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Abstract—The rapid increase of portable devices providing a
multitude of mobile applications have led to excessive cellular
traffic demands and consequently to the overload of cellular
networks. Recently, migrating this traffic by opportunistic ve-
hicular networks has attracted a great interest and appeared
as a promising solution. Indeed, only a limited set of vehicles
(seeds) is selected to download objects from an Internet-content
server through the cellular network and then propagate the
content gradually by opportunistic communications (i.e. vehicle-
to-vehicle V2V). This paper proposes SIEVE, an innovative seed
selection scheme, that exploits two key criteria: users’ interests
and near-future contacts prediction. Based on these criteria,
SIEVE allows to select the seeds in order to maximally satisfy the
users’ interests and, hence, achieve a maximum content utility
(i.e. quantitative metric that determines how satisfied are the
users). Simulations results show that SIEVE can improve the
content utility when compared to other algorithms.

I. INTRODUCTION

Due to the proliferation of mobile devices (e.g. smartphones

and On-Board Units OBU), vehicular networks have witnessed

the development of several applications for commuters (i.e.

drivers, passengers) [1–3]. These applications offer a sig-

nificant convenience for drivers and passengers providing a

multitude of information such as touristic recommendation

and sale advertisement [4]. Most of these applications enable

vehicular users to access and download a large amount of

content from an Internet-based content server through cellular

networks. One side effect of this tremendous applications

spread lies in the inability of cellular networks withstand

sudden increases of traffic due to the infrastructure limitations,

and it is likely to be overloaded.

Offloading cellular networks through vehicular opportunis-

tic communications (i.e. V2V) has been investigated as a

promising solution to partially overcome this problem [5].

Vehicles can use short-range communications, such as DSRC

technologies, for sharing and distributing content between

them. Hence, initially, only a small set of nodes, called seeds,

are selected to download content objects from a content server

using the cellular network. A seed carries and broadcasts its

objects to its neighboring nodes, and then content can then be

gradually propagated all over the network. Hence, this avoids

the excessive dependence on cellular networks and benefits the

network from V2V communication characterized by its low

cost, easy deployment, and higher transmission rate compared

to cellular networks.

Selecting seed-vehicles is the initial step for the cellular

networks offloading, being also a challenging task [6]. On the

one hand, the vehicular network topology is highly dynamic

due to the vehicles mobility, making hard to foresee the

network topology. On the other hand, a content object may be

time-critical (i.e. no longer accurate or relevant after a given

period of time), therefore, it should be delivered rapidly to

interested users before its lifetime expires.

Several seed selection approaches have been designed for

vehicular networks [5], [7–10]. Basically, these works select

as seed-vehicles the most influential nodes in the network

considering different criteria such node centrality, future con-

tacts prediction, geographic zone, and so on. They only target

on delivering the content rapidly to a large number of users

with a minimum use of the cellular networks. Although these

approaches could achieve good results in terms of delivery

ratio and cellular traffic offloading, they may not be able to

maximally satisfy the users interests. These approaches do not

consider users interests for various content objects that can be

generated. Therefore, the goal of this work is to design an

interest-aware seed selection scheme for vehicular networks.

Fig. 1. Simple example

Consider the example shown in Fig. 1 where a new content

object is being created and available within a content server.

Each vehicular user has interest (i.e. expressed by integer value

as shown in Fig. 1) for the new object. Let us assume, in this

scenario, that only one vehicle is assigned as seed. Considering

the degree centrality (i.e. the number of other nodes in the

graph that the node shares edges with) as the criteria to select
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the most influential nodes, vehicle S1 will be chosen as seed

since it has the highest number of neighbors. S1 will then

download the object and diffuse it to its neighboring vehicles

and allows then to achieve an utility US1
= 4+2+2+1+3 =

12 (Fig. 1 (a)). However, such a seed selection strategy cannot

achieve the maximal global utility (i.e. utility of the entire

network) because it does not consider the users preferences.

In particular, considering the vehicle S2 as seed (Fig. 1 (b))

can provide more utility even though S2 has not the highest

degree centrality (US2
= 4 + 6 + 6 = 16 > 12).

