
HAL Id: hal-03155064
https://hal.science/hal-03155064

Submitted on 2 Mar 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Handling Continuous Functions in Hybrid Systems
Reconfigurations: A Formal Event-B Development

Guillaume Babin, Yamine Aït-Ameur, Neeraj Kumar Singh, Marc Pantel

To cite this version:
Guillaume Babin, Yamine Aït-Ameur, Neeraj Kumar Singh, Marc Pantel. Handling Continuous
Functions in Hybrid Systems Reconfigurations: A Formal Event-B Development. ABZ 2016 - 5th
International Conference Abstract State Machines, Alloy, B, TLA, VDM, and Z, May 2016, Linz,
Austria. pp.290–296, �10.1007/978-3-319-33600-8_23�. �hal-03155064�

https://hal.science/hal-03155064
https://hal.archives-ouvertes.fr

Handling Continuous Functions in Hybrid

Systems Reconfigurations:

A Formal Event-B Development

Guillaume Babin(B), Yamine Aı̈t-Ameur, Neeraj Kumar Singh,
and Marc Pantel

IRIT / INPT-ENSEEIHT, Université de Toulouse,
2 rue Charles Camichel, Toulouse, France

guillaume.babin@irit.fr, {yamine,nsingh,marc.pantel}@enseeiht.fr

Abstract. This paper presents a substitution mechanism for systems
having a continuous behavior. It shall preserve the safety property sta-
ting that the output of both systems remain in a safety envelope. The
whole approach is formalized using Event-B, and relies on the Rodin tools
and a theory of Reals provided by the Rodin Theory Plug-in to check
the internal consistency with respect to safety properties, invariants and
events.

1 Introduction

This paper relies on stepwise refinement in Event-B [2] to contribute to the for-
malization and verification of controllers in Cyber Physical Systems, relying on a
generic substitution mechanism. In this work, we show how to apply the defined
substitution as a reconfiguration mechanism to handle hybrid systems charac-
terized by continuous functions which can be solutions of differential equations
In this case as we model elements from the physical world, system substitutions
are not instantaneous. We extensively use our previous work [4] on discrete con-
trollers synthesis from continuous behavior descriptions. The primary use of the
models is to assist in the construction, clarification, and validation of the contin-
uous behavior controller requirements to build a digital controller in the presence
of system reconfiguration or system substitution. In this development, we use the
Rodin Platform [3,9] to manage model development, refinement, proofs checking,
verification and validation.

2 The Event-B Method

An Event-B model [2] is defined by contexts and machines. It encodes a state-
transitions system which consists of: variables to represent the state; and events
to represent the transitions (defined by before-after predicates). A model also
contains invariants to represent its relevant properties. A variant may ensure
convergence properties when needed. An Event-B machine can see contexts that

DOI: 10.1007/978-3-319-33600-8 23

contain the relevant sets, constants and axioms. Refinement allows to add more
behavior properties and system requirements by refining the abstract model to
a more concrete one. New variables and new events may be introduced at the
refinement level. Once a machine is defined, generated proof obligations need to
be proven in order to demonstrate the preservation of the invariants.

Use of Reals in Event-B. In our work, we are interested in formalizing and
analyzing system specifications while using reals. Therefore, we rely on the theory
for reals, written by Abrial and Butler1. It provides a dense mathematical REAL
datatype with arithmetic operators, axioms and proof rules.

3 Our Previous Work

This section recalls the seminal results we obtained for both system substitution
and discretization of continuous functions. The work presented in this section
is detailed in [4] and all the Event-B models related to the discretization of
continuous functions are available in [1].

1 2 3
init

boot

start

progress

stop

Fig. 1. Behavior of studied systems

1 2 3
init

boot

start

progress

fail

repair

repaired

Fig. 2. System substitution

Studied Systems. They are formalized as state-transition systems. The behav-
ior of such systems can be characterized by two states: the initial one (usually
called boot) and the nominal one (progress). According to Fig. 1, after initializa-
tion, a system enters into the booting state (state 1). Then, after a start tran-
sition, the system progresses (state 2, known as running state). If the system
stops, it switches to state 3.

