In the context of MR-egger regression, we assume that the hazard function is related to G j as well as β E and X U as follows:

X E = γ * 0j + γ * 1j G j + γ * T U X U + X * h(t) = h 0 (t) + α * j G j + β E X E + β T U X U
where X * is a new error term in the new linear regression with respect to G j . In this case, other than unmeasured confounders, we focus on the relation between individual genetic variant and the exposure, and between the hazard and the exposure with individual genetic variant. Then by plugging in X E into h(t), we obtain

h(t) = h 0 (t) + α * j G j + β E (γ * 0j + γ * 1j G j + γ * T U X U + * X ) + β T U X U = h 0 (t) + G j (α * j + γ * 1j β E ) + * where * = β E γ * 0j + β E β T U X U + γ * T U X U + * X
. By two-stage modeling, we obtain

α * j +β E γ * 1j γ * 1j = β E + α * j γ * 1j
. We can see from this that when genetic variants are valid instrument variables, they satisfy the following conditions (Bowen et al. 2015)

1. Each G j and X U are independent.

2. Each G j is associated with X E .

3. Each G j is independent of (T, C) conditional on the X E and X U .

In this case, α * j = 0, so the causal effect is β E . This method is particularly useful. For censored data, suppose we have: Under a Cox proportional hazard model, 3 Simulation study

•
h 0 (t) exp(α j G j + β E X E + β T U U ) = h 0 (t) exp(α j G j + β E (γ * 0j + γ * 1j G j + γ * T U X U + * X ) + β T U U ) Due to

Models and parameter settings

To evaluate the performance of the estimation procedures under a variety of settings, let G j represent the jth genetic variant drawn from a multinomial distribution ((0,1,2); (0.25, 0.5, 0.25)) with γ j drawn from Uniform(0.5, 4). Let α j also be a fixed value that is generated from 1. Case 1 : α j = 0 for all j, i.e., no pleiotropy.

2. Case 2: α j ∼ N (0.25, 0.1 2 ) for all j, pleiotropy.

U and X are independently generated from N (0, 4). Let γ 0 = 0. We generate data from an additive hazard as:

X = γ 0 + J j=1 γ j G j + U + X h(t) = h 0 (t) + J j=1 α j G j + β E X + U
We set h 0 (t) = 5 which implies a constant hazard. In this scenario, we fit an additive hazard model. We investigated four different causal effect sizes β E = 0, 0.1, 0.5, 1. In this section, we display results from β E = 0.1 and β E = 0.5, with results from β E = 0 and β E = 1 in the Appendix.

We also generated failure times from the Cox model in order to investigate the properties of estimates obtained by fitting a Cox model. The posited model is

X = γ 0 + J j=1 γ * j G j + U * + X * h(t) = exp( J j=1 α * j G j + β E X + U * )
where γ j ∼ Uniform(0, 0.5), j = 1, . . . , 25, U * , * ∼ N (0, 1) and U * and * are independently generated. We considered causal effects when β E = 0 and β E = 0.5. In this section, we display result from β E = 0.5 with result from β E = 0 in the Appendix. Let α * j also be a fixed value that is generated from 1. Case 1 * : α * j = 0 for all j, i.e., no pleiotropy.

2. Case 2 * : α * j ∼ N (0.1, 0.05 2 ) for all j, pleiotropy.

We generate time by using a probability integral transformation. Let U * ∼ U nif (0, 1) and S(t) be the survival function. Note that

S(t) = e -H(t)
substantial bias for all three methods. Interestingly, in Case 1 * , the Egger method has lowest bias while bias of the Multi method is the lowest one in Case 2 * . Under the null (Table S3) and no pleiotropy, IVW and Multi perform the best in terms of coverage and Type I error control. However, under the null with pleiotropy, Egger performs the best.

Data analysis

As a case study in the context of real data, we considered BMI as a potential causal factor for breast cancer (BC) survival (Guo et al. 2015). Using data from the Women's Health Initiative (WHI), we considered a total of 1367 BC patients. The WHI is a prospective cohort study and one of the largest studies of women's health ever conducted in the U.S.

Recruitment for the WHI began in 1993 and ended in that enrolled 93,676 women of the same age range into a parallel prospective cohort study [START_REF] Prentice | Design of the WHI Clinical Trial and Observational Study[END_REF]). All of the 1367 BC patients from the WHI were selected from the OS. Of the 1367 patients, 484 died due to breast cancer and the remaining 883 were alive at the time of the last follow-up.

We used the same 94 SNPs as in Guo et al. (2015) as instruments for BMI. First, we ran a cox proportional hazards model independently for each SNP against survival status and considered the global goodness-of-fit test as described in [START_REF] Grambsch | Proportional hazards tests and diagnostics based on weighted residuals[END_REF].