The goal of this paper is thus to develop an interest-aware

seed selection approach that maximizes the global utility for all

vehicular users. This work presents SIEVE, a seed selection

scheme, that considers two important aspects: users prefer-

ences and future encounter prediction in order to improve the

users satisfaction. SIEVE performance is evaluated through

extensive simulations over a ‘content utility’ metric (i.e. a

quantitative metric that computes the users’ gain by means

of interests in receiving the content). Results demonstrate that

SIEVE achieves better content utility against the state-of-the-

art schemes.

This paper proceeds as follows. Sections II and III present

the system model and describe the SIEVE scheme. In Sec-

tion IV, intensive simulation results demonstrate the effective-

ness of SIEVE. Section V reviews the related works. Finally,

Section VI presents the conclusion and future works.

II. SYSTEM MODEL

This work considers a vehicular network composed of

mobile users moving on a road topology covered by a cellular

infrastructure, as illustrated in Fig. 2. We consider a set of

vehicles V = {vi} equipped with a cellular interface and

a short range communication interface (e.g. 802.11p). The

system also includes a vehicular controller and an Internet-

content server from which seed-nodes retrieve the content

objects, initially through the cellular networks. This work

focuses on convenience and commercial applications that offer

different services for commuters along vehicular roads. For

instance, information from the service providers announcing

their services and trying to attract commuters to their stores

(e.g. announcements like petrol pumps, highways restaurants,

and others). The term content object represents an information

regarding a specific service, such as a gas station advertise-

ment. Seeds can then exploit the direct communications (i.e.

V2V) to disseminate downloaded content objects to neighbor-

ing nodes. Consequently, nodes can store, carry and forward

content objects until reaching all interested users.

Each node vi is required to explicitly provide its preferences

for different predefined topics T = {Tk} (e.g. gas station

offers, restaurant recommendation), being the preferences rep-

resented by interest values ranging from 0 to 4. Indeed,

nowadays, users have heterogeneous interests for the different

topics (e.g. a user can be interested for both topics T1 and

T2 but s/he may be more interested on T1 than for T2). Let

Ii,Tk
∈ [0, 4] and Ii,j ∈ [0, 4] denote the interests of the node

vi for the topic Tk and the content object oj , respectively.

Ii,j = Ii,Tk
if oj is a content object regarding the topic Tk.

Hence, when a node vi receives a content object oj regarding

a topic Tk, vi gets the utility = Ii,j = Ii,Tk
.

This work considers that a node does not get any utility

when getting an object that it had received before (i.e. dupli-

cate object) or if it receives an uninteresting content object

(i.e. Ii,j = 0).

For the sake of simplicity and without loss of generality, a

vehicle is only associated to one user that can be the driver

or a passenger. In this paper, the terms ‘vehicles’ and ‘users’

are referred to as ‘nodes’.

Fig. 2. Network system

Let’s assume o∗ as a new content object created at Te,

available within the content server and with a lifetime Tmax.

In order to increase the users satisfaction, the efficient seed for

o∗ is the node that can reach a maximum number of interested

users and can achieve a maximum utility as shown in eq. 1.

seed = argmax
vk

∑

vi received o∗ before Te+Tmax

Ii,o∗ (1)

It is difficult to resolve this problem unless we know the

nodes interests and all the future communications during the

object lifetime. To this end, the aforementioned vehicular

controller collects periodically information on the position,

speed, direction and interests of nodes. By exploiting such

information, the vehicular controller predicts the evolution of

vehicle movements over a near-future time horizon H, with a

time granularity N × δt (N ∈ N) with a time granularity δt.

The predicated location of vehicles is then exploited by the

vehicular controller to determine future V2V contacts over

the horizon N × δt [11]. In the following, we stress that the

vehicular controller can predict vehicle mobility and contacts.

Discussion: SDN controller an example of vehicular controller

Recently, some research works [12], [13] showed that the

use of the paradigm of Software Defined Networking (SDN)

can provide the flexibility and programmability and introduces

new services and features to today’s vehicular networks. In-

deed, vehicles send periodically their information (e.g. speeds,

position) to an SDN-controller, allowing it to get a global view

of the network, and enabling it to control the network behavior



by intelligent decisions such as the selection of the efficient

seeds in our context.