System Substitution [5,6]. One of the key properties studied in system engi-
neering is the capability of a system to react to changes. It may occur in different
situations (e.g. failures, change of quality of service, context evolution, mainte-
nance, etc.). System substitution can be defined as replacing a system by another
one while preserving the required behavior.

In [5,6], we have developed a formal model (pattern) for system substitution
described in the Event-B modeling language. This pattern is depicted in Fig. 2.
When a failure occurs, the running system is halted (fail transition), it is repaired
in state 3 where the state of the substitute system is restored from the one of the

1 http://wiki.event-b.org/index.php/Theory Plug-in#Standard Library.

halted system. Finally, the control is restored to the substitute system (transition
repaired). The correctness of this substitution has been studied in different cases
(equivalent, degraded or upgraded ones). The defined substitution mechanism
(Fig. 2) preserves the behavior of the original specification and restores correctly
the state of the halted system.

Discretization of Continuous Functions [4]. To control a system, in partic-
ular for system reconfiguration, it is required to observe (monitor the feedback
behavior of the function) and to control (maintain or change system mode) the
system. Such observation and control is performed by a software requiring the
discretization of continuous functions. When using computers to implement such
controllers, time is observed according to specific clocks and frequencies. There-
fore, it is mandatory to define a correct discretization of time that preserves the
observed continuous behavior introduced previously. This preservation entails
the introduction of other requirements on the defined continuous function. Note
that, in practice, these requirements are usually satisfied by the physical plant.

In [4], we reported the stepwise formal development in Event-B of a correct
discretization of a Lipschitz continuous function f characterizing a hybrid system
Sysf . The development consists in the following steps.

– Specification: the mode controller. It models systems whose behaviors
are described in the state-transitions system of Fig. 1. The safety requirement
ensures that the observed values remain in the safety envelope defined by the
interval [m,M].

– Introduction of continuous behaviors. This refinement consists in intro-
ducing a continuous function f defined on the domain of positive real numbers
(for dense time). The observed values of f will belong to the defined safety
envelope [m,M].

– The second refinement: correct discretization of continuous be-

haviors. Discretization requires the introduction of a margin allowing the con-
troller to anticipate (predictive control) the next observable behavior before
incorrect behavior occurs. Let z > 0 be this margin. We use the Lipschitz
continuous function property of f to define the amount of time between two
consecutive states observed by the discrete controller. We introduced macro
time steps of duration δt (discrete control sampling time interval). As a conse-
quence, we define z such that z ≥ maxt∈R+ |f(t) − f(t + δt)|. In order to make
it well-defined, δt must be small enough so that the property m + z < M − z

holds. As a consequence, the set D of observation instants can be defined as,
D = {ti | ti ∈ R ∧ i ∈ N ∧ t0 = 0 ∧ ti+1 = ti + δt}
It can be rewritten as D = {ti | ti ∈ R ∧ i ∈ N ∧ t0 = 0 ∧ ti = i × δt}. As
a result of the definitions of z and δt, if f(n × δt) is in [m + z,M − z] then
we can safely predict using the Lipschitz condition that the next value of f

observed by the controller, f((n + 1) × δt), is in [m,M].

4 Hybrid System Substitution in the Presence

of Continuous Behaviors

We consider two continuous functions f and g characterizing the behavior of
two hybrid systems Sysf and Sysg. We also assume that these two systems
maintain their feedback information value in the safety envelope [m,M]. As a
consequence, these two systems can substitute each other since they fulfill the
same safety requirement. The studied scenario consists in substituting Sysf after
a failure by Sysg (see requirements in Table 1).

Figure 3a and b show the substitution scenario in both continuous and dis-
crete cases. The X axis describes time passing and the vertical dashed lines
model state transitions according to the behavior depicted in Fig. 2. Observe
that during repair (state 3 of Fig. 2), the function f (associated with Sysf)
decreases while the function g (associated with Sysg) is booting. The invariant
states that the function f + g belongs to the safety envelope [m,M] during the
repair. Finally, the system returns to progress (state 2) using Sysg as the running
system.

Table 1. Requirements in the abstract specification.

At any time, the feedback information value of the controlled
system shall be less or equal to M in any mode.