The cox model showed poor goodness of fit across the 94 SNPs (p=0.0122), so we also ran the Aalen additive hazards model between each SNP and survival status. To implement the MR-Egger causal estimation procedure, we also ran linear models between each SNP and BMI. Finally, we fit the MR-Egger regression line to obtain causal effects for both the Cox model and the additive hazard. Both the estimate based on the additive hazard (beta = 0.00096, p=0.7018) and the proportional hazard (beta = 0.0086, p = 0.557) provided nonstatistically significant results for the causal effect of BMI on BC survival. However, Figure 1 shows the differences in the fitted MR-Egger lines. Note that the appropriate model for these data appears to be the additive hazard (based on the GoF test) and the estimated effects differ by an order of magnitude.

Discussion

In [START_REF] Burgess | Interpreting findings from Mendelian randomization using the MR-Egger method[END_REF], the authors comprehensively discuss the use of MR-Egger regression and the importance of assessing the assumptions inherent to that model. q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q -0. 

ΓGj

  Summary statistics from running an additive hazard model for failure time on each genetic variant, i.e., We run the additive hazard model to estimate Γ j = α * j + β E γ * 1j . Denote the statistics by ΓGj and its estimated standard error as ŝΓ Gj . • Summary statistics from running a simple linear regression model of exposure on each genetic variant. Denote the statistic for the estimated slope as γGj The estimation procedure for regression coefficients for time-independent covariates is the least-square method (Lin and Ying, 1994; Li et al. 2014). Hence by employing an additive hazard model, we can follow estimation procedures for MRs in censored data. As we discussed, due to additivity and linearity of our model, we can apply the inverse variance weighting method (Johnson, 2013; Bowen et al. 2015). Let γj be However, this inverse weighting method has bias when α * j = 0 (i.e., directional pleiotropy). As discussed in Bowen et al. (2015), this meta-analysis framework is applicable to an additive hazard model. As in Bowen et al. (2015), for each j = 1, . . . , J, ΓMR Gj = β 0E + β E γMR Gj Then by estimation of β E , we obtain the estimated causal effect. The intercept β 0E estimates the overall directional pleiotropy (Bowen et al. 2015) Due to the linearity and additivity of the additive hazard model, our additive hazard model has the same characteristics as a linear regression model for uncensored data. In other words, our estimate of β E is the causal effect when β 0E = 0.

  1998 and was conducted by 40 Clinical Centers in 24 states and the District of Columbia. There are two major components of WHI: (1) a clinical trial (CT) that enrolled and randomized 68,132 women ages 5079 into at least one of three placebo control clinical trials (hormone therapy, dietary modification, and supplementation with calcium and vitamin D); and (2) an observational study (OS)

Table 1 :

 1 Specifically, they draw attention to the linearity assumption in MR-Egger regression and classify this as a '2nd order' issue as it does not effect valid inferences on causal effects but may effect valid estimates of causal effects. The issue we raise in this article is exactly this type of 2nd order concern, i.e., obtaining valid estimates of causal effects when the outcome of interest is failure time. In this context the additive hazard preservers linearity and the resulting causal effect estimates from MR-Egger regression are valid. Though the Cox model does not preserve linearity, it is still the appropriate model when the data generating mechanism is a proportional hazard. In such cases, causal inferences can proceed with the understanding that the causal effect estimates can be biased (as our simulations indicate). Simulation results from data generated from additive hazard model when β E = 0.1.Multi : adaption of Li et al. (2014) IVW : inverse variance weighting Egger : adaption of

	It is important to note that contemporary MRs are often performed on publicly available
	summary statistics from large-scale genetics consortia. However, in the context of a MR
	analysis with censored survival times as the outcome of interest, summary statistics do
	not suffice to assess the appropriateness of the proportional hazards assumption. In these
	contexts, we recommend only using data for which genotypes and phenotypes are available so
	that the analyst can run the Grambsch and Therneau (1994)'s GoF test, to assess whether the
	proportionality assumptions is met. Then the appropriate model (additive vs proportional
	hazard) can be fit to the data and MR-Egger inference can proceed.

Table 2 :

 2 Simulation results from data generated from additive hazard model when β E = 0.5. Multi : adaption of Li et al. (2014) IVW : inverse variance weighting Egger : adaption of

	Egger regression
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where H(t) is the cumulative hazard function. Since the survival function also follows U nif (0, 1), the failure time is generated from

For the additive hazard model, for both Case 1 and Case 2, the censoring variable C is generated from an exponential distribution with rate 2. For the Cox model, for Case 1 * and Case 2 * , C is generated from an exponential distribution with rate 10 and 50, respectively.

We compared the performance of 3 different models: 2-stage regression as in Li et al.

(2014) (Multi), the IVW method, and the MR-Egger method for both additive hazard and Cox models. We considered two different sample sizes, n = 250 and n = 500.

Results

Under our simulation settings, we calculated bias (Bias), the empirical standard deviation (Emp), standard error (SE), and 95% coverage (Coverage, based on the Wald method), and power (evaluated at a significance level of 0.05) When β E = 0.1, the censoring rate for Case Under the null (Table S1), Egger is the only method that consistently provides correct coverage under all settings with the appropriate Type I error control. 

Appendix A Additional simulation results

This section describes results from β E = 0 and β E = 1 from additive hazard model, and