III. SIEVE SCHEME

The main contribution of this paper lies in SIEVE: a Seed

selectIon scheme for maximally satisfying commutErs inter-

ests in Vehicular nEtworks. Differently from other approaches,

SIEVE considers both heterogeneous user interests and future

contacts prediction in order to efficiently assign the seed-

nodes. It aims to maximize the content utility.

A. SIEVE phases

Fig. 3 illustrates the main phases of the SIEVE scheme:

(i) vehicles information gathering, (ii) prediction of nodes

impacted by vi, (iii) content utility computation and seed

selection; and (iv) content objects download. These phases

are described as follows.

Fig. 3. SIEVE phases

1) Vehicles information gathering: The vehicular controller

collects periodically beacon messages from nodes allowing

it to get a better view of the network. Beacon messages

comprise: < ID, (x, y), s,
−→
dir, seq >

where ID represents the identity of the node; (x, y) indicates

the current location of the node; s and
−→
dir are the speed and the

direction of the vehicle, respectively; and seq is a sequence of

the user interests for the different topics. When a new content

object is created, SIEVE starts the next phases of the seed

selection process in which the vehicular controller predicts

the future nodes that will be impacted by a node vi.
2) Prediction of nodes impacted by vi: We consider that the

vehicular controller can predict the near-future V2V encoun-

ters. Thus it can determine the list of impacted nodes Lvi,T

by the vi during a period of time T . Impacted nodes refer to

the nodes that are likely to receive a content object initially

owned by vi before T expires. Fig. 4 illustrates an example

of nodes impacted by v1 during the period [t, t+ 5δt] where

Lv1,[t,t+5δt] = {vi/i ∈ [2, 10]}. Thus, if v1 owns a content

object oj at instant t, the nodes Lv1,[t,t+5δt] are likely to

receive oj in the period of time [t, t+ 5δt]
3) Content utility computation and seed selection: Given

a content object o∗ created at the instant Te, in order to

maximize the content utility the seed-node of o∗ is assigned

as the node that can produce the maximum utility during the

future contact prediction (i.e. [Te, Te +N × δt]).

Fig. 4. A sample of contact events of vehicle v1 during a period of 5δt

Knowing the nodes’ interests and the list of impacted nodes

by vi, the vehicular controller computes the content utility that

can be produced by vi (Eq. 2).

Utility(vi, o
∗) =

∑

vk∈Lvi,[Te,Te+N×δt]

Ik,o∗ (2)

Then, the vehicular controller ranks all the nodes, in ascend-

ing order according to their content utility values, and chooses

as seeds the nodes having the highest content utility values.

Finally, the vehicular controller sends a control message for

the assigned seeds to perform the final step content object

download and dissemination. This study considers that, for the

same content object, the number of assigned seeds is greater

than or equal to 1.

4) Content object download and dissemination: When a

node, assigned as seed, receives the control message from the

vehicular controller, it has to download the content object from

the internet-content server through cellular network. Next,

this seed disseminates the downloaded content object using

the vehicular opportunistic communication (i.e. V2V). Thus,

the content object can be gradually disseminated all over the

network until its lifetime expires.

This work employs the content utility rate, a quantitative

metric that computes the nodes’ gain by means of interests

(i.e. how satisfied the users are) for the performance evaluation

(Eq. 3).

Content Utility rate =

∑
oj is received by vi

Ii,j∑
Ii,j

(3)

B. SIEVE algorithm

Algorithm 1 gives the pseudocode for the SIEVE seed

selection scheme. It summarizes the SIEVE behavior. This

algorithm is executed whenever a new content object is created

and available to be disseminated for the different nodes in the

network (Line 1). Let Te be the content object creation time. N
is set as the number of time slots for future contact prediction

(Line 2).