Req.1

At any time, the feedback information value of the controlled
system shall belong to an interval [m, M] in progress mode.

Req.2

The system feedback information value can be produced
either by f , g or f + g (f and g being associated to Sysf

and Sysg).

Req.3

The system Sysf may have feedback information values out-
side [m, M].

Req.4

At any time, in the progress mode, when using Sysf , if the
feedback information value of the controlled system equals
to m or to M , Sysf must is stopped.

Req.5

4.1 Refinement Strategy

The substitution process is defined for replacing Sysf by Sysg, both systems
being described by the state-transitions system of Fig. 2. Following the approach
defined in [10], the adopted refinement strategy consists of an abstract specifica-
tion and three refinements: Definition of a Mode controller (M0), Introduction
of the safety envelope (M1), Handling continuous behavior and dense time (M2)
and Discretization of the continuous behavior (M3).

(a) Continuous system substitution (b) Discrete system substitution

Fig. 3. Examples of the evolution of the function f

4.2 The Event-B Models

We describe the stepwise formal development of the models corresponding to the
refinement strategy sketched above. All the Event-B models are available in [1].

– The required contexts. Contexts define the relevant concepts needed for
our developments. The context C reals defines a set of theorems for positive
reals, continuous and monotonic functions. This context uses the REAL type
for real numbers defined in RealTheory (using the Theory plug-in for Rodin).
The context C modes defines the constants MODE X representing the different
system modes (F , G and R for Sysf , Sysg and Repair modes) belonging to the
MODES set. The next two contexts (C envelope and C margin) deal with the
definition of the safety envelope. They define the intervals of safe values: [m,M]
in the continuous case, and [m + z,M − z] with margin z in the discrete case.

– The root machine: Definition of a Mode controller. Machine M0
describes the reconfiguration state-transitions system depicted in Fig. 2. The
modes are used in the events guards that allow the system to switch from one
state to another. At initialization, Sysf is started (MODE F), it becomes active
when the active variable is true (Sysf ended the booting phase). When a failure
occurs, progress of Sysf is stopped. The controller enters in the reparation mode
MODE R. Once the reparation is completed, the mode is switched to MODE G
and Sysg enters into a progress state.

– First refinement: Introduction of the safety envelope. Machine M1
refines M0. It preserves the behavior defined in M0 and introduces two kinds
of events: environment events (event name prefixed with ENV) and controller
events (event name prefixed with CTRL) [10]. The ENV events produce the
system feedback observed by the controller. Three continuous variables f , g and
p are introduced. f and g record the feedback information values of Sysf and
Sysg individually, while p records the feedback value of both systems before,
during and after substitution. p corresponds to f of Sysf in MODE F, g of Sysg

in MODE G and f + g of combined Sysf and Sysg in MODE R corresponding
to the reparation after failure. Once the system has booted, p must belong to
the safety envelope in all the cases. The CTRL events correspond to refinements

of the abstract events of M0. They modify the control variable active and md

(the mode). The ENV events observe real values corresponding to the different
situations where Sysf and Sysg are running or when Sysf failed and Sysg is
booting. This last situation corresponds to the reparation case.

– Second refinement: Continuous behavior and dense time. Machine M2
(refining M1) describes the continuous behavior (Fig. 3a). Once the modes and
the observed values are correctly set, the next refining events are straightforward.
They correspond to a direct reuse of the development of a correct discretization
of a continuous function as done in [4]. Indeed, continuous variables fc, gc, pc

and mdc corresponding to the functions f , g, p and md to the modes in M1
are introduced. A real positive variable now is defined to represent the current
time. The gluing invariants (for example p = pc(now)) connect the variables of
M1 with the continuous variables at time now. In the same way, each event of
M1 is refined. A non-deterministic time step dt is introduced and the continuous
functions are updated by the ENV events on the interval [now, now + dt] while
now is updated to now := now+dt. The control CTRL events observe the value
pc(now) to decide whether specific actions on mode mdc variable are performed
or not. A detailed description of this refinement is given in [4].