Algorithm 1 Seed selection using SIEVE

1: A new content object oj is created at event Time: Te

2: N ← number of prediction’ time slots

3: for vi IN V do

4: Determine D(vi) direct neighbors of vi
⊲ direct neighbors D(vi) correspond to [Te, Te + δt]

5: Lvi ← {vi, D(vi)}
6: n ← 1
7: while n < N do

8: P ← [Te + n× δt, Te + (n+ 1)× δt]
9: Listcopy ← Lvi

10: for vk IN Listcopy do

11: Predict FC(vk, P ) ⊲ future contacts of vk
during the period of time ‘P’

12: Lvi
← Lvi

∪ FC(vk, P )
13: end for

14: n ← n+ 1
15: end while

⊲Lvi contains the list of impacted nodes by vi during the

period of time [Te, Te +N × δt]
16: Content utility(vi, oj) ←

∑
k∈Lvi

Ik,j
17: end for

18: seedoj ← maxvi Content utility(vi, oj)
19: return seedoj ⊲ is selected as seed for oj

Lines 3-15 allow to determine the list of impacted nodes

of each vehicle vi ∈ V during [Te, Te + Nδt]. This is

performed analyzing the contact encounters for the different

time-slots. Knowing the list of impacted nodes of each vehicle

vi, Lvi , Line 16 computes the future content utility that vi can

produce using Lvi and the nodes interests. Finally, Lines 18-

19 determine and select the node having the highest content

utility value as seed for the content object.

IV. PERFORMANCE EVALUATION

SIEVE has been evaluated by simulations through the

Opportunistic Network Environment (ONE) [14]. Simula-

tions involve a set of vehicles moving with different speeds

[50km/h,110km/h] following a vehicular-based map-driven

mobility model [15] on a map of Helsinki downtown area

of 4500m x 3400m [14]. Each vehicle is equipped with an

OBU characterized by a transmission range of 200 m and a

transmission rate of 6 Mbps for the V2V communications.

For each user, a list of interests for the different topics is ex-

pressed randomly, following a uniform distribution. A number

of 100 content objects with equal size 1MB is generated with

an inter-object interval time in a range of [50, 100] seconds.

Contrarily to the mobile networks where the mobile nodes are

equipped with smart devices such as smartphones that have a

limited buffer size, vehicular users have OBUs that have large

memory size [16]. Therefore, this work assumes that OBUs

do not present memory constraints. Furthermore, we consider

that OBUs do not have energy constraints since they can be

powered by the vehicle’s onboard facilities.

Fig. 5. Cumulative utility over time

The future contacts prediction is performed for a period of

10 time-slots (i.e. 10 δt) where δt = 4s. SIEVE is compared

with other seed selection schemes as follows:

• Random: seed-vehicles are chosen randomly. Unlike

other methods, the random solution does not use extra

information for selecting the seeds.

• Future centrality-based [7]: this approach chooses the

seeds as the nodes occupying a vital role in terms of

degree centrality, not only in the event time, but also

in the future. Authors in [7] have demonstrated that the

degree centrality is a good metric to study the dynamics

of vehicular sociality as they show both temporal patterns

and wide diversity among vehicles.

First simulations are conducted to show the impact of

network density on the seed selection schemes. Hence, two

scenarios are considered for low and high densities. Scenarios

with low density consider a number of 20 vehicles, whereas

scenarios with high density consider a number of 100 vehicles.

Content objects have equal size of 1 MB and with a lifetime

of 60 min, each. For each object, only one node is assigned

as seed. Simulations run until all the objects lifetimes expire.

A. Results

For low density, Fig. 5 shows that SIEVE can achieve a

higher content utility of 89% comparing to future-centrality

and random schemes that realize 83% and 74.5%, respectively.

The different approaches could not satisfy all the users’

interests before the objects expiration (i.e. the different curves

do not converge to 100%). In a low density scenario, selecting

the seed-vehicles become harder since the vehicles encounter

frequency is very low. Thus, as it becomes difficult to diffuse

all the content objects before they get expired, then it is

important to efficiently choose the seed-vehicles in order to

maximally satisfy the users interests.

In a high density scenario, we have noticed that SIEVE pro-

duces similar results as future centrality and random methods.

The different methods converge to the same content utility rate

of 100% at the same time (230 min). A high density network



leads to an increase of the frequency of contacts between the

vehicles. Thus, the propagation of a content object can expand

rapidly in the core of the network.

Therefore, considering only one seed per object, the seeds

selection has no impact on the performance of the content

object propagation in a high density network. On the contrary,

in low density network, the seeds should be efficiently chosen

to maximally satisfy the users interests. Vehicular networks

can be considered with low density due to two main reasons:

few vehicles are equipped with OBUs (low penetration rate),

and the non cooperative behavior of some nodes.

Next, the seed selection schemes performance is evaluated

over various TTLs, content objects size, and number of seed-

vehicles per object for both low and high density scenarios.

The results of simulations experiments are shown in Figures 6

and 7. Fig. 6a and Fig. 6b illustrate that SIEVE achieves the

best performance followed by Future-centrality and Random

considering various TTLs and content object size. Considering

various seeds, we check the period of time required, for the

different methods, allowing to achieve a content utility rate of

90% as shown in Fig. 6c SIEVE needs less time to satisfy

90% from the users interests comparing to Future-centrality

and Random. It is thus demonstrated that SIEVE can rapidly

propagate the content for the interested users.

Under high density, we have seen that the different methods

produce similar results when using 1 seed per object. Thus,

we studied if the different methods are similar when limiting

the objects lifetime. Fig. 7a shows that, SIEVE outperforms

future centrality and random for low TTLs. As the objects

lifetime decrease, thus it become harder to receive the content

objects before they get expired. Therefore, choosing the seed

vehicle that can produce the highest content utility become

more important and has more impact on the performance.

Fig. 7b and Fig. 7c illustrate that SIEVE overcomes other

methods for various content objects size and number of seeds.

Discussion: Vehicular networks appeared with the need of

safety applications, and several dissemination protocols are

designed for these applications. Nowadays, several research

works apply these protocols, designed for safety applications,

in the context of comfort applications. However, these two

types of applications have different constraints (e.g. comfort

applications are less time-constrained compared to safety

applications). Therefore, for non-safety applications, there is a

need to think about the users convenience and thus to propose

other performance metrics to evaluate the users satisfaction.

V. RELATED WORKS

Several works [7], [10], [17–20] have investigated the seed

selection problem in vehicular networks aiming to improve

two main points: (i) maximally offload the cellular traffic

and (ii) to expand the content propagation coverage. Some

works focused on minimizing the number of seed-vehicles,

consequently minimize the cellular communication cost, under

the condition that all users can retrieve the content before it

expires. Other approaches addressed the choice of the seeds

aiming to maximize the coverage of content propagation.

Authors in [21] proposed to choose the most influential

nodes (i.e. e those located within the core of the network)

in the network in order to ensure an efficient information

diffusion. This approach might be efficient in static network

but not in very dynamic network as vehicular networks. Thus,

to outperform this constraint, the work in [7] proposed to

consider the current and the future status of the network.

Authors proposed to select the nodes having the highest

centrality in the current and future status of the network using

the future contact prediction. However, considering different

communities, this approach may ignore some communities

since it can choose seed-vehicles as nodes with highest cen-

trality but belonging to the same communities. Therefore, a

community-based solution [9] have been proposed to select

seeds as the nodes having the highest centrality but belonging

to different communities.

We do not deny that these works achieved good results in

terms of cellular offload percentage and content propagation

coverage. However, some of the picture is still missing an

important feature: users’ interests. In these cited works, a

single type of content object is considered and all participating

nodes are assumed to be interested in the generated content.

Basically, users may be interested in receiving all safety

information since it is the commuters life at sake. But for

non-safety information, users are seldom interested in the large

amount of content that can be generated everyday. They, only

want to access to a specific useful content based on their

personal preferences [16].

Some works thought to overcome this lack by proposing the

geo-dissemination solution in vehicular networks [22] where

content are disseminated to destinations confined in specific

geographic regions, and thus seed-vehicles can be chosen in

certain areas related to the content. Nevertheless, this approach

may be only interesting for specific type of content such

as traffic information since users are usually interested to

receive traffic notification in specific areas. But it is not the

case for all type of content (e.g. restaurant recommendation)

since they are related to the personal preferences of the user.

Therefore, unlike the existing approaches, this work considers

heterogeneous users’ preferences and aims to maximize the

users’ satisfaction.