–Third refinement: Discretization of the continuous behavior. Follow-
ing [4], the discrete behavior is described in a Machine M3 (Fig. 3b). As men-
tioned in the context C margin, the margin z is defined, such as 0 < z ∧m+ z <

M − z and M − m > 2 × z. This margin defines, at the discrete level, the new
safety envelope as [m + z,M − z] ⊂ [m,M]. The new discrete variables fd, gd,
pd and mdd of M3 are glued to fc, gc, pc and mdc of M2. They correspond to
discrete observations feedback of fc, gc, pc and mdc. The discretization step is
defined as δt. Each environment event corresponding to a continuous event is
refined by three events. One discrete event starting a time interval δt, one for
time intervals included in δt and the next discrete event (third one) at end of
δt. The second event may occur several times, a variant enforces it to be Zeno
free. The discrete controller only observes the events at time n × δt.

5 Conclusion

Modeling hybrid systems using Event-B was studied by several other authors
[7,8,10]. In this paper, we have extended our work on system substitution to
handle systems characterized by continuous models. First, we modeled system
substitution at a continuous level, then we provided a discrete model for sub-
stitution which preserves the original continuous behavior. This work reused
previous results we obtained on the correct system reconfiguration modeling
and the correct discretization of continuous behaviors. By correctness, we mean
the preservation of system information feedback in a safety envelope. The whole
approach is supported by proof and refinement based on the Event-B method.
Refinement proved useful to build a stepwise development which allowed us
to gradually handle the requirements. Moreover, the availability of a theory of

reals allowed us to introduce continuous behaviors which usually raise from the
description of the physics of the controlled plants. All these models have been
developed within the Rodin platform [3] and the developed formal models can
be downloaded from [1].

References

1. Models. http://babin.perso.enseeiht.fr/r/ABZ 2016 Models/
2. Abrial, J.R.: Modeling in Event-B: System and Software Engineering, 1st edn.

Cambridge University Press, New York (2010)
3. Abrial, J.R., Butler, M., Hallerstede, S., Hoang, T.S., Mehta, F., Voisin, L.:

Rodin: an open toolset for modelling and reasoning in event-B. International
Journal on Software Tools for Technology Transfer 12(6), 447–466 (2010).
http://dx.doi.org/10.1007/s10009-010-0145-y

4. Babin, G., Aı̈t-Ameur, Y., Nakajima, S., Pantel, M.: Refinement and proof based
development of systems characterized by continuous functions. In: Li, X., et al.
(eds.) SETTA 2015. LNCS, vol. 9409, pp. 55–70. Springer, Heidelberg (2015).
doi:10.1007/978-3-319-25942-0 4

5. Babin, G., Ait-Ameur, Y., Pantel, M.: A generic model for system substitution. In:
Romanovsky, A., Ishikawa, F. (eds.) Trustworthy Cyber Physical Systems Engi-
neering. CRC Press Taylor & Francis Group (2016)

6. Babin, G., Ait-Ameur, Y., Pantel, M.: Correct instantiation of a system recon-
figuration pattern: a proof and refinement-based approach. In: 2016 IEEE High
Assurance Systems Engineering Symposium, HASE 2016, Orlando, FL, USA,
January 7–9, 2016. IEEE Computer Society Press (2016)

7. Banach, R.: Pliant modalities in hybrid Event-B. In: Liu, Z., Woodcock, J., Zhu,
H. (eds.) Theories of Programming and Formal Methods. LNCS, vol. 8051, pp.
37–53. Springer, Heidelberg (2013)

8. Butler, M., Abrial, J.R., Banach, R.: From Action Systems to Distributed Sys-
tems: The Refinement Approach, chap. Modelling and Refining Hybrid Systems
in Event-B and Rodin, p. 300. Taylor & Francis, February 2016. http://www.
taylorandfrancis.com/books/details/9781498701587/

9. Jastram, M.: Rodin User’s Handbook (Oct 2013). http://handbook.event-b.org
10. Su, W., Abrial, J.R., Zhu, H.: Formalizing hybrid systems with Event-B and

the Rodin platform. Sci. Comput. Program. 92(2), 164–202 (2014). http://www.
sciencedirect.com/science/article/pii/S0167642314002482