VI. CONCLUSION

This paper investigates the seed-vehicles selection problem

when offloading cellular networks through opportunistic vehic-

ular communications. A novel scheme, called SIEVE, was pro-

posed. Unlike existing works, SIEVE considers heterogeneous

users preferences and near-future encounters prediction and

aims to maximally satisfy the users interests. The efficiency

of SIEVE is emphasized through simulation studies, and

results showed that SIEVE outperforms state-of-art schemes.

Determining the efficient number of seeds is a focus of our

future work. In order to efficiently compute this number, other

parameters should be considered such as content popularity

(derived from users preferences).



(a) TTL (1 seed; content object size=1MB) (b) Content object size (TTL=30, 1 seed) (c) Number of seeds (TTL=60, content object
size=1MB, convergence to 90% of content utility)

Fig. 6. Impact of the TTL, content object size, and number of seeds in a low density scenario

(a) TTL (1 seed; content object size=1MB) (b) Content object size (TTL=30, 2 seed) (c) Number of seeds (TTL=60, content object
size=1MB, convergence to 100% of content utility)

Fig. 7. Impact of the TTL, content object size, and number of seeds in a high density scenario

REFERENCES

[1] “WAZE: Waze Navigation Service.” (last access on april 2015).
[Online]. Available: https://www.waze.com/

[2] S. Smaldone, L. Han, P. Shankar, and L. Iftode, “RoadSpeak : Enabling
Voice Chat on Roadways using Vehicular Social Networks,” SocialNets,
pp. 43–48, 2008.

[3] W. Sha, D. Kwak, B. Nath, and L. Iftode, “Social Vehicle Navigation:
Integrating Shared Driving Experience into Vehicle Navigation,” ACM

HotMobile, 2013.

[4] H. T. Cheng, H. Shan, and W. Zhuang, “Infotainment and road safety
service support in vehicular networking: From a communication perspec-
tive,” Mech. Syst. Signal Process., Special Issue on Integrated Vehicle

Dynamics, vol. 25, no. 6, pp. 2020 – 2038, 2011.

[5] F. Malandrino, C. Casetti, C. Chiasserini, and M. Fiore, “Offloading
cellular networks through ITS content download,” IEEE SECON, pp.
263–271, 2012.

[6] N. Cheng, N. Lu, N. Zhang, X. Shen, and J. W. Mark, “Vehicular
WiFi offloading: Challenges and solutions,” Vehicular Communications,
vol. 1, no. 1, pp. 13–21, 2014.

[7] J. Qin, H. Zhu, Y. Zhu, L. Lu, G. Xue, and M. Li, “POST: Exploiting
Dynamic Sociality for Mobile Advertising in Vehicular Networks,” Proc.

IEEE INFOCOM, pp. 1761–1769, 2014.

[8] Y. Zhu, Q. Chen, and C. Chen, “Harnessing Vehicle-to-Vehicle Com-
munications for 3G Downloads on the Move,” International Journal of

Distributed Sensor Networks, vol. 2014, 2014.

[9] Y.-J. Chuang and K. C.-J. Lin, “Cellular traffic offloading through
community-based opportunistic dissemination,” IEEE WCNC, pp. 3188–
3193, 2012.

[10] J. Whitbeck, Y. Lopez, J. Leguay, V. Conan, and M. D. de Amorim,
“Push-and-track: Saving infrastructure bandwidth through opportunistic
forwarding,” Pervasive and Mobile Computing, vol. 8, no. 5, pp. 682–
697, 2012.

[11] F. Malandrino, C. Casetti, C. Chiasserini, and M. Fiore, “Content Down-
load in Vehicular Networks in Presence of Noisy Mobility Prediction,”
IEEE Trans on Mobile Computing, vol. 13, no. 5, pp. 1007–1021, 2014.

[12] I. Ku, Y. Lu, M. Gerla, R. L. Gomes, F. Ongaro, and E. Cerqueira,
“Towards software-defined VANET: Architecture and services,” MED-

HOC-NET, pp. 103–110, 2014.
[13] N. B. Truong, G. M. Lee, and Y. Ghamri-Doudane, “Software defined

networking-based vehicular Adhoc Network with Fog Computing,”
IFIP/IEEE IM, pp. 1202–1207, 2015.

[14] A. Keränen, J. Ott, and T. Kärkkäinen, “The ONE Simulator for DTN
